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 Abstract 
  Background:  Aortic stiffness, measured by carotid-femoral pulse wave velocity (cf-PWV), is 
used for the prediction of cardiovascular risk. This mini-review describes the nonlinear rela-
tionship between cf-PWV and operational blood pressure, presents the proposed methods 
to adjust for this relationship, and discusses a potential place for aortic-brachial PWV ratio (a 
measure of arterial stiffness gradient) as a blood pressure-independent measure of vascular 
aging.  Summary:  PWV is inherently dependent on the operational blood pressure. In cross-
sectional studies, PWV adjustment for mean arterial pressure (MAP) is preferred, but still re-
mains a nonoptimal approach, as the relationship between PWV and blood pressure is non-
linear and varies considerably among individuals due to heterogeneity in genetic background, 
vascular tone, and vascular remodeling. Extrapolations from the blood pressure-independent 
stiffness parameter β (β 0 ) have led to the creation of stiffness index β, which can be used for 
local stiffness. A similar approach has been used for cardio-ankle PWV to generate a blood 
pressure-independent cardio-ankle vascular index (CAVI). It was recently demonstrated that 
stiffness index β and CAVI remain slightly blood pressure-dependent, and a more appropri-
ate formula has been proposed to make the proper adjustments. On the other hand, the 
negative impact of aortic stiffness on clinical outcomes is thought to be mediated through 
attenuation or reversal of the arterial stiffness gradient, which can also be influenced by a re-
duction in peripheral medium-sized muscular arteries in conditions that predispose to accel-
erate vascular aging. Arterial stiffness gradient, assessed by aortic-brachial PWV ratio, is 
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emerging to be at least as good as cf-PWV for risk prediction, but has the advantage of not 
being affected by operating MAP.  Key Messages:  The negative impacts of aortic stiffness on 
clinical outcomes are proposed to be mediated through attenuation or reversal of arterial 
stiffness gradient. Aortic-brachial PWV ratio, a measure of arterial stiffness gradient, is inde-
pendent of MAP.  © 2017 S. Karger AG, Basel 

 Introduction 

 Aortic stiffness is an independent predictor of cardiovascular events and mortality in 
the general population, and in various pathological conditions such as hypertension, diabetes, 
and end-stage renal disease  [1–4] . Despite its inherent pressure dependency, aortic stiffness 
assessed by carotid-femoral pulse wave velocity (cf-PWV) is widely used as a noninvasive 
and reliable clinical tool for cardiovascular risk classification  [5] . With aging, the aorta loses 
its elasticity and its capacity to dampen the pulsatile pressure leading to increased myocardial 
workload. However, the stiffness of medium-sized muscular arteries was traditionally 
considered to be relatively unchanged over a lifetime. This knowledge has successfully been 
used to develop more user-friendly devices to assess vascular stiffness for large epidemio-
logical studies. However, most of these devices rely on a global measure of arterial stiffness, 
which integrates a combination of both central and peripheral arterial stiffness. In light of 
reports stating that peripheral stiffness may decrease with age or under pathological condi-
tions  [6–8] , it might be desirable to further explore this heterogeneity of the arterial tree. 
Indeed, a decrease in peripheral arterial stiffness could partially contribute to the attenu-
ation or reversal of the stiffness gradient, inducing higher pulse pressure transmission into 
the microcirculation, causing end-organ damages. In this review, we will discuss (1) the 
dependency of PWV on the operating blood pressure, (2) the approaches that are proposed 
to adjust for blood pressure, (3) the use of aortic-brachial PWV ratio as a measure of arterial 
stiffness gradient, and (4) the relationship between aortic-brachial PWV ratio and blood 
pressure.

  PWV and Operating Blood Pressure 

 The Bramwell-Hill variant of the Moens-Korteweg equation states that: 

dP V
PWV ,

dV�
 

  where  dP  is change in pressure,  dV  is change in arterial volume,  V  is the baseline volume of 
the vessel, and  ρ  is blood density. For example, the increase in pressure from diastolic pressure 
to systolic pressure during a single cardiac cycle could result in a variation of 0.7–4 m/s of 
PWV (i.e., without any change in vascular wall property)  [9, 10] . This variability is mainly 
caused by the organization of elastin, collagen, and vascular smooth muscle cells of the media. 
Due to passive mechanical properties, at low pressure the load is carried by elastin, while at 
high pressure the load is carried by stiffer collagen fibers  [11, 12] . 

 The pressure-diameter relationship varies greatly among individuals due to differences 
in genetic background, vascular smooth muscle tone  [13, 14] , and vascular wall remodeling 
related to exposure to cardiovascular risk factors. As arteries stiffen, an upward shift of the 
pressure-diameter relationship occurs, meaning that higher pressures are required to induce 
a similar change in diameter ( Fig. 1 ). Indeed, a steeper slope in pressure-diameter rela-

http://dx.doi.org/10.1159%2F000480092


119Pulse 2017;5:117–124

 DOI: 10.1159/000480092 

 Fortier et al.: Aortic-Brachial Pulse Wave Velocity Ratio: A Measure of Arterial Stiffness 
Gradient Not Affected by Mean Arterial Pressure 

www.karger.com/pls
© 2017 S. Karger AG, Basel

tionship is observed in the elderly compared to younger individuals as pressure dependence 
varies with age, due partly to the age-related material fatigue, fractures in the elastin lamella, 
and vascular fibrosis  [9, 10, 15] .

  Adjusting Arterial Stiffness for Operating Blood Pressure 

 In cross-sectional studies, PWV adjustments for pressure are usually performed by a 
linear regression using the average mean arterial pressure (MAP) (nonpulsatile component 
of blood pressure) of the cohort. While this method has its merits, it also has its inherent limi-
tations as it does not consider the interindividual differences in PWV-pressure relationship, 
and it does not take into account the nonlinear nature of this relationship.

  Arterial stiffness index β and cardio-ankle vascular index (CAVI) theoretically consider 
the effect of blood pressure, since both are based on the substitution of the exponential 
pressure-diameter relationship to a linear relationship between the change of pressure (ln 
(P s  / P d )) and relative changes in diameter ( Fig. 2 )  [16–22] . However, stiffness index β is 
obtained by an approximation of the exponential pressure-diameter relationship first 
described experimentally by Hayashi et al.  [23]  

0 1
ref

d
d

refP P e ,
�

 
  from which the pressure and diameter of reference ( P  ref  and  d  ref ) were substituted by diastolic 
pressure and diastolic diameter. Accordingly, the stiffness index β is slightly different than 
the proposed blood pressure-independent β 0 . Indeed, Spronck et al.  [24]  recently demon-
strated that arterial stiffness index β and CAVI are slightly blood pressure-dependent, and 
they proposed using a fixed reference pressure value to resolve this issue for local or segmental 
stiffness. 

 However, applying such correction to a global PWV that encompasses various heteroge-
neous vascular territories and treating them as homogenous does not seem to be concep-
tually appealing.

  Indeed, this is clearly demonstrated by Shimizu et al.  [25]  who examined the impact of 
acute administration of nitroglycerin on CAVI. Their findings showed a reduction in CAVI 
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  Fig. 1.  Stress-strain relationship. 
Nonlinear relationship between 
arterial stress (pressure) and 
strain (relative change in diame-
ter), with arterial wall compo-
nents under tension according to 
the pressure load in normal and 
stiff vessels. Reprinted from Mc-
Eniery et al.  [40]  with permission. 
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suggesting an improvement of vascular stiffness. Since CAVI is based on cardio-ankle PWV, it 
was impossible to evaluate whether this improvement was the result of a reduction in aortic 
stiffness, femoral-tibial stiffness, or both. Taking this idea further, the same group addressed 
this question by applying the stiffness index β to heart-thigh PWV and thigh-ankle PWV by 
utilizing Bramwell-Hill’s equation in the same way as it is applied when measuring CAVI  [26] . 
They concluded that the reduction of CAVI after nitroglycerin administration was mainly the 
result of a reduction in thigh-ankle stiffness index β rather than a change in the heart-thigh 
stiffness index β. Similarly, we observed a significant reduction in carotid-radial PWV 
(cr-PWV) and femoral-tibial PWV (muscular conduit vessels) without any changes in cf-PWV 
or MAP  [27] .

  Taken together, these results suggest that the reduction of the stiffness of muscular 
conduit vessels, which link aorta to the microcirculation, results in the attenuation of arterial 
stiffness gradient. Given that the loss or reversal of arterial stiffness gradient is proposed to 
cause microvascular damage, especially to the kidneys and the brain, such effect could theo-
retically be undesirable.

  Aortic-Brachial PWV Ratio: A Measure of Arterial Stiffness Gradient 

 Aorta and peripheral medium-sized muscular conduit vessels are structurally and biome-
chanically different, and may not be similarly affected by age, pathological conditions, and 
vasoactive drugs  [6, 7, 26–31] . Accordingly, arterial stiffness gradient is not only affected by 
an increase in aortic stiffness, but also by a decrease in the stiffness of medium-sized peripheral 
muscular arteries  [32–34] . Indeed, in a longitudinal study, we discovered that brachial PWV, 
as measured by cr-PWV, decreased by approximately 0.66 m/s/year, despite an accelerated 
increase in cf-PWV by 0.84 m/s/year. This divergent evolution of these two vascular terri-
tories led us to propose that aortic-brachial PWV ratio (cf-PWV/cr-PWV), a measure of 
arterial stiffness gradient, could be used to evaluate the risk of mortality. This hypothesis was 
tested in a cohort of 310 dialysis patients, and it was shown that aortic-brachial PWV ratio 
predicted mortality better than cf-PWV alone, and was the only significant hemodynamic 
parameter that resisted multivariable adjusted models  [35] .

  More recently, PWV ratio was assessed in the Framingham Heart Study Offspring cohort, 
a large general population free of overt cardiovascular disease. It was shown that PWV ratio 
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  Fig. 2.  Pressure-diameter relationship and stiffness index β.  a  The exponential pressure-diameter relation-
ship in healthy and stiff vessel.  b  The transformation of this relationship into a linear model where the slope 
represents the proposed blood pressure-independent stiffness index β. 
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predicts cardiovascular events as well as aortic stiffness, but did not provide any additional 
risk information above and beyond cf-PWV  [36] . This is not surprising before the fifth or sixth 
decade of age as stiffness of peripheral medium-sized muscular arteries are negligibly affected 
by age, and the main driving factor for alteration of arterial stiffness gradient is increased 
aortic stiffness. However, authors mentioned that they could not exclude the possibility that 
PWV ratio might provide an incremental predictive value over cf-PWV in the elderly, as the 
association between CV events and PWV ratio was greater than that of aortic stiffness in indi-
viduals over the age of 70. Moreover, other studies tend to support that arterial stiffness 
gradient may be better associated with target-organ damage than aortic stiffness. For example, 
in a cross-sectional analysis of patients with type 2 diabetes ( n  = 60) and age-matched controls 
( n  = 60), aortic-brachial stiffness gradient predicted estimated glomerular filtration rate 
independently of age, sex, diabetes status, and cardiovascular risk factors, whereas aortic 
stiffness did not  [37] . In addition, Lee et al.  [38]  observed that PWV ratio was independently 
associated with history of stroke and coronary artery disease in patients with a known 
medical history of cardiovascular disease ( n  = 142), while aortic stiffness did not reach a 
statistical level of significance.

  PWV Ratio and Its Relation to Blood Pressure 

 Since aortic and brachial PWVs may both change in the same direction as the operating 
MAP, we hypothesized that PWV ratio may potentially be blood pressure-independent. We 
tested this hypothesis in two distinct cohorts of patients that were completely different in 
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  Fig. 3.  Aortic stiffness, brachial stiffness and arterial stiffness gradient relationships with mean arterial pres-
sure (MAP) and central pulse pressure (PP). There was a positive relationship between MAP and carotid-
femoral pulse wave velocity (cf-PWV,  a ) and carotid-radial pulse wave velocity (cr-PWV,  b ), but no relation-
ship between MAP and PWV ratio ( c ) for the dialysis cohort ( n  = 304, empty circles) and for the cohort with 
eGFR >45 ( n  = 114, filled circles). The relationship between central PP, cf-PWV ( d ) and PWV ratio ( f ) were 
similar in both respective cohorts, while there was no relationship between central PP and cr-PWV ( e ). 
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terms of age, renal function, and comorbidities  [7] . In the first group ( n  = 304), which included 
dialysis patients, aortic stiffness increased with age, while brachial stiffness decreased. In the 
second group of patients with an estimated glomerular filtration rate of >45 mL/min/1.73 m 2  
( n  = 114), aortic stiffness increased with age as expected, while brachial stiffness increased 
slightly until the fifth decade and then started to decrease thereafter. Nevertheless, aortic and 
brachial stiffness both increased with higher MAP (measured at the time of measurement of 
vascular stiffness) in the two groups, while there was no correlation between PWV ratio and 
MAP ( Fig. 3 a–c). As shown in  Figure 3 d–f, there was a positive and similar relationship 
between central pulse pressure, cf-PWV, and PWV ratio, whereas there was no significant 
relationship between central pulse pressure and cr-PWV.

  Similar results have also been observed by other investigators  [37, 39] . Picone et al.  [37]  
assessed the determinants of PWV ratio in a diabetic group and a nondiabetic control group. 
They found that PWV ratio was not associated with MAP in their diabetic group, but it was 
associated with brachial and central pulse pressure, central augmentation pressure and 
augmentation index. In the nondiabetic control group of their study, there was a small corre-
lation between aortic-brachial stiffness gradient and MAP, which was no longer significant in 
the multivariable model. Similarly, Bia et al.  [39]  did not find any associations between PWV 
ratio and MAP in 151 hemodialysis patients.

  Perspective 

 Aortic-brachial PWV ratio is a simple measure of arterial stiffness gradient. Indeed, PWV 
ratio may potentially be more promising at least in advanced aging and conditions that 
predispose to accelerate vascular aging, where brachial stiffness tends to decrease with age 
despite an increase in aortic stiffness. Even if aortic-brachial PWV ratio does not provide addi-
tional information, its lack of relationship with operating MAP makes it more appealing than 
crude cf-PWV. However, these observations need further external validation in different 
populations. In addition, the differential impact of various classes of antihypertensive drugs 
on the stiffness of aorta and medium-sized muscular arteries, hence their potential impact on 
arterial stiffness gradient needs to be elucidated.
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