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Abstract

Motivation: Advances in high-throughput technologies have led to the acquisition of various types

of -omic data on the same biological samples. Each data type gives independent and complemen-

tary information that can explain the biological mechanisms of interest. While several studies

performing independent analyses of each dataset have led to significant results, a better under-

standing of complex biological mechanisms requires an integrative analysis of different sources of

data.

Results: Flexible modeling approaches, based on penalized likelihood methods and expectation-

maximization (EM) algorithms, are studied and tested under various biological relationship

scenarios between the different molecular features and their effects on a clinical outcome. The

models are applied to genomic datasets from two cancer types in the Cancer Genome Atlas pro-

ject: glioblastoma multiforme and ovarian serous cystadenocarcinoma. The integrative models

lead to improved model fit and predictive performance. They also provide a better understanding

of the biological mechanisms underlying patients’ survival.

Availability and implementation: Source code implementing the integrative models is freely avail-

able at https://github.com/mgt000/IntegrativeAnalysis along with example datasets and sample R

script applying the models to these data. The TCGA datasets used for analysis are publicly avail-

able at https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp.

Contact: marie.denis@cirad.fr or mgt26@georgetown.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Advances in high throughput technologies have led to the acquisi-

tion of various types of -omic data, including whole-genome

sequencing, methylation, transcriptomic, glycomic, proteomic and

metabolomic. Each data type provides a snapshot of the molecular

processes involved in a particular phenotype. While studies focused

on one type of -omic data have led to significant results (Civelek and

Lusis, 2014), an integrative -omic analysis can provide a better

understanding of the complex biological mechanisms involved in the

etiology or progression of a disease by combining the complemen-

tary information from each data type. Consequently, there has been

a growing effort in recent years to collect multiple -omic data types

on the same sampling units. Initially, the efforts had focused on the

integration of two types of data, as in expression quantitative trait

loci (eQTL) analysis which explores the association between DNA

sequence variations and gene expression phenotypes (Morley et al.,

2004; van Nas et al., 2010), or copy number variants (CNV)-gene

expression associations (Pollack et al., 2002; Stranger et al., 2007;

Tyekucheva et al., 2011). There are now several studies that collect

various -omic data on the same samples. The NCI-60 project, for ex-

ample, provides various -omic data for a panel of 60 cancer cell lines

collected from diverse tissues (http://discover.nci.nih.gov/cellminer).

The Cancer Genome Atlas (TCGA) project (http://cancergenome.

nih.gov/) is another great public resource for integrative genomic
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analysis that collects multiple -omic data types on the same samples

for different cancers. The availability of these data has led to the de-

velopment of statistical methods and bioinformatics tools to explore

the associations between different -omic datasets and evaluate their

relationships with phenotypic outcomes (see Hamid et al. (2009) for

a review). Various studies have demonstrated that integrative

approaches are more effective in identifying subtle effects that would

have been missed in single dataset analysis, thus providing improved

statistical power while reducing the detection of false positives

(Dvorkin et al., 2013; Tyekucheva et al., 2011).

A commonly used approach for integrative analysis remains the

application of univariate tests evaluating the association between

pairs of elements from two -omic data types (Morley et al., 2004;

Stranger et al., 2007). This, however, raises a problem of multipli-

city making it practically impossible to identify significant links after

correcting for multiple testing. In addition, it ignores the fact that

genomic markers do not work independently but in coordination.

Monni and Tadesse (2009) developed a Bayesian stochastic parti-

tioning method that overcomes this by combining ideas of mixtures

of regression models and variable selection to uncover cluster struc-

tures in gene expression profiles and simultaneously identify subsets

of CNVs associated to the correlated expression profiles. Shen et al.

(2009) proposed iCluster, which uncovers tumor subtypes by inte-

grating various -omic datasets using latent allocation indicators and

specifying a variance–covariance structure that accounts for the de-

pendence across data types. Wang et al. (2013) proposed an integra-

tive Bayesian analysis of genomic data (iBAG), which specifies a

hierarchical model that considers links between markers from differ-

ent -omic sources at the gene level and identifies their association

with a clinical outcome using Bayesian lasso. In a similar approach,

Jennings et al. (2013) used a hierarchical Bayesian model to incorp-

orate relationships between biological features and introduced latent

scores to explain the clinical outcome.

In this paper, our main objective is to identify significant asso-

ciations between markers across -omic datasets and elucidate the

complementary information that explain the clinical outcome.

Similarly to Wang et al. (2013) and Jennings et al. (2013), we will

focus on -omic features at the gene-level but we also explore differ-

ent modeling approaches that allow dependencies between features

within a gene, within a functional network, or across all genes in

the datasets. In addition, we do not introduce latent scores that

summarize the information of several markers, as our primary

interest is in identifying relevant markers and their interrelation-

ships in order to gain a better understanding of the biological

mechanisms underlying a phenotype. The remainder of the paper is

organized as follows: Section 2 describes the TCGA datasets used

to demonstrate the performance of the models. Section 3 presents

the biological considerations and the different statistical models

investigated. Section 4 presents the results of the analyses and

Section 5 concludes the paper with a summary of the main

findings.

2 Data

2.1 TCGA data
The TCGA Research Network has generated multiple -omic data

for various types of cancers. These data are publicly available along

with clinical information on the tissue samples. In this paper we

focus on two cancer types: glioblastoma multiforme (GBM), the

most common and aggressive form of malignant brain cancer in

adults, and ovarian serous cystadenocarcinoma (OSC), the most

prevalent form of ovarian cancer. For each cancer type, we consider

data on genomic characterizations at three biological levels:

1. Gene expression profiles from Affymetrix Human Genome

U133A array summarized at the gene level (level 3 data);

2. DNA methylations from Human Methylation 27 K arrays from

methylated sites along a gene (level 3 data);

3. Copy number data based on normalized signal for copy number

alterations of regions aggregated per probe (level 2 data)—we

used the HG_CGH_244A and the CGH-1x1M_G4447A plat-

forms respectively for GBM and OSC.

The downloaded data are already pre-processed and converted into

a common format for all platforms. We use the survival time after

diagnosis as clinical outcome and consider for analysis patients with

survival information and measurements for all three data sources.

This resulted in 277 patients for GBM and 560 patients for OSC.

2.2 Data subsets for analysis
Integrative analysis is commonly performed by narrowing down the

data to a subset of markers. Two widely used approaches consist of

focusing on target pathways known to be implicated in the pheno-

type of interest or focusing on markers with significant effects in

univariate analyses. We considered three different data subsets

based on these criteria to investigate the performance of the models

under varying amount of information.

Data1 focuses on genes that belong to pathways known to be

relevant for the particular disease under investigation.

• For GBM the three signaling pathways described in Jennings

et al. (2013), namely RTK/PIK3, P53 and RB pathways, are con-

sidered. There are 49 genes with mRNA abundance, 166 methy-

lation markers, and 524 CNVs in the datasets that belong to one

of these pathways. 96% of the genes have information for all

data types. There is a maximum of 18 methylation sites per gene

and an average of 3.53 methylations per gene.
• For OSC, the four signaling pathways known to be deregulated

in ovarian cancer, PI3K/RAS, RB, NOTCH and FOXM1, are

considered (The Cancer Genome Atlas Research Network,

2011). There are 29 genes with mRNA abundance, 85 methyla-

tion markers, and 229 CNV probes in the datasets that belong to

one of these pathways. 72.4% of the genes have information on

all three data sources. The maximum number of methylations

per gene is 16 and the average is 3.85 methylations per gene.

Data2 is obtained by considering the top 100 gene expressions

from univariate Cox survival models, along with the methylation

sites and CNV probes mapping to these genes. The genes are then

mapped to unique function/disease networks using the Ingenuity

Pathway Analysis (IPA) software (www.ingenuity.com).

• For GBM, this resulted in 131 methylation sites and 382 CNVs,

with 71% of genes having both methylation and CNV informa-

tion. There was a maximum of 2 methylations per gene and an

average of 1.64 methylations per gene.
• For OSC, this resulted in 125 methylation sites and 329 CNV

probes, with 62% of genes having both information. There were

one or two methylations per gene with an average of 1.74 methy-

lations per gene.

Data3 consists of 200 genes obtained by taking the union of

Data2 and an additional set of 100 genes. The latter are selected

by taking the top ranking copy number probes in univariate
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CNV-survival model fits, mapping them to their corresponding

genes and ensuring that they have gene expression data available.

• For GBM, this led to 234 methylation sites and 2023 CNV

probes, with 68% of genes having both methylation and CNV

information. There was a maximum of 11 methylations per gene

and an average of 1.63 methylations per gene.
• For OSC, this led to 303 methylation sites and 1963 CNV

probes, with 71% of genes having both methylation and CNV

information. There was a maximum of 4 methylations per gene

and an average of 1.83 methylations per gene.

3 Methods

We first discuss the biological considerations that motivated the dif-

ferent modeling approaches then formulate the models.

3.1 Biological considerations
Integrative approaches are challenging for several reasons. One

difficulty is the complex and often unknown dependencies that exist

between and within datasets. Direct or indirect links may exist be-

tween genomic features from different biological sources, and be-

tween these features and the phenotypic outcome. For example,

DNA sequence variations can influence a phenotypic outcome by

modulating the expression level of genes or by modifying other mo-

lecular features. Figure 1a shows an example of possible links be-

tween the three data types and the clinical outcome considered in

this study. In this model, methylation markers can only act on

mRNA abundance, while CNVs can modulate methylation as well

as gene expression and the clinical outcome. CNVs that have already

been found to be related to a particular biological feature, and thus

have their effects already captured, are not considered for down-

stream associations. For example, a CNV that is found to be associ-

ated with a methylation marker is not considered for association

with mRNA transcript level, since the effect of the CNV on the

methylation is accounted for and the association between the methy-

lation and the gene expression level is assessed subsequently. As for

gene expression levels, they can be affected by both methylation and

CNV, and they can in turn influence the outcome. Figure 1b shows

a similar model but with CNVs not allowed to act directly on the

clinical outcome. An alternative model we investigate does not allow

CNVs to act on methylations but have them operate at the same

level in their modulation of gene expression levels (Fig. 2).

In addition to the different possible links between molecular fea-

tures, the level at which these relationships occur can vary. Some

biological features may act locally on the same gene while others

can influence markers located anywhere in the genome. For ex-

ample, DNA sequence variations can be associated to expression

levels of transcripts located on the same or nearby gene (cis-acting)

or can modulate the transcript abundance of genes mapping to a dif-

ferent chromosome (trans-acting) (Civelek and Lusis, 2014; Morley

et al., 2004). These biological considerations guided us to explore

and compare different integrative models. Methylation effects are

expected to occur only near the gene of interest (6250 kb) (Wagner

et al., 2014). Thus, we allowed associations between methylation

markers and other biological features to occur only within the same

gene. That is, CNVs can act on methylation within the same gene

and methylation markers can influence the mRNA abundance of the

gene they map to. On the other hand, relationships between CNVs

and gene expression levels were investigated at three different levels:

one model allows CNVs to act on the expression level of the gene in

which they are found, another model lets CNVs affect the mRNA

abundance of any gene that is in the same disease/function network,

and a third model lets CNVs potentially influence the expression

levels of genes anywhere in the genome. We refer to these as

Integrative-gene, Integrative-network and Integrative-genome,

respectively.

3.2 Model formulation
Let fYN�1;GN�K;MN�J;CN�Lg be the observed data for N subjects

with Y denoting the survival times, Gk the expression levels for gene k

(k ¼ 1; . . . ;K), Mj the methylation levels for site j (j ¼ 1; . . . ; J) and Cl

the copy numbers for probe l (l ¼ 1; . . . ;LÞ. Age is related to cancer

survival and is therefore included as a covariate in the Cox model.

The proposed integrative model displayed in Figure 1a can be

formulated as a hierarchical model similarly to Wang et al. (2013):

Mechanistic submodel ðiÞ : MjC M ¼ CcCM
þ eM

Mechanistic submodel ðiiÞ : GjC;M G ¼McMG
þ CcC

GM

þ eG

Clinical submodel : YjG;C;M;A g ¼ AþGcGY
þCcC

YMG

(1)

where the mechanistic submodels relate features among the different

biological data types and the clinical submodel relates the linear pre-

dictor of the clinical outcome, g, to genomic and non-genomic vari-

ables. The mechanistic submodel is decomposed into two

components: one capturing the association between methylation and

CNV markers, and another linking gene expression with

Fig. 1. Models allowing CNVs to be associated with all other biological fea-

tures. The solid arrows indicate that all markers in the set can potentially act

on the next level while dotted lines indicate that only markers that have not

already been shown to be associated with the next level can modulate subse-

quent levels. In (a) CNVs may act directly on the clinical outcome, but not

in (b)

Fig. 2. Model with no direct association between CNV and methylation. Both

biological features can potentially act on gene expression. In (a) CNVs may

also act directly on the clinical outcome, but not in (b)
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methylation and CNV data. The subscripts c identify the features se-

lected in the association between pairs of data types. Let cC be the

set of CNVs considered for analysis, which can be decomposed into

four disjoint subsets

cC ¼ cCM
[ cC

GM
[ cC

YGM
[ cC

Y GM

where cCM
indicates the subset of CNVs associated with methylation

markers, cC
GM

the subset of CNVs associated with gene expression

levels but not methylations, cC
YGM

the subset of CNVs associated to

the clinical outcome among those not already selected for methyla-

tion or gene expression, and cC
Y GM

corresponds to the remaining

subset of CNVs not found to be associated with any of the features.

Similar subsets are defined for the methylations and gene expres-

sions: cMG
is the subset of methylations associated to gene expres-

sions and cGY
is the subset of gene expressions associated with the

clinical outcome. The relevant subset of markers at each level are se-

lected using penalized regression methods (Tibshirani, 1996).

The hierarchical model in (1) can be written more explicitly. For

methylation site j ðj ¼ 1; . . . ; JÞ in a particular gene, its expression

can be modeled in terms of CNVs mapping to the same gene:

Mj ¼
X

Cl2cCMj

alCl

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
mC

j

þ ej|{z}
mO

j

; (2)

where mC
j denotes the part of the methylation accounted for by

CNVs and mO
j is the remaining part explained by other unmeasured

factors.

The expression level of gene k ðk ¼ 1; . . . ;KÞ can be decom-

posed into three parts corresponding to epigenetic effects of DNA

methylation, gM
k , CNV modulation by markers not already linked to

methylation in (2), gC
k , and residual effects, gO

k :

Gk ¼
X

Mj2cMGk

ðdC
j mC

j þ dO
j mO

j Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gM

k

þ
X

Cl2cC
GkM

dlCl

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
gC

k

þ ek|{z}
gO

k

: (3)

The methylation effect on mRNA abundance, gM
k , is in turn decom-

posed into the effects of CNVs and other factors modulating methy-

lation levels as formulated in Eq. (2). The levels at which CNV-gene

expression relationships are considered determine the set of CNV

probes considered in estimating gC
k . For the Integrative-gene scen-

ario, we restrict our attention to CNV probes mapping to gene k

that are not associated to methylation sites in the same gene, i.e.

cC
GkM
¼ fCl 2 Gk : ðCl<MÞ \ ðCl , GkÞg

where we use, and< to denote respectively association and no as-

sociation. For the Integrative-network setting, let N p be the disease/

function network in which gene k falls. In this case, we consider

CNV probes mapping to genes that belong to N p, after removing

CNVs in gene k associated to methylations in that gene, i.e.

cC
GkM
¼ fCl : ½ðCl 2 N pÞ , Gk� \ ½ðCl 2 GkÞ<M�g

For the Integrative-genome setting, all CNVs in the dataset (denoted

by C) are considered after removing those in gene k associated to

methylations in that gene, i.e.

cC
GkM
¼ fCl : ðCl 2 CÞ \ ½ðCl 2 GkÞ<M�g

For the last level of the hierarchical model in Figure 1a, the linear

predictor of the Cox regression is modeled in terms of the gene

expression effects and the CNV effects on survival. The former can

be decomposed into parts corresponding to modulations via methy-

lation, CNV and other factors:

g ¼ Aþ
X

Gk2cGY

ðbM
k gM

k þ bC
k gC

k þ bO
k gO

k Þ þ
X

Cl2cC
YGM

blCl: (4)

For the model in Figure 1b, no direct relationship between CNVs

and the survival outcome is allowed, thus the linear predictor in the

Cox model reduces to the gene expression effects:

g ¼ Aþ
X

Gk2cGY

ðbM
k gM

k þ bC
k gC

k þ bO
k gO

k Þ: (5)

For the models in Figure 2 in which CNVs do not affect methylation

patterns, the gene expression model in (3) is modified such that the

methylation and CNV markers are both directly associated to the

transcription levels:

Gk ¼
X

Mj2cMGk

djMj

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
gM

k

þ
X

Ci2cCGk

djCi

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
gC

k

þ ek|{z}
gO

k

: (6)

In this model, the set cCGk
for the different CNV-gene expression in-

tegrations considered becomes cCGk
¼ fCl 2 Gk : Cl , Gkg for the

Integrative-gene setting, cCGk
¼ fCl : ½ðCl 2 N pÞ , Gk�g for the

Integrative-network relationship, and simply all CNVs in the dataset

for the Integrative-genome scenario.

These formulations not only allow us to identify markers associ-

ated to the survival outcome but also to understand the underlying

biological relationships between different molecular processes.

3.3 Model fitting
For the association between methylation sites and CNVs, univariate

and multivariate models are considered. In a first approach, the

methylation outcomes (Mj; j ¼ 1; . . . ; J) are analyzed one at a time

using lasso penalized linear regression models (Tibshirani, 1996). In

a second approach, to account for the high dependence among

methylation sites within the same gene, a block-wise descent algo-

rithm for group-penalized multi-response regression is investigated

(Simon et al., 2013). In this approach, the same set of CNVs are se-

lected for methylations corresponding to the same gene but separate

regression coefficients are estimated for each methylation site within

the gene. We refer to these as uni- and multi-methylation models.

For the association between gene expression levels and the other bio-

logical data sources, a penalized lasso linear regression model is

used. Finally, a lasso penalized Cox regression model is used to re-

late the survival outcome to the biological features (Friedman et al.,

2010).

Studies investigating the relationship of epigenetic data with

other biological features are starting to emerge, but these relation-

ships are not yet well established. To incorporate this lack of infor-

mation and to account for the uncertainty in the submodels

assessing the dependence between CNVs and methylations within a

gene k ðk ¼ 1; . . . ;KÞ, we implement an expectation–maximization

(EM) algorithm by specifying a mixture of two Gaussian densities

corresponding to the methylation profiles being modulated by CNV

effects or not:

f ðMGk
jCGk

; hÞ ¼ pk f ðMGk
jh1kÞ þ ð1� pkÞ f ðMGk

jh2kÞ (7)

where f ð:Þ is a univariate or multivariate Gaussian density function

depending on whether there is a single or multiple methylations

mapping to gene k, ðpk; 1� pkÞ are the mixing proportions, and
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ðh1k; h2kÞ are the component mean and covariance parameters such

that

h1k ¼ ðl1k;R1kÞ with l1k ¼
X

Cl2cCMk

alCl

where cCMk
corresponds to the subset of CNVs in gene k identified to

be associated to the methylations in the same gene. For component

2, the parameter h2k ¼ ðl2k;R2kÞ does not depend on the CNVs and

is estimated directly from the methylation data. CNVs are deemed

to be associated to the methylation patterns only if there is more

support for component 1. Details of the EM algorithm are provided

in the online Appendix.

3.4 Model performance criteria
The objectives of the analysis are (i) to model survival time using

relevant features from the different biological data types and (ii) to

capture the relationships between these features in order to better

understand the underlying biological mechanisms. To assess the per-

formance of the various models considered, we need to define rea-

sonable criteria. In the presence of censoring, defining measures of

goodness-of-fit and predictive performance is complicated (van

Wieringen et al., 2009). The coefficient of determination, which is

the traditional linear regression measure for quantifying the propor-

tion of total variation in the outcome accounted for by the model, is

not valid in the context of Cox model with censored data. We con-

sider a general measure developed by Nagelkerke (1991) for Cox

proportional hazard models:

R2 ¼ 1� exp � 2

N

�
‘ðb̂Þ � ‘ð0Þ

�� �
; (8)

where N is the number of subjects, ‘ð0Þ corresponds to the partial

log-likelihood of the null model (without predictors), and ‘ðb̂) is

the partial log-likelihood for the model using the selected pre-

dictors. We use an adjusted-R2 to take into account the number of

estimated parameters, p, and penalize for the complexity of the

model:

R2
adj ¼ 1� ð1� R2Þ N � 1

N � p� 1
: (9)

We also examine the predictive performance using cross-validation

by considering the concordance index (c-index), which captures the

proportion of pairs of subjects whose predicted survival times are

correctly ordered (Harrell, 2001):

c-index ¼

X
ði;jÞ2/

Iðt̂i > t̂j Þ

j/j ; (10)

where / corresponds to the set of all pairs of subjects (i, j) with sur-

vival times ti> tj and Iðt̂i > t̂j Þ ¼ 1 if the predicted survival times

satisfy t̂i > t̂j , 0 otherwise. The closer the c-index is to 1, the better

the ordinal predictive power of the model. Since predictive evalu-

ations on training data give optimistic results, we performed re-

peated 10-fold cross validations to evaluate the c-index. This

consists of partitioning the data into 10 subsamples, using 9 of the

subsamples for training and the left-out set for validation, with each

subsample being used in turn as a test set. The predictive survival

times from the test sets are used to calculate the c-index. This is re-

peated multiple times to account for the variability in randomly par-

titioning the data into subsamples, and the mean and standard

deviation of the c-index are reported.

4 Discussion

Tables 1 and 2 present the mean and standard deviation of the ad-

justed-R2 over repeated cross-validation fits for the various integra-

tive models in each of the three data subsets (Data1, Data2, Data3)

for the GBM and OSC datasets, respectively. As a reference com-

parison model, we fit a penalized Cox model on the gene expression

data only, adjusting for age:

g ¼ Aþ
X

k2cGY

bkgk (11)

We also report the Cox model with only age effect.

We considered integrative models investigating association be-

tween CNVs and gene expression levels at the gene level

(Integrative-gene), within the same disease/function network

(Integrative-network), and throughout the genome (Integrative-

genome). When CNV-methylation relationships are considered as in

Figure 1, the methylation sites within the gene are viewed as inde-

pendent outcomes (uni-methylation) or as a multivariate correlated

outcome (multi-methylation). We also assessed the impact of incor-

porating the uncertainty in the CNV-methylation relationship using

the EM algorithm outlined in Section 3.3. These comparisons are

performed allowing CNVs to directly affect or not the survival out-

come as depicted in Figures 1 and 2.

For all the datasets, the integrative models provide better fit to

the data compared to the reference model or the model with only

age effect. With regards to the subsets of features considered for

integration, focusing on markers selected based on the relevance

of pathways for the phenotype under investigation, as in Data1,

has the worst performance compared to using features selected

based on univariate scans; we obtain the largest adjusted-R2 with

Data3.

In terms of CNV-methylation relationships, the performance

depends on the data subsets considered and the subsequent CNV-

gene expression or CNV-survival associations allowed. For ex-

ample, for GBM Data2, the integrative model that considers CNVs

and methylations not to be related to each other but to each act

directly on gene expressions (no CNV-methylation) gave the larg-

est adjusted-R2 when CNV-survival association is allowed. Instead

for GBM Data3, the no CNV-methylation model did not necessar-

ily have the best performance and had the lowest adjusted-R2

when allowing all CNVs to act on gene expression changes

(Integrative-genome). When allowing for CNV-methylation associ-

ation, the multi-methylation model that accounts for the depend-

ence between methylation sites in the same gene and the uni-

methylation model have similar performance. This may be due to

two factors: (i) in most cases, there are only one or two methyla-

tion sites that map to the same gene; (ii) the multivariate regression

group-penalization procedure of Simon et al. (2013) we used is de-

signed to select the same covariates for all outcomes but with vary-

ing regression coefficients. Thus, in a situation where a CNV may

affect only one of the methylation sites mapping to a gene, all sites

would be related to the CNV thereby introducing noise. When a

CNV-methylation relationship is allowed, accounting for the un-

certainty in the association using the EM algorithm appears to help

in some of the models.

With respect to CNV-gene expression association, the model

that lets CNVs act on expression levels of genes they map to

(Integrative-gene) performs significantly better for all GBM data

subsets when CNV-survival association is allowed. When copy num-

bers are not allowed to be directly associated with the survival out-

come, the integrative-genome setting, which lets all CNVs
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potentially act on a gene expression level, provides, in general, the

best performance. For OSC, although the integrative-gene model is

the best for Data2, for the other data subsets, the integrative-net-

work or the integrative-genome scenarios give better model fits.

With regard to CNV-survival association, allowing copy num-

bers to act directly on survival rather than just through their effect

on gene expression levels, provides improved model fit. This is most

obvious in GBM Data1 and Data2. For the other data subsets, the

performance slightly varied depending on the CNV-methylation and

CNV-gene expression associations considered, although the results

were relatively comparable.

Finding models with good predictive performance is more chal-

lenging than determining good explanatory models. In particular,

survival prediction in cancer is a difficult task because of the intrin-

sic high variability that exists in patients’ survival outcome

(Henderson and Keiding, 2005). Another challenge is the lack of a

good criterion to assess the predictive performance of survival mod-

els. Here, we used repeated 10-fold cross-validations to assess the

performance of the various models using the c-index measure as

described in Section 3.3. We present in Table 3 the results for GBM

and OSC in the larger data subset, Data3, which gave the best model

fit. Considering methylation sites mapping to the same gene as a

multivariate outcome or incorporating the EM algorithm in the

CNV-methylation relationships gave similar results as the uni-

methylation models, so only the latter and the models assuming no

CNV-methylation link are reported. We note that the integrative

models give improved predictive performance. For example, for

GBM, the integrative-gene models give the highest cross-validated

c-indices. When considering CNV-gene expression associations

across the whole genome (integrative-genome), the model with no

CNV-methylation appears not to perform as well as the reference

model (relating only gene expression data to survival outcomes).

However, when allowing for CNV-methylation associations, this

model’s predictive performance is comparable to that of the integra-

tive-gene. Similarly, for OSC, the integrative-gene models and the

models that allow for CNV-methylation association have the highest

c-index values. We note concordant results between goodness-of-fit

and predictive performance; the better explanatory models with

Table 1. GBM—Adjusted-R2 (SD) for various models and integration levels

Model no CNV- Uni-methylation Multi-methylation

methylation with EM without EM with EM without EM

Models allowing direct CNV-survival association (models in Figs 1a and 2a)

Data1

Integrative-gene 0.385 (1.99E-02) 0.374 (1.56E-02) 0.355 (1.48E-02) 0.330 (8.08E-02) 0.357 (7.98E-03)

Integrative-network 0.296 (3.19E-02) 0.343 (4.11E-02) 0.282 (1.60E-02) 0.311 (2.87E-02) 0.280 (3.68E-02)

Integrative-genome 0.331 (9.42E-03) 0.300 (4.85E-02) 0.262 (3.85E-03) 0.315 (1.88E-02) 0.286 (7.30E-02)

Reference model 0.237 (2.94E-17)

Age model 0.168 (0.00Eþ 00)

Data2

Integrative-gene 0.578 (3.90E-03) 0.524 (2.76E-03) 0.533 (8.78E-03) 0.522 (4.02E-03) 0.537 (7.22E-03)

Integrative-network 0.571 (1.07E-02) 0.539 (3.33E-02) 0.519 (4.03E-02) 0.531 (2.88E-02) 0.504 (6.37E-02)

Integrative-genome 0.517 (2.86E-02) 0.479 (2.39E-02) 0.474 (4.82E-02) 0.486 (6.32E-02) 0.454 (1.10E-02)

Reference model 0.407 (0.00Eþ 00)

Age model 0.168 (0.00Eþ 00)

Data3

Integrative-gene 0.593 (1.42E-02) 0.605 (1.09E-02) 0.607 (9.51E-03) 0.594 (7.81E-03) 0.600 (1.40E-02)

Integrative-network 0.574 (1.29E-02) 0.554 (8.69E-02) 0.584 (6.82E-03) 0.587 (3.71E-02) 0.454 (2.88E-02)

Integrative-genome 0.415 (3.89E-02) 0.458 (3.35E-02) 0.547 (3.50E-02) 0.530 (6.07E-02) 0.550 (4.95E-02)

Reference model 0.464 (3.12E-02)

Age model 0.168 (0.00Eþ 00)

Models allowing no direct CNV-survival association (models in Fig. 1b and 2b)

Data1

Integrative-gene 0.253 (5.90E-02) 0.297 (1.60E-02) 0.279 (3.80E-02) 0.271 (3.80E-02) 0.296 (9.60E-03)

Integrative-network 0.259 (1.30E-02) 0.314 (2.60E-02) 0.290 (3.00E-02) 0.277 (4.20E-02) 0.299 (3.70E-02)

Integrative-genome 0.287 (1.20E-02) 0.291 (2.40E-02) 0.307 (3.20E-02) 0.299 (2.80E-02) 0.283 (1.80E-02)

Reference model 0.237 (2.94E-17)

Age model 0.168 (2.90E-17)

Data2

Integrative-gene 0.487 (6.81E-03) 0.454 (6.50E-02) 0.478 (5.00E-02) 0.482 (6.00E-02) 0.472 (4.70E-02)

Integrative-network 0.538 (1.44E-02) 0.538 (3.40E-02) 0.519 (2.80E-02) 0.511 (2.60E-02) 0.536 (2.60E-02)

Integrative-genome 0.494 (3.32E-02) 0.520 (7.00E-02) 0.460 (1.00E-02) 0.483 (3.30E-02) 0.453 (1.30E-02)

Reference model 0.407 (0.00Eþ 00)

Age model 0.168 (3.04E-17)

Data3

Integrative-gene 0.536 (8.23E-03) 0.575 (9.75E-03) 0.567 (1.36E-02) 0.572 (2.83E-02) 0.568 (1.85E-02)

Integrative-network 0.554 (8.68E-03) 0.506 (1.12E-01) 0.569 (1.66E-02) 0.580 (4.12E-02) 0.500 (8.01E-02)

Integrative-genome 0.433 (4.69E-02) 0.483 (5.17E-02) 0.537 (5.10E-02) 0.517 (6.24E-02) 0.547 (4.64E-02)

Reference model 0.464 (3.12E-02)

Age model 0.168 (0.00Eþ 00)
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Table 2. OSC—Adjusted-R2 (SD) for various models and integration levels

Model no CNV- Uni-methylation Multi-methylation

methylation with EM without EM with EM without EM

Models allowing direct CNV-survival association (models in Figs 1a and 2a)

Data1

Integrative-gene 0.039 (0.00Eþ 00) 0.045 (8.64E-03) 0.044 (4.48E-03) 0.047 (7.95E-03) 0.043 (2.51E-03)

Integrative-network 0.055 (1.31E-03) 0.055 (2.47E-03) 0.042 (3.14E-03) 0.044 (2.79E-03) 0.044 (3.61E-03)

Integrative-genome 0.066 (4.50E-03) 0.050 (2.11E-02) 0.055 (1.70E-02) 0.060 (1.74E-02) 0.068 (4.95E-03)

Reference model 0.029 (2.96E-04)

Age model 0.022 (0.00Eþ 00)

Data2

Integrative-gene 0.394 (4.50E-03) 0.390 (9.22E-03) 0.389 (6.19E-03) 0.395 (5.02E-03) 0.398 (5.39E-03)

Integrative-network 0.373 (7.01E-03) 0.387 (8.86E-03) 0.381 (5.29E-03) 0.383 (5.11E-03) 0.388 (6.22E-03)

Integrative-genome 0.354 (3.90E-03) 0.361 (1.68E-02) 0.373 (1.67E-02) 0.395 (9.59E-03) 0.387 (9.13E-03)

Reference model 0.324 (2.62E-03)

Age model 0.022 (0.00Eþ 00)

Data3

Integrative-gene 0.407 (7.86E-03) 0.406 (7.31E-03) 0.418 (1.90E-02) 0.421 (1.25E-02) 0.413 (2.42E-02)

Integrative-network 0.420 (6.91E-03) 0.456 (1.31E-02) 0.451 (6.79E-03) 0.449 (1.56E-02) 0.450 (1.23E-02)

Integrative-genome 0.415 (1.39E-02) 0.429 (1.29E-02) 0.418 (2.44E-02) 0.397 (1.85E-02) 0.398 (7.43E-03)

Reference model 0.421 (4.41E-04)

Age model 0.022 (0.00Eþ 00)

Models allowing no direct CNV-survival association (models in Figs 1b and 2b)

Data1

Integrative-gene 0.043 (0.00Eþ 00) 0.051 (6.55E-03) 0.045 (4.51E-03) 0.041 (5.83E-03) 0.042 (3.85E-03)

Integrative-network 0.054 (2.41E-04) 0.069 (1.76E-02) 0.048 (6.21E-03) 0.044 (2.91E-03) 0.044 (3.61E-03)

Integrative-genome 0.067 (4.71E-03) 0.057 (4.07E-03) 0.051 (1.71E-02) 0.060 (1.76E-02) 0.068 (6.13E-03)

Reference model 0.029 (2.96E-04)

Age model 0.022 (0.00Eþ 00)

Data2

Integrative-gene 0.381 (4.59E-03) 0.384 (9.78E-03) 0.388 (3.63E-03) 0.389 (3.16E-03) 0.390 (6.73E-03)

Integrative-network 0.363 (4.82E-03) 0.380 (1.09E-02) 0.377 (3.62E-03) 0.382 (5.84E-03) 0.382 (7.40E-03)

Integrative-genome 0.354 (3.60E-03) 0.371 (1.73E-02) 0.359 (9.74E-03) 0.396 (7.98E-03) 0.386 (1.26E-02)

Reference model 0.324 (2.62E-03)

Age model 0.022 (0.00Eþ 00)

Data3

Integrative-gene 0.440 (1.41E-02) 0.438 (3.87E-03) 0.450 (1.95E-02) 0.433 (1.01E-02) 0.434 (8.83E-03)

Integrative-network 0.417 (3.00E-02) 0.456 (4.15E-03) 0.455 (5.08E-03) 0.448 (1.47E-02) 0.455 (5.55E-03)

Integrative-genome 0.430 (1.76E-02) 0.422 (1.71E-02) 0.418 (2.42E-02) 0.399 (1.93E-02) 0.405 (1.62E-02)

Reference model 0.421 (4.41E-04)

Age model 0.022 (0.00Eþ 00)

Table 3. Cross-validated c-index (SD)

Model no CNV-methylation Uni-methylation no CNV-methylation Uni-methylation

GBM Data3 OSC Data3

Models with direct CNV-survival association Models with direct CNV-survival association

Integrative-gene 0.747 (3.50E-02) 0.756 (4.59E-02) 0.743 (3.90E-02) 0.737 (2.86E-02)

Integrative-network 0.733 (4.20E-02) 0.728 (5.73E-02) 0.737 (4.01E-02) 0.747 (2.72E-02)

Integrative-genome 0.701 (5.24E-02) 0.745 (4.78E-02) 0.723 (4.12E-02) 0.746 (3.09E-02)

Reference model 0.713 (4.89E-02) 0.728 (3.60E-02)

Age model 0.657 (5.04E-02) 0.604 (4.43E-02)

Models allowing no direct CNV-survival association Models allowing no direct CNV-survival association

Integrative-gene 0.732 (3.25E-02) 0.737 (5.15E-02) 0.743 (3.61E-02) 0.746 (2.55E-02)

Integrative-network 0.722 (3.47E-02) 0.727 (4.57E-02) 0.723 (3.96E-02) 0.755 (2.74E-02)

Integrative-genome 0.695 (3.96E-02) 0.735 (4.58E-02) 0.720 (3.33E-02) 0.747 (3.01E-02)

Reference model 0.713 (4.89E-02) 0.728 (3.60E-02)

Age model 0.657 (5.04E-02) 0.604 (4.43E-02)
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higher adjusted-R2 values also give better prediction with higher

cross-validated c-indices.

Besides providing improved model fit and better predictive per-

formance, an advantage of the integrative approach is that it gives

insights into the biological mechanisms underlying the clinical out-

come by identifying relationships between molecular features and

their effects on the outcome. Figure 3 provides a graphical summary

of these relationships for the best performing integrative model in

GBM (adjusted-R2¼0.605, cross-validated c-index¼0.756). This

corresponds to the model depicted in Figure 1a allowing for CNV-

methylation and direct CNV-survival association in Data3. Overall

33 mRNA transcripts are found to be associated with survival.

Among these, 2 genes have transcript levels that are modulated by

methylation markers, which themselves are influenced by CNV

markers mapping to the same genes; 3 gene expression levels are

associated to copy number changes, while 4 other genes have their

mRNA abundance modulated by methylation markers. There are

also another set of 12 CNVs found to be directly associated to sur-

vival. Many of the identified markers are known to be implicated in

cancer. We found p21 protein-activated kinase 7 (PAK7), which is

predominantly expressed in brain, to have a couple of methylation

markers modulating its transcription levels, which in turn, are

related to survival in GBM. Previous studies have determined this

gene to be highly expressed in tumor tissues of glioma patients and

have suggested that inhibition of this gene by RNA interference

might efficiently suppress tumor development in glioma cells (Gu

et al., 2015). Another study examining the underlying molecular

mechanism of PAK7 found that suppression of this gene in glioma

cells significantly inhibited cell growth, cell migration and invasion,

and that PAK7 could inhibit cell apoptosis, suggesting that it could

have a potential role in prevention and treatment of glioma tumors

(Han et al., 2015). Among the CNV markers directly associated to

survival is EPH receptor A7 (EPHA7), which is known to be overex-

pressed in different tumors, including GBM, and shows an inverse

association with survival in GBM. EPHA7 has been put forward as

a prognostic marker and a potential therapeutic marker for primary

and recurrent GBM (Wang et al., 2008). Other CNV markers we

identified, like protein tyrosine phosphatase, receptor type, A

(PTPRA) and BCL2-like 14 (BCL2L14) have respectively been

shown to be implicated in oncogenic transformation and to play an

important role in inducing apoptosis. Among the mRNA transcripts

identified to be associated to survival is fibroblast growth factor 7

(FGF7), a gene known to be involved in cell survival activities,

tumor growth and invasion. Other gene expression changes found

to be related to GBM survival include eukaryotic translation initi-

ation factor 5A (EIF5A), which has two isoforms both carrying un-

favorable prognostics for various cancers, glutathione S-transferase

mu 3 (GSTM3), which has been linked to adult brain tumors, and

TNF receptor-associated factor 1 (TRAF1) known to mediate anti-

apoptotic signals from TNF receptors.

5 Conclusion

The integrative models we considered are designed to identify sig-

nificant relationships between molecular markers at different biolo-

gical levels, as well as their association to a clinical outcome. We

therefore use variable selection methods rather than a latent variable

formulation or dimension reduction techniques. The proposed mod-

els can provide a better understanding of the biological mechanisms

underlying the phenotypic outcome. Our analyses using different

subsets of a meta-data including CNV, methylation, gene expres-

sion, and survival outcome collected on the same set of tissues show

that integrative models lead to improved results. In addition to pro-

viding better model fits, they also yield better out-of-sample predic-

tions. There are, however, differences in performance between the

various integrative models considered. The subset of features con-

sidered for analysis, whether CNVs are allowed to act or not on

methylation, whether direct CNV-survival associations are allowed

or not, and the level at which CNV-gene expression relationships

are allowed (within the same gene, within the same disease/function

network, or across the whole genome) affect the goodness-of-fit and

predictive performance of the integrative models. That is, the results

depend on the type of information available in the data considered

for analysis. Thus, when fitting integrative models, care is needed in

defining the relationships between biological features. A systematic

integration that allows for all possible links between biological fea-

tures is not necessarily the best approach.
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