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 Abstract 
 Vascular calcification is heterogeneous and triggered by multiple mechanisms. It has been 
implicated in the development of heart failure with preserved ejection fraction (HFpEF) and 
cognitive function impairment. Understanding the pathophysiology of vascular calcification 
may help us improve the management of HFpEF, atherosclerosis, accelerated arterial stiffness, 
hypertension, and cognitive dysfunction. Currently, there are no effective strategies for treat-
ing accelerated arterial stiffness. This may indicate that once arterial stiffness or vascular cal-
cification has developed, it may be less likely to stop the ongoing pathophysiology. Therefore, 
earlier intervention targeting the probable pathways of vascular calcification may benefit the 
patients with vascular calcification and related pathological conditions. In this review, we 
briefly discuss the proposed pathophysiological roles of vascular calcification in the develop-
ment of heart failure and cognitive decline, the animal models used to study the link between 
vascular calcification and cardiovascular diseases, and the possible corresponding manage-
ment strategies.   © 2017 S. Karger AG, Basel 

 Vascular calcification is a prevalent finding in the elderly population, associated with the 
process of vascular aging which is commonly conceptualized as arterial stiffness  [1] , and 
usually recognized as a disease marker and prognostic factor for cardiovascular diseases 
 [2–4] . However, given that arterial stiffness has been increasingly implicated in the patho-
physiology of heart failure and cognitive decline, vascular calcification, with its inevitable 
consequence of stiffening arteries, may also play a significant role and serve as a potential 
intervention target  [5] .
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  The Role of Vascular Calcification in the Pathophysiology of Cardiovascular 
Diseases 

 Atherosclerosis has been considered as the most important hallmark of vascular 
pathology. In contrast, arteriosclerosis or arterial stiffness is a vascular aging process  [1] , 
which leads to end-organ damage because of the reduced compliance and the arterial reservoir 
function of the arterial system  [6]  and the resultant increasing transmitting energy of arterial 
pulse waves  [7] . Vascular calcification, a pathophysiological consequence of atherosclerosis, 
is associated with an inevitably more stiffened arterial system, and as a result, may serve as 
a connecting bridge between these two important pathways linked to the development of 
cardiovascular diseases. Ample evidence shown in animal data and studies of diabetes and 
end-stage renal disease has demonstrated that calcification of elastic fibers contributes to 
increased arterial stiffness  [8, 9] .

  Henry et al.  [10]  conducted a large-scale prospective population-based study and found 
that renal function is inversely associated with cardiovascular and all-cause mortality, in 
which vascular calcification is the major cause of cardiovascular disease in patients with 
chronic kidney disease (CKD) as it is associated with myocardial ischemia, impaired myocardial 
function, valvular insufficiency, arrhythmias and stroke, and appears to be a strong inde-
pendent predictor of mortality  [10] . Besides, patients with atherosclerotic plaque in the 
intimal layer often have more severely calcified aortae compared to those of the normal popu-
lation. The prognostic role of calcification of abdominal aorta and coronary arteries in the 
prediction of incident cardiovascular events has been demonstrated in general population 
and diabetes patients  [11] . Therefore, a deeper comprehension of the pathophysiology of 
vascular calcification could shed light on the identification of the possible intervention strat-
egies for atherosclerosis and arteriosclerosis.

  The Potential Influence of Vascular Calcification on Heart Function and 
Ventriculo-Arterial Coupling 

 It has been reported that more than half of the general population with heart failure have 
preserved ejection fraction (HFpEF)  [12] . Observational studies have concluded that the 
morbidity of HFpEF is similar to that of systolic heart failure  [13] . Interestingly, among elderly 
women living in the community, HFpEF comprises nearly 90% of incident heart failure cases 
 [14] , in whom vascular calcification and osteoporosis are also common findings. Currently, 
the treatment of HFpEF is still empirical and there are no evidence-based therapeutic recom-
mendations for this disease  [15] . 

  The mechanism underlying HFpEF is complicated. Abnormal matrix dynamics, altered 
myocyte cytoskeleton, impaired active relaxation, chronotropic incompetence, reduced left 
atrial strain, and cardiac inflammation on extracellular matrix remodeling are all implicated 
in the development of HFpEF  [16] . Vascular calcification is common in elderly subjects and 
can lead to increased arterial stiffness. As shown in  Figure 1 , vascular calcification may play 
a significant role in the development of HFpEF. Except for the conventional understanding 
that vascular calcification is closely associated with atherosclerosis and precipitate the 
ischemic events, vascular calcification may also enhance arterial stiffness and render arterial 
stiffness less reversible. Subsequently, the reduced aortic reservoir function, which can be 
conceptualized as the second pump of the circulatory system, can also contribute to the 
reduced coronary diastolic flow and myocardial ischemia. Moreover, the vascular calcifi-
cation and related arterial stiffness are associated with increased pulse pressure and conse-
quent elevated left ventricular (LV) afterload. The process that the impaired vascular function 
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can lead to the worsened LV function is usually coined as ventricular-arterial coupling. As 
such, targeting ventriculo-arterial coupling, the adverse consequence of vascular calcifi-
cation, may be helpful to improve the prognosis of HFpEF  [17] .

  Quantification of Ventriculo-Arterial Coupling, an Index Depicting the Interaction 
between Arteries and Heart  

 To quantify the interplay between arteries and heart, an index of ventriculo-arterial 
coupling has been mathematically modeled  [18] . Most LV performance indices, including 
ejection fraction, stroke volume, and cardiac output, are load-dependent and are influenced 
by the functional coupling of LV with arteries  [19] . The ventriculo-arterial coupling is related 
to the efficiency of mechanical energetic transfer from the heart to arteries  [20] . The physi-
ological significance has been experimentally studied using the framework of the ratio of 
effective arterial elastance (Ea) to end-systolic elastance (Ees), which is relatively inde-
pendent of the loading conditions  [21] . The normal LV operates efficiently with an Ea/Ees 
ratio of about 0.6  [22] . The ratio increases as the pump function deteriorates with concom-
itant peripheral vasoconstriction resulting partly from enhanced sympathetic stimulation 
and altered baroreceptor gain. The increased Ea/Ees can be significantly reduced by vasodi-
lator therapy which may optimize mechanoenergetic performance of LV in heart failure 
subjects through lowering peripheral vessel resistance  [23] . The utilization of this ventriculo-
arterial coupling index, Ea/Ees, could assist us in understanding the impact of vascular calci-
fication on cardiac performance  [24] . 

  It has been well recognized that cardiovascular morbidity and mortality of patients 
undergoing dialysis is disproportionally elevated and cannot be fully explained by the high 
prevalence of established cardiovascular risk factors such as aging, inflammation, hyper-
tension, diabetes mellitus, dyslipidemia, obesity, and smoking  [25] . However, these condi-
tions are all closely associated with arterial stiffness and vascular calcification, and are also 
prevalent in HFpEF. Targeting vascular calcification may help develop effective treatment 
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  Fig. 1.  The possible mechanisms 
through which vascular calcifica-
tion can cause cardiac damage or 
dysfunction. LV, left ventricular; 
HFpEF, heart failure with pre-
served ejection fraction. 
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strategies to reduce arterial stiffness and improve the ventriculo-arterial coupling, the 
mechanical efficiency of cardiac pump.

  The Potential Role of Vascular Calcification in the Pathophysiology of Cognitive 
Dysfunction 

 The brain is one of the organs that receive abundant blood supply, constituted by as much 
as 20% of cardiac output, and accounts for 20% of the total body oxygen consumption at rest 
 [26] . High ambient flow and low impedance are thought to sensitize the cerebral microcircu-
lation to harmful effects of excessive pressure and flow pulsatility  [27] . Increased carotid-
femoral pulse wave velocity (cf-PWV) was modestly associated with cognitive decline and 
impairment, as assessed using the Modified Mini-Mental State examination  [28] . In 167 
hypertensive patients without a history of cardiovascular or cerebrovascular disease, a higher 
cf-PWV was significantly associated with a greater volume of white matter hyperintensities 
and the presence of lacunar infarcts  [29] . Thus, systemic large artery disease is linked to 
cerebral small-artery disease in hypertensive patients  [29] . Furthermore, in the community-
based Age, Gene/Environment Susceptibility – Reykjavik study, cf-PWV was associated with 
higher white matter hyperintensity volume  [27] . Carotid pulsatility index was associated 
with lower whole brain, grey matter, and white matter volumes  [27] . cf-PWV and carotid 
pulse pressure were associated with lower memory scores  [27] . These results support that 
marked stiffening of the aorta is associated with transmission of excessive flow pulsatility 
into the brain, microvascular structural brain damage, and lower scores in various cognitive 
domains  [27] .

  How a stiff aorta facilitates the transmission of high pulsatility of blood flow to the 
cerebral circulation remains to be clarified. Compared to the carotid arteries, the aorta is 
highly compliant in young and healthy subjects. Such impedance mismatch constitutes 
barriers of wave reflections; when a traveling pressure wave from ascending aorta encounters 
the first-generation arteries, the pulsatile energy would not be fully transmitted into the 
distal vasculature  [27] . Pulse wave encephalopathy has been coined to describe such a hypo-
thetical pathophysiology.

  Recently, it has been proposed that arterial stiffness may contribute to the development 
of symptomatic dementia through a “double hit” mechanism  [30] . In this brain MRI and PET 
imaging study, arterial stiffness was highest in individuals with both high beta-amyloid depo-
sition, a hallmark of Alzheimer disease, and white-matter hyperintensity. Whether or not 
arterial stiffness is involved in the pathophysiology of Alzheimer disease should be further 
explored. If there is a true pathophysiological linkage between arterial stiffness and Alzheimer 
disease, the clarification of the underlying mechanism can provide novel therapeutic targets 
for these patients. As shown in  Figure 2 , given that vascular calcification is closely associated 
with atherosclerosis, cerebral ischemia and cognitive function decline can be anticipated. In 
addition, vascular calcification and the related increased arterial stiffness can also result in 
decreased cognitive function through the reduced arterial reservoir function and enhanced 
transmitting pulsatility of arterial pressure and flow into brain, which altogether cause 
cerebral damage and cognitive function decline. Therefore, therapeutic strategies to reduce 
the progression of vascular calcification may be effective to slow down the arterial stiffening 
and the associated cognitive decline in the aging process.

  It is well established that heart failure subjects have worsening cognitive function  [31–
33] . Interestingly, heart failure subjects with hypertension seem to be more likely to develop 
cognitive dysfunction than those without  [34, 35] . This observation highlights that sustained 
hypertension related to vascular calcification in this population may compromise cerebral 
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autoregulatory mechanisms and produce brain damage and exacerbate cognitive impairment 
 [30] .

  Numerous efforts have been made to understand the arterial hemodynamics and its 
impact on target organ damage and dysfunction. Future research including basic, clinical, and 
epidemiological studies will be needed to clarify the possible mechanisms depicted as above.

  Animal Models of Vascular Calcification 

 Animal models allow us to study in detail the progression of a pathological process in a 
time course of disease development and to have new insights into the cellular mechanism and 
molecular pathways responsible for these processes. Thus far, there are two categories of 
animal models for aortic calcification associated with chronic renal failure: (1) calcification 
in both intimal and medial layer, and (2) calcification mainly in medial layer. 

  Animal Model of Vascular Calcification in Chronic Renal Failure 
 The 5/6th nephrectomy rat model has been used to evaluate uremia-related vascular 

calcifications. Bro et al.  [36]  and Buzello et al.  [37]  induced aortic calcification in both intimal 
and medial layers in 6 weeks, with no apparent atherosclerosis in tunica media, by inducing 
a chronic renal failure (5/6th nephrectomy) in apolipoprotein E (apoE) knockout mice. 
Nasrallah et al.  [38]  developed a model by inducing CKD, through electrocautery of one kidney 
followed by nephrectomy of the other, in calcification-prone DBA/2 knockout mice and fed 
with a 0.9% high phosphate diet, which led to widespread medial calcification in the vascular 
tree in 14–15 weeks; they found that the levels of calcification were similar to those observed 
in humans, without interference of atherosclerosis or inflammation.   

  Animal Model of Aortic Calcification in the Medial Layer without Chronic Renal Failure 
 Recently, Price et al.  [39]  developed a rat model for aortic calcification independent of 

kidney failure, by treating rats with sufficient warfarin and vitamin K antagonist that inhibits 
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  Fig. 2.  The possible mechanisms 
through which vascular calcifica-
tion can cause cerebral damage or 
dysfunction. 
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the formation of the calcium-binding amino acid, g-carboxyglutamic acid (a calcification 
inhibitor expressed by smooth muscle cells and macrophages in the artery wall in specific 
proteins), and induced spotty calcification in aortic trees. They also treated rats with vitamin 
K to counteract effects of warfarin on coagulation. In a previous cross-sectional human study, 
the prevalence of arterial calcification was increased in patients with current or past warfarin 
use independent of other risk factors  [9] , which suggests prolonged warfarin use is associated 
with the development of vascular calcification.

  Animal Model of Heart Failure and Calcification 
 Currently, there is no animal model of vascular calcification directly associated with 

heart failure. The widely used heart failure rat model is the induced myocardial infarction by 
coronary artery ligation in Sprague-Dawley male rats. Our experience was that even when the 
left coronary artery was not completely ligated, heart failure could still develop, resulting 
from chronic myocardial ischemia. To investigate the interactions between vascular calcifi-
cation, heart failure, and cognitive function, the combination of the above heart failure and 
vascular calcification models can be a useful tool for animal studies.

  Strategies to Reduce Vascular Calcification and Their Effects on Cardiovascular 
Functions 

 Many novel concepts have been proposed to ameliorate the progression of vascular calci-
fication, which include targets in calcium homeostasis, endothelin receptor, statin, angio-
tensin receptor blockade, matrix metalloproteinases (MMPs), antidiabetic agents, and 
chelating agents  [5] . Most of these agents remain in primitive stages and their effects on 
myocardial function are unclear.  Figure 3  summarizes the potential strategies to target 
vascular calcification.

Vascular calcification

Calcium-phosphate
homeostasis

Circulation nucleational
complex

Disturbed Ca-Pi balance
Hypercalcemia
Hyperphosphatemia

Loss of inhibition
Osteoprotegerin (OPG)
and
Matrix Gla protein
(MGP)
Fetuin-A
Pyrophosphate

Inducing factor
Phosphate
Lipid
Inflammatory
cytokine

Cell death

Induction of bone
formation

Vascular bone
Cartilage-like cells

Matrix vesicle

Apoptotic body
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  Fig. 3.  The potential strategies to target vascular calcification. Adapted from Speer and Giachelli  [58] . 
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  Many novel concepts have been proposed to target vascular calcification. The possible 
candidate strategies for reducing or even reverting the progression of vascular calcification 
are briefly introduced below.
  • Phosphate binders: Elevated calcium and phosphate levels contribute to vascular 

calcification. Decreasing phosphate levels through diet restrictions or through the use 
of phosphate binders (including calcium-free phosphate binders) is associated with a 
decreased amount of vascular calcification. It has been shown that sevelamer treatment 
might contribute to the suppression of ectopic calcification in chronic renal failure 
 [40] . 

 • Vitamin D receptor agonists: In a mouse model of CKD, the administration of vita-
min D receptor agonists calcitriol or paricalcitol significantly reduced aortic cal-
cification  [41] . 

 • Calcimimetics: Substances that mimic the effects of calcium on the parathyroid gland and 
decrease the level of parathyroid hormones. Although results from in vitro and animal 
studies support the hypothesis that calcimimetics decrease vascular calcification  [42] , 
the effects are inconsistent  [43] . 

 • Bisphosphonates: Based on the assumption that an impaired “bone-vessel axis” is 
involved in the pathogenesis of vascular calcification, testing the influence of bisphos-
phonates on vascular calcification is a consequential step. However, the data concerning 
the impact of bisphosphonates on vascular calcification are inconsistent  [44, 45] . 

 • Other substances for osteoporosis therapy: In a mouse osteoporosis model, denosumab 
reduced aortic calcification  [46] . No human studies have been reported yet.  

 • Calcifying progenitor cells with decalcifying potential  [47]  has been shown to have the 
capability to reverse atherosclerotic vascular calcification. The progenitor cells isolated 
from the aortas of mice had bidirectional, osteoblastic and osteoclastic lineage. The bidi-
rectional cells were demonstrated to increase the severity of calcium build-up and 
calcified plaques in arteries; however, this effect could be prevented by simultaneous 
treatment with the PPARγ-activating drug, which decreased the infiltration of osteo-
blasts into the plaques while increasing the infiltration of osteoclasts.  

 • HMG-CoA reductase inhibitors (statins) and angiotensin II type 1 receptor blockers 
(ARBs): Statins and ARBs are well-established therapeutic options in cardiovascular 
medicine and influence atherogenesis effectively. A combination of these substances 
reduces vascular calcification  [48] . 

 • MMPs are activated during vascular calcification and inhibition of MMPs in a CKD rat 
model has been shown to decrease vascular calcification  [49] . 

 • TRAM-34, an inhibitor of intermediate-conductance calcium-activated potassium 
channels (KCa3.1), inhibited the transition of VSMC into osteoblast-like cells, thus 
protecting the VSMC from calcification.  

 • Antidiabetic agent: 
   – Metformin is a mainstay medication in diabetes therapy and seems to reduce 

calcification in a rat model via the AMPK-eNOS-NO pathway by increasing NO 
production  [50] . 

 – Advanced glycation end product inhibitors limit vascular calcification in a rat model 
 [51] . 

    • Chelating agents were demonstrated to be effective in reducing vascular calcification in 
in vitro and animal studies  [52] . Dietary L-lysine, vitamin E, and iron effectively reduce 
vascular calcification in animal models  [53, 54] . 
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 Conclusion and Future Research 

 Vascular calcification is heterogeneous and triggered through multiple mechanisms. Few 
studies addressed the influence of vascular calcification on ventriculo-arterial coupling status 
and cognitive function. Understanding the pathophysiology consequence of vascular calcifi-
cation may help us improve the management of patients with atherosclerosis, accelerated 
arterial stiffness, hypertension, HFpEF, and cognitive dysfunction. Currently, there have been 
no effective strategies to reduce the severity of arterial stiffness. This may indicate that once 
arterial stiffness or vascular calcification has developed, it may be less likely to stop the 
ongoing pathophysiology. Therefore, earlier intervention targeting the above probable 
pathways of vascular calcification may benefit the patients with heart failure and cognitive 
dysfunction. More efforts should be made to understand the mechanisms of this prevalent 
finding in the aging population and, more importantly, develop corresponding intervention 
strategies to diminish its adverse consequence. In addition, although the adverse impact of 
hypertension on cognitive function  [55]  and the favorable effects of antihypertensive agents 
on cognitive dysfunction  [56]  have been well delineated, the evidence supporting the effec-
tiveness of anticalcification therapies on cardiovascular function and cognitive function is 
scarce  [57] . More well-designed outcome research is needed.
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