
Sequence analysis

NRGC: a novel referential genome compression

algorithm

Subrata Saha and Sanguthevar Rajasekaran*

Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-4155, USA

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on March 3, 2016; revised on July 26, 2016; accepted on July 27, 2016

Abstract

Motivation: Next-generation sequencing techniques produce millions to billions of short reads. The

procedure is not only very cost effective but also can be done in laboratory environment. The state-

of-the-art sequence assemblers then construct the whole genomic sequence from these reads.

Current cutting edge computing technology makes it possible to build genomic sequences from the

billions of reads within a minimal cost and time. As a consequence, we see an explosion of biological

sequences in recent times. In turn, the cost of storing the sequences in physical memory or transmit-

ting them over the internet is becoming a major bottleneck for research and future medical applica-

tions. Data compression techniques are one of the most important remedies in this context. We are

in need of suitable data compression algorithms that can exploit the inherent structure of biological

sequences. Although standard data compression algorithms are prevalent, they are not suitable to

compress biological sequencing data effectively. In this article, we propose a novel referential gen-

ome compression algorithm (NRGC) to effectively and efficiently compress the genomic sequences.

Results: We have done rigorous experiments to evaluate NRGC by taking a set of real human gen-

omes. The simulation results show that our algorithm is indeed an effective genome compression

algorithm that performs better than the best-known algorithms in most of the cases. Compression

and decompression times are also very impressive.

Availability and Implementation: The implementations are freely available for non-commercial

purposes. They can be downloaded from: http://www.engr.uconn.edu/~rajasek/NRGC.zip

Contact: rajasek@engr.uconn.edu

1 Introduction

Next-generation sequencing (NGS) techniques reflect a major break-

through in the domain of sequence analysis. Some of the sequencing

technologies available today are massively parallel signature

sequencing, 454 pyrosequencing, Illumina (Solexa) sequencing,

SOLiD sequencing, ion semiconductor sequencing, etc. Any NGS

technique produces abundant overlapping reads from a DNA mol-

ecule ranging from tiny bacterium to human species. Modern se-

quence assemblers construct the whole genome by exploiting overlap

information among the reads. As the procedure is very cheap and can

be done in standard laboratory environments, we see an explosion of

biological sequences that have to be analysed. But before analysis the

most important prerequisite is storing the data in a permanent mem-

ory. As a consequence, we need to increase physical memory to cope

up with this increasing amount of data. By 2025, between 100 million

and 2 billion human genomes are expected to have been sequenced,

according to Stephens et al. (2015). The storage requirement for this

data alone could be as much as 2–40 exabytes (one exabyte being

1018 bytes). Although the recent engineering innovation has sharply

decelerated the cost to produce physical memory, the abundance of

data has already outpaced it. Besides this, the most reliable mechan-

ism to send data instantly around the globe is using the Internet. If the

VC The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 3405

Bioinformatics, 32(22), 2016, 3405–3412

doi: 10.1093/bioinformatics/btw505

Advance Access Publication Date: 2 August 2016

Original Paper

http://www.engr.uconn.edu/~rajasek/NRGC.zip
http://www.oxfordjournals.org/


size of the data is huge, it will certainly create a burden over the

Internet. Network congestion and higher transmission costs are some

of the side-effects. Data compression techniques could help alleviate

these problems. A number of techniques can be found in the literature

for compressing general-purpose data. They are not suitable for spe-

cial purpose data like biological sequencing data. As a result, the

standard compression tools often fail to effectively compress biolo-

gical data. In this context, we need specialized algorithms for com-

pressing biological sequencing data. In this article, we offer a novel

algorithm to compress genomic sequences effectively and efficiently.

Our algorithm achieves compression ratios that are better than the

currently best performing algorithms in this domain. By compression

ratio we mean the ratio of the uncompressed data size to the com-

pressed data size.

The following two versions of the genome compression problem

have been identified in the literature:

i. Referential Genome Compression. The idea is to utilize the fact

that genomic sequences from the same species exhibit a very

high level of similarity. Recording variations with respect to a

reference genome greatly reduces the disk space needed for stor-

ing any particular genomic sequence. The computation complex-

ity is also improved quite a bit. So, the goal of this problem is to

compress all the sequences from the same (or related) species

using one of them as the reference. The reference is then com-

pressed using either a general purpose compression algorithm or

a reference-free genome compression algorithm.

ii. Reference-free Genome Compression. This is the same as Problem

(i) stated above, except that there is no reference sequence. Each

sequence has to be compressed independently. In this article we

focus on Problem (i). We propose an algorithm called NRGC

(Novel Referential Genome Compressor) based on a novel place-

ment scheme. We divide the entire target genome into some non-

overlapping segments. Each segment is then placed onto a refer-

ence genome to find the best placement. After computing the best

possible placements, each segment is then compressed using the

corresponding segment of the reference. Simulation results show

that NRGC is indeed an effective compression tool.

The rest of this article is organized as follows: Section 2 has a lit-

erature survey. Section 3 describes the proposed algorithm and ana-

lyzes its time complexity. Our experimental platform is explained in

Section 4. This section also contains the experimental results.

Section 5 presents some discussions. Section 6 concludes the study.

2 A survey of compression algorithms

We now briefly introduce some of the algorithms that have been pro-

posed to compress genomic sequences using a reference from the same

species. In referential genome compression, the goal is to compress a

large set S of similar sequences potentially coming from similar species.

The basic idea of referential genome compression can be defined as fol-

lows. We first choose the reference sequence R. The selection of R can

be purely random or it can be chosen algorithmically. All the other se-

quences s 2 S� R are compressed with respect to R. The target T (i.e.

the current sequence to be compressed) is first aligned onto the reference

R. Then, mismatches between the target and the reference are identified

and encoded. Each record of a mismatch may consist of the position

with respect to the reference, the type (e.g. insertion, deletion or substi-

tution) of mismatch, value and the matching length.

Brandon et al. (2009) have used various coding techniques such

as Golomb [Golomb et al. (1966)], Elias [Peter et al. (1975)] and

Huffman [Huffman et al. (1952)] to encode the mismatches. Wang

et al. (2011) have presented a compression program, GRS, which ob-

tains variant information by using a modified Unix diff program.

The algorithm GReEn [Pinho et al. (2012)] employs a probabilistic

copy model that calculates target base probabilities based on the ref-

erence. Given the base probabilities as input, an arithmetic coder was

then employed to encode the target. Recently, an algorithm called

ERGC (Efficient Referential Genome Compressor) [Saha et al.

(2015)] has been introduced which is based on a reference genome. It

employs a divide and conquer strategy. Another algorithm, namely,

iDoComp [Ochoa et al. (2014)] has been proposed recently which

outperforms some of the previously best-known algorithms such as

GRS, GReEn and GDC. GDC [Deorowicz et al. (2011)] is an LZ77-

style compression scheme for relative compression of multiple gen-

omes of the same species. In contrast to the algorithms mentioned

above, Christley et al. (2009) have proposed the DNAzip algorithm.

It exploits the human population variation database, where a variant

can be a single-nucleotide polymorphism or an indel (an insertion

and/or a deletion of multiple bases). Some other notable algorithms

that employ VCF (Variant Call Format) files to compress genomes

have been given by Deorowicz et al. (2013) and Pavlichin et al.

(2013). Next, we provide a brief outline of some of the best-known

algorithms in the domain of referential genome compression. An

elaborate summary can be found in Saha et al. (2015).

GRS at first finds longest common subsequences between the ref-

erence and the target genomes. It then employs the Unix diff program

to calculate a similarity score between the two sequences. Based on

the similarity score, it either encodes the variations between the refer-

ence and target genomic sequences using Huffman encoding or the

reference and target sequences are divided into smaller blocks. In the

latter case, the computation is then restarted on each pair of blocks.

The performance of GRS degrades sharply if the variation is high be-

tween the reference and target genomes. GDC can be categorized as

an LZ77-style [Ziv et al. (1977)] compression algorithm. It is mostly a

variant of RLZopt [Shanika et al. (2011)]. It finds the matching subse-

quences between the reference and the target by employing hashing

where RLZopt employs suffix array. GDC is referred to as a multi-

genome compression algorithm. From a set of genomes, it cleverly de-

tects one (or more) suitable genome(s) as reference and compresses

the rest based on the reference. An arithmetic encoding scheme is

introduced in GReEn. At the beginning, it computes statistics using

the reference and an arithmetic encoder is then used to compress the

target by employing the statistics. GReEn uses a copy expert model

which is largely based on the non-referential compression algorithm

XM [Cao et al. (2007)]. iDoComp is based on suffix array construc-

tion and entropy encoder. Through suffix array it parses the target

into the reference and an entropy encoder is used to compress the vari-

ations. The most recent algorithm ERGC divides both the target and

the reference sequences into parts of equal size and finds one-to-one

maps of similar regions from each part. It then outputs identical maps

along with dissimilar regions of the target sequence. Delta encoding

and PPMD lossless compression algorithm are used to compress the

variations between the reference and the target genomes. If the vari-

ations between the reference and the target are small, it outperforms

all the best-known algorithms. But its performance degrades when the

variations are high.

As referential genome compression is based on finding similar sub-

sequences between the reference and the target genomes, some exist-

ing algorithms such as MUMmer [Kurtz et al. (2004)] or BLAST

[Altschul et al. (2004)] can be used to find the maximal matching sub-

strings. The acronym ‘MUMmer’ comes from ‘Maximal Unique

Matches’, or MUMs. MUMmer is based on the suffix tree data struc-

ture designed to find maximal exact matches between two input

3406 S.Saha and S.Rajasekaran



sequences. After finding all the maximal matching substrings, an ap-

proximate string aligner can be used to detect the variations.

3 Materials and methods

We can find all the variations between the reference and target gen-

omic sequences by employing any exact global alignment algorithm.

As the time complexity of such an algorithm is typically quadratic, it

is not computationally feasible. So, every referential genome com-

pression algorithm employs an approximate string matcher which is

greedy in nature. Although genomic sequences of two individuals

from the same species are very similar, there may be high variations

in some regions of genomes. This is due to the large number of inser-

tions and/or deletions in the genomic sequences of interest. In this

scenario, greedy algorithms often fail to perform meaningful com-

pressions. Either they can run indefinitely to search for common sub-

strings of meaningful length or output compressed data of very large

size. Taking all of these facts into consideration, in this article we

propose a novel referential genome compression algorithm which is

based on greedy placement schemes. Our algorithm overcomes the

disadvantages of the existing algorithms effectively.

There are three phases in our algorithm. In the first phase, we divide

the target genome T into a set of non-overlapping segments t1; t2; t3 . . . ;

tn of length L each (for some suitable value of L). We then compute a

score for each segments ti corresponding to each possible placement of ti
onto reference genome R employing our novel scoring algorithm. The

scores computed in the first phase are then used to find a non-

overlapping placement of each ti onto R in the second phase. This task

is achieved using a placement algorithm that we introduce. Finally in

the third phase, we record the variation between each segment ti and

the reference genome R by employing our segment compression algo-

rithm. More details of our algorithm are provided next.

3.1 Computing scores
At the beginning, the target genome T is divided into a set of non-

overlapping segments t1; t2; t3 . . . ; tn each of a fixed length L where

L is user defined. As the genomic sequence can be composed of mil-

lions to billions of base pairs and can contain large insertions and/or

deletions along with mutations, finding the best possible placement

of ti onto R is not trivial. In fact, an exact algorithm will have a

quadratic time complexity to compute the best possible placements

for all the tis. Let jRj and jTj be the lengths of R and T, respectively.

The time complexity of an exact algorithm could be OðjRjjTjÞ which

is extremely high. There is a trade-off between the time an algorithm

takes and the accuracy it achieves. We accomplish a very good bal-

ance between these two by carefully formulating the scoring algo-

rithm. This is done by employing fingerprinting and an ordered

lengths of the fragments. We randomly generate a small substring F of

length l where 4 � l � 6 considering only A, C, G and T characters.

F serves as a barcode/fingerprint in this context. Each possible occur-

rence of F is then collected from R. As we know the position of each

occurrence of F at this point, we can build an ordered lengths of the

fragments by clipping the sequence at known fingerprint positions.

Following the same procedure stated we can compute the ordered

lengths of the fragments for each ti by employing the same F. Suppose

there are no errors (either indels or substitutions) in R and T. In this

scenario for any given ordered fragment lengths of a segment ti, in

general, there should exist a subset of matching ordered fragment

lengths in the reference R. This information helps to place a segment ti
onto R. But in reality errors could occur due to deletions of some fin-

gerprint sites or a change in some fragment lengths (due to insertions).

A novel scoring algorithm is thus introduced to quantify the errors.

Let A ¼ ti
1; t

i
2; t

i
3; . . . ; ti

q be the ordered fragment lengths of seg-

ment ti from T and B ¼ rs; rsþ1; rsþ2; rsþ3; . . . ; rm�sþ1 be the ordered

fragment lengths of a particular region of R. The region is stretched

from sth fragment to ðm� sþ 1Þth fragment. The score of ti for this

particular region is computed as in Equation (1).

ScoreðtiÞ ¼
����
Xqi

j¼1

ti
j �

Xm�sþ1

j¼s

rj

����þ P �MFS; (1)

where P and MFS are the penalty factor and number of missed fin-

gerprint sites, respectively. Penalty term P is user defined and should

be very large. Details of our scoring algorithm follow. Let r1; r2; r3;

. . . ; rm be the ordered fragment lengths of the reference R. Let ti
1; t

i
2;

ti
3; . . . ; ti

q be the ordered fragment lengths computed from any

A genome compression algorithm 3407



segment ti. The individual scores are then computed by matching ti
1

with r1, ti
2 with r2, ti

3 with r3, and so on. In other words, we compute

a score for ti
1 by matching it with rj for each possible value of i where

1 � j � m. In brief, the inputs of the scoring algorithm are ordered

fragment lengths of the reference genome R and ordered fragments

lengths of each non-overlapping segment ti where 1 � i � n. As m

and q are the number of ordered lengths of the reference genome R

and a segment ti, respectively, there will be ðm� qþ 1Þ-matching

scores for each ti. Each score is calculated by incrementing the pos-

ition by one until all the ðm� qþ 1Þ-steps are used. In this context,

position refers to the length of a particular fragment in R. So, the

first position refers to the first fragment, the second position refers

to the second fragment, and so on. After aligning the ordered frag-

ment lengths of a segment ti to a particular position of the reference

R, we greedily detect the number of fragment lengths of ti that coin-

cide reasonably well with the ordered fragment lengths of R and the

number of missed fingerprint sites. We then calculate a matching

score of that particular position by employing Equation (1). We cal-

culate all the ðm� qþ 1Þ scores of each segment ti following the

same procedure stated above.

A detailed pseudocode is supplied in Algorithm 1. The run time

of our greedy scoring algorithm is O(mnq), where m is the number

of fragments in the reference genome R, n is the number of segments

of target genome T and q is the maximum number of fragments in

any segment ti.

3.2 Finding placements

Our placement algorithm utilizes the matching scores for each seg-

ment ti to correctly place it onto the reference genome R. The algo-

rithm takes a score list of a particular segment ti and an ordered

fragment lengths of R as input. If m is the number of ordered frag-

ment lengths computed from R and n is the number of non-

overlapping segments of target T, then the number of scores associ-

ated with each segment ti will be m� nþ 1. The algorithm proceeds

as follows: at first the matching scores associated with ti are sorted

in increasing order. Hence, the first position of the sorted list of ti
contains the minimum score among all the scores. As the penalty

factor is very large, this matching score is the best score for placing

this particular ti anywhere in R.

The case stated above outlined an expected ideal case. But some-

times it is not possible to place ti by considering the least score. If

the placements cause to share some regions of R by more than one

segment, the placement strategy is not valid at all. To avoid the colli-

sion we first try to place t1; Next we attempt to place t2, and so on.

When we try to place any segment ti, we check whether the starting

and/or ending fragments of segment ti overlap with any of the al-

ready placed segments. If there is such an overlap, we discard this

placement and move onto the next segment in the sorted list to cor-

rectly place it onto R.

A detailed pseudocode is supplied in Algorithm 2. Let m be the

number of fragments in the reference genome R, and n be the num-

ber of segments from target T. Intuitively, the number of matching

scores of each segment ti is at most O(m). As the matching score is

an integer, sorting matching scores of each segment ti takes at most

O(m) time. So, the execution time of lines 1–5 in Algorithm 2 is

O(mn). Sorting segments with respect to starting position of frag-

ments takes O(n) time (line 6). In the worst case, detecting the over-

laps (lines 7–14) takes Oðn log nÞ time. As n� m, the run time of

Algorithm 2 is O(mn).

3.3 Recording variations

This is the final stage of our algorithm NRGC. Let t1; t2; t3; . . . ; tq be

the segments of T that are placed onto the segments r1; r2; r3; . . . ; rq

of R, respectively. The algorithm proceeds by taking one segment at

a time. Consider the segment t1. At first t1 and r1 are divided into s

equal parts, i.e. t1 ¼ t1
1t1

2t1
3 . . . t1

s and r1 ¼ r1
1r1

2r1
3 . . . r1

s , respectively.

The variations of t1
1 with respect to r1

1 is computed first, variations

of t1
2 with respect to r1

2 is computed next, and so on. Let ðr0; t0Þ be

processed at some point in time. At first, the algorithm decomposes

r0 into overlapping substrings of length k (for a suitable value of k).

3408 S.Saha and S.Rajasekaran



These k-mers are then hashed into a hash table H. It then generates

k-mers from t0 one at a time and hashes the k-mers into H. This pro-

cedure is repeated until one k-mer collides with an entry in H. If a

collision occurs we align t0 onto r0 based on this particular colliding

k-mer and extend the alignment until we find any mismatch between

r0 and t0. We record the matching length, the starting position of this

stretch of matching in the reference genome R and the mismatch. If

no collision occurs, we decompose r0 into overlapping substrings of

length k0 where k0 < k and follow the same procedure stated above.

At this point we delete the matching sequences from r0 and t0 and

align the rest using the same technique as described above. As there

could be large insertions in the target genome T, we record the un-

matched sequence of T as a raw sequence. The procedure is repeated

until the length of r0 or t0 becomes zero or no further alignment is

possible.

The information generated to compress the target sequence is

stored in an ASCII-formatted file. After having processed all the seg-

ments of R and the corresponding segments in T, we compress the

starting positions and matching length using delta encoding. The re-

sulting file is further compressed using PPMD lossless data compres-

sion algorithm. It is a variant of prediction by partial matching

(PPM) algorithm and an adaptive statistical data compression tech-

nique based on context modelling and prediction. It predicts the

next symbol depending on n previous symbols. This method is also

known as prediction by Markov Model of order n. The rationale be-

hind the prediction from n previous symbols is that the presence of

any symbol is highly dependent on the previous symbols in any nat-

ural language. The Huffman and arithmetic coders are sometimes

called the entropy coders using an order-(0) model. On the contrary

PPM uses a finite context Order-(k) model. Here, k is the maximum

context that is specified ahead of execution of the algorithm. The al-

gorithm maintains all the previous occurrences of context at each

level of k in a table or trie with associated probability values for

each context. For more details the reader is referred to Moffat et al.

(1990). Some recent implementations of PPMD are effective in com-

pressing text files containing natural language text. The 7-Zip open-

source compression utility provides several compression options

including the PPMD algorithm. Details of the algorithm are shown

in Algorithm 3.

Consider a pair of parts r and t (where r comes from the refer-

ence and t comes from the target). Let jrj ¼ jtj ¼ ‘. We can generate

k-mers from r and hash them in Oð‘kÞ time. The same amount of

time is spent, in the worst case, to generate and hash the k-mers of t.

The number of different k-values that we try is a small constant and

hence the total time spent in all the hashing that we employ is

Oð‘kÞ. If a collision occurs, then the alignment we perform is greedy

and takes only Oð‘Þ time. After the alignment recording the differ-

ence and subsequent encoding also takes linear (in ‘) time. If no col-

lision occurs for any of the k-values tried, t is stored as such and

hence the time is linear in ‘. Put together, the run time for processing

r and t is Oð‘kÞ. Extending this analysis to the entire target se-

quence, we infer that the run time to compress any target sequence

T of length n is O(nk) where k is the largest value used in hashing.

3.4 Parameters configuration
There are several user-defined parameters and these can be found in

the code for the proposed algorithm NRGC. Almost all of the ex-

periments were done using default parameters. The most important

parameter of the algorithm is the segment size. In the first phase of

NRGC, the target genome is decomposed into a set of non-

overlapping segments of fixed size L. In our experimental

evaluations, we have fixed L as 500K. Users can change this value

using an interface provided. A rule of thumb is: if the variations be-

tween the reference and the target genomes are small, L can be small

otherwise it should be large. The penalty term P was set to 9999. In

the third phase, NRGC builds hash buckets by decomposing the se-

quences into overlapping k-mers. The set of k-values used in the ex-

periment was K ¼ f11;12; 13g.
Fingerprint/barcode was set to a default string ‘ACTAC’

throughout the experiments. User can change it to any fingerprint/

barcode string using the application interface. It is also permitted

that application itself can generate fingerprint of user-defined fixed

size. In this case, NRGC randomly selects alphabets from A, C, G

and T with equal probability and builds a barcode string of user-

defined length. It then computes the number of times the fingerprint

found in the reference genome. This process is repeated several times

and the most occurring fingerprint is chosen for ordered fragment

length generation.

4 Results

4.1 Experimental environment
We have compared our algorithm with the best-known algorithms

existing in the referential genome compression domain. In this sec-

tion we summarize the results. All the experiments were done on an

Intel Westmere compute node with 12 Intel Xeon X5650 Westmere

cores and 48 GB of RAM. The operating system running was Red

Hat Enterprise Linux Server release 5.7 (Tikanga). NRGC compres-

sion and decompression algorithms are written in standard Java pro-

gramming language. Java source code is compiled and run by Java

Virtual Machine (JVM) 1.6.0.

4.2 Datasets
To measure the effectiveness of our proposed algorithm, we have

done a number of experiment using real datasets. We have used

hg19, hg18 release from the UCSC Genome Browser, the Korean

genomes KOREF 20090131 (KOR131 for short) and KOREF

20090224 (KOR224 for short) [Ahn et al. (2009)], and the genome

of a Han Chinese known as YH [Levy et al. (2008)]. To show the ef-

fectiveness of our proposed algorithm NRGC, each dataset acts as a

reference. When a particular dataset is chosen to be the reference the

rest act as targets. By following this procedure any bias related in

using a particular reference is omitted. We have taken chromosome

1–22, X and Y chromosomes (i.e., a total of 24 chromosomes) for

comparison purposes. Please, see Table 1 for details about the data-

sets we have used.

4.3 Outcomes
Next, we discuss details on the performance evaluation of our pro-

posed algorithm NRGC in terms of both compression and CPU

elapsed time. We have compared NRGC with three of the four best

performing algorithms namely GDC, iDoComp and ERGC using

Table 1. Datasets used in the experiments

Dataset Species No. of chromosomes Retrieved from

hg19 Homo sapiens 24 ncbi.nlm.nih.gov

hg18 Homo sapiens 24 ncbi.nlm.nih.gov

KO224 Homo sapiens 24 koreangenome.org

KO131 Homo sapiens 24 koreangenome.org

YH Homo sapiens 24 yh.genomics.org.cn

A genome compression algorithm 3409



several standard benchmark datasets. GReEn is one of the state-of-

the-art algorithms existing in the literature. But we could not com-

pare GReEn with our algorithm. The site containing the code of

GReEn was down at the time of experiments. Although run time

and compression ratio of ERGC were impressive, it did not perform

meaningful compression when the variation between target and ref-

erence is large. It performs well when the variation between target

and reference is small which is not always the case in our experi-

ments. In fact, NRGC is a superior version of ERGC. GDC, GReEn,

iDoComp and ERGC are highly specialized algorithms designed to

compress genomic sequences with the help of a reference genome.

These are the best performing algorithms in this area as of now.

Effectiveness of various algorithms including NRGC is measured

using several performance metrics such as compression size, com-

pression time, decompression time, and so on. Gain measures the

percentage improvement in compression achieved by NRGC when

compared with iDoComp and ERGC. Comparison results are

shown in Tables 2 and 3. Clearly, our proposed algorithm is com-

petitive and performs better than all the best-known algorithms.

Memory consumption is also very low in our algorithm as it proc-

esses one and only one part from the target and reference sequences

at any time. Please, note that we do not report the performance

evaluation of GDC for every dataset, as it ran for at least 3 h but did

not complete the compression task for some datasets. We refer to it

in this article as Time Limit Exceeded (or TLE in short).

At first consider the dataset D1. In this case we consider the

hg19 human genome as the reference. Targets include hg18,

KO131, KO224 and the YH human genome. iDoComp performs

better in compressing the hg18 genome by employing hg19 as the

reference. In all the other cases, NRGC performs better in compress-

ing KO131, KO224 and YH than all the other algorithms of inter-

est. In fact, NRGC compresses approximately two times better than

iDoComp for those particular genomes. NRGC is also faster than

iDoComp in terms of both compression and decompression times.

Please, see Table 2 for more details. Now consider the overall evalu-

ation for dataset D1 given in Table 3. The total size of the target gen-

omes is 11 859 MB. NRGC algorithm compresses it to 137.47 MB

corresponding to a compression ratio of 86.26. On the other hand,

iDoComp achieves a compression ratio of 49.13. Specifically, the

percentage improvement NRGC achieves with respect to iDoComp

is 43.04%. Compression and decompression times of NRGC are al-

most 2� and 9� less than those of iDoComp. Note that we did not

include the performance evaluation of GDC as in most of the cases

it fails to compress the data within 3 h. The average performance of

ERGC is poor. The percentage improvement NRGC achieves over

iDoComp is 83.16%.

Next consider the dataset D2. In this case, we consider the hg18

human genome as the reference and the rest as targets. iDoComp

performs better in compressing the hg19 genome; in all the other

cases, NRGC performs better in terms of compression and elapsed

times. In fact, NRGC compresses approximately 1:5� 2:0� better

than iDoComp for those particular genomes (e.g. KO131, KO224

and YH). NRGC is also faster than iDoComp in terms of both com-

pression and decompression times. Please, see Table 2 for more

Table 2. Performance evaluation of four algorithms using various metrics

GDC iDoComp ERGC NRGC

Dataset Reference Target A.Size R.Size C.Time D.Time R.Size C.Time D.Time R.Size C.Time D.Time R.Size C.Time D.Time

D1 hg19 hg18 2,996 24.42 68.76 0.54 5.15 20.65 2.55 131.34 13.93 2.22 14.85 14.25 2.09

KO131 2,938 TLE TLE TLE 78.79 21.73 12.51 247.15 16.93 2.21 46.04 16.36 2.10

KO224 2,938 TLE TLE TLE 77.74 37.78 28.96 268.38 18.08 2.15 43.54 16.49 2.27

YH 2,987 TLE TLE TLE 79.68 41.83 31.87 190.59 16.58 2.12 33.04 14.54 2.06

D2 hg18 hg19 3,011 24.42 68.76 0.54 6.10 31.68 2.41 299.45 18.56 2.22 12.37 14.70 1.84

KO131 2,938 TLE TLE TLE 65.03 35.75 11.65 13.46 8.39 1.51 36.89 14.55 1.95

KO224 2,938 TLE TLE TLE 68.58 26.80 11.63 12.03 7.85 1.35 37.780 14.94 2.02

YH 2,987 TLE TLE TLE 64.16 21.41 11.04 7.52 10.10 2.16 27.64 14.32 1.98

D3 KO224 hg19 3,011 TLE TLE TLE 195.19 22.36 11.61 443.15 21.45 2.19 28.90 14.90 2.09

hg18 2,996 TLE TLE TLE 200.91 19.86 12.07 18.79 10.17 1.42 30.69 14.37 2.11

KO131 2,938 11.57 80.49 0.83 6.57 27.91 1.68 5.98 7.23 1.41 7.95 13.72 1.99

YH 2,987 31.08 68.05 0.52 29.02 37.05 3.56 8.81 14.01 2.07 21.96 13.82 1.94

D4 YH hg19 3,011 TLE TLE TLE 37.11 22.55 13.02 433.41 20.14 2.13 27.11 15.22 1.87

hg18 2,996 TLE TLE TLE 34.18 48.18 12.26 17.22 7.25 1.37 27.61 14.23 2.05

KO131 2,938 36.28 73.66 0.53 19.16 25.01 4.41 13.05 8.14 1.37 27.99 14.47 1.94

KO224 2,938 31.08 68.05 0.52 16.02 37.21 3.90 11.57 7.89 1.29 28.66 14.42 1.95

Note: Best values are shown in bold face. A.Size and R.Size refer to Actual Size and Reduced Size in MB, respectively. C.Time and D.Time refer to the

Compression Time and Decompression Time in minutes, respectively.

Table 3. Performance evaluation of three algorithms using various metrics

iDoComp ERGC NRGC Gain

Dataset A.Size R.Size C.Time D.Time R.Size C.Time D.Time R.Size C.Time D.Time iDoComp ERGC

D1 11,859 241.36 121.99 75.89 816.23 65.52 8.70 137.47 61.64 8.52 43.04% 83.16%

D2 11,874 203.87 115.64 36.73 332.46 44.90 7.24 114.68 58.51 7.79 45.22% 65.51%

D3 11,932 431.69 107.18 28.92 476.73 52.86 7.09 89.50 56.81 8.13 79.27% 81.23%

D4 11,883 106.47 132.95 33.59 475.25 43.42 6.16 111.37 58.34 7.81 �4.60% 76.57%

Note: Best values are shown in bold face. A.Size and R.Size refer to Actual Size in MB and Reduced Size in MB, respectively. C.Time and D.Time refer to the

Compression Time and Decompression Time in minutes, respectively

3410 S.Saha and S.Rajasekaran



details. Now consider the overall performance for the dataset D2

given in Table 3. The percentage improvements NRGC achieves

with respect to ERGC and iDoComp are 65.51% and 45.22%, re-

spectively. Compression and decompression times of NRGC are

also very impressive compared with iDoComp and comparable with

ERGC. For the D3 dataset the percentage improvements NRGC

achieves over ERGC and iDoComp are 81.23% and 79.27%, re-

spectively. The compression achieved by NRGC on the D4 dataset is

slightly lower than that of iDoComp. Please, see Figure 1 for visual

details of different evaluation metrics.

5 Discussion

Our proposed algorithm is able to work with any alphabet used in

the genomic sequences of interest. Other notable algorithms existing

in the domain of referential genome compression can perform com-

pression only with a restricted set of alphabets used for genomic se-

quences, e.g.
P
¼ fA; a;C; c;G; g;T; t;N;ng. These characters are

most commonly seen in biological sequences. But there are several

other valid characters frequently used in clones to indicate ambigu-

ity about the identity of certain bases in sequences. In this context,

our algorithm is not restricted with the limited set of characters

found in
P

. NRGC also differentiates between lower-case and

upper-case letters. GDC, GReEn and iDoComp can identify the dif-

ference between upper-case and lower-case characters defined in
P

but algorithms such as GRS or RLZ-opt can only handle upper-case

alphabet from
P

. iDoComp replaces all the character in the gen-

omic sequence with N that does not belong to
P

. Specifically,

NRGC compresses the target genome file regardless of the alphabets

used and decompresses the compressed file that is exactly identical

to the target file. GDC, iDoComp and ERGC perform the similar

job. But GReEn does not include the metadata information and out-

puts the sequence as a single line instead of multiple lines, i.e. it does

not encode the line-break information.

The difference between two genomic sequences can be computed

by globally aligning them as the sequences in the query set coming

from the same species are similar and of roughly equal size. Let R

and T denote the reference and target sequences, respectively, as

stated above. The time complexity of a global alignment algorithm

is typically OðjRjjTjÞ, i.e. quadratic in terms of the reference and

target lengths. Global alignment is solved by employing dynamic

programming and thus is a very time and space intensive procedure

specifically if the sequences are very large. In fact, it is not possible

to compute the difference between two human genomes using global

alignment in current technology. Instead if we divide the reference

and target into smaller segments and globally align the correspond-

ing segments, the time and space complexities seem to be improved.

But there are two shortcoming in this approach: (i) it still is quad-

ratic with respect to segment lengths and (ii) because of large inser-

tions and/or deletions in the reference and/or target, the

corresponding segments may come from different regions (i.e. dis-

similar). To quantify this issue, we propose a placement scheme

which efficiently finds the most suitable place for a segment in the

reference. The segment is then compressed by our greedy variation

detection algorithm.

From the experimental evaluations (please see Table 2), it is evi-

dent that ERGC performs better than GDC, iDoComp and NRGC

in 9 out of 16 datasets. It is also not restricted to the alphabets

defined in
P

. But the main limitation of ERGC is that it performs

better only when the variations between the reference and the tar-

get genomes are small. If the variations, i.e. insertions and/or dele-

tions are high between the reference and the target, its

performance degrades dramatically. As hg19 contains large inser-

tions and/or deletions, ERGC fails to perform a meaningful com-

pression while using this genome as the reference or the target. On

the contrary, NRGC performs better than ERGC (and other not-

able algorithms) on an average (please see Table 3). This is due to

the fact that NRGC can handle large variations between the refer-

ence and target genomes. The main difference between NRGC and

ERGC is that NRGC at first finds a near optimal placement of

non-overlapping segments of target onto the reference genome and

then records the variations. On the other hand, ERGC tries to align

the segments contiguously and due to its look-ahead greedy nature

it fails to align the segments when there are large insertions and/or

deletions in the reference and/or the target genomes. In this scen-

ario, ERGC concludes that the segments could not be aligned and

stores them as raw sequences.

As discussed previously, our proposed algorithm NRGC runs in

three phases. At first, it computes a score for each of the non-

overlapping segments. These segments are then aligned onto the

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

D1 D2 D3 D4

% Gain

iDoComp ERGC

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

D1 D2 D3 D4

Compression Time in Minutes

iDoComp ERGC NRGC

 0

 10

 20

 30

 40

 50

 60

 70

 80

D1 D2 D3 D4

Decompression Time in Minutes

iDoComp ERGC NRGC

(a)

(b)

(c)

Fig. 1. Performance comparisons of iDoComp, ERGC and NRGC methods

A genome compression algorithm 3411



reference genome in the second phase using the scores computed in

the first phase. After finding the best possible alignment, NRGC re-

cords the variations in the final phase. We provide the time elapsed in

each phase in Table 4. Computing scores takes less time compared to

alignment and record variation phases. This is due to the fact that the

placement procedure performs sorting twice and searches for a non-

overlapping placement for each segment. The execution time can be

reduced by restricting the search within certain regions of the refer-

ence genome. The third phase performs k-mer production, hash table

generation and recording variations. This is why it also consumes

higher CPU cycles than the first phase.

6 Conclusions

In this article, we have proposed a novel referential genome com-

pression algorithm. We employ a scoring-based placement technique

to quantify large variations among the genomic sequences. NRGC

runs in three stages. At the beginning the target genome is divided

into some segments. Each segment is then placed onto the reference

genome. After getting the most suitable placement we further divide

each segment into some non-overlapping parts. We also divide the

corresponding segments of the reference genome into the same num-

ber of parts. Each part from the target is then compressed with re-

spect to the corresponding part of the reference. A wide variety of

human genomes are used to evaluate the performance of NRGC. It

is evident from the simulation results that the proposed algorithm is

indeed an effective compressor compared with the state-of-the-art

algorithms existing in the current literature.

Funding

This work was supported in part by the following grants: NIH R01-

LM010101 and NSF 1447711.

Conflict of Interest: none declared.

References

Ahn,S.-M. et al. (2009) The first Korean genome sequence and analysis: full

genome sequencing for a socio-ethnic group. Genome Res., 19, 1622–1629.

Altschul,S.F. et al. (2004) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Brandon,M.C. et al. (2009) Data structures and compression algorithms for

genomic sequence data. Bioinformatics, 25, 1731–1738.

Cao,M.D. et al. (2007) A simple statistical algorithm for biological sequence

compression. Proceedings of the 2007 IEEE Data Compression Conference

(DCC 07), pp. 43–52.

Christley,S. et al. (2009) Human genomes as email attachments.

Bioinformatics, 25, 274–275.

Deorowicz,S. et al. (2013) Genome compression: a novel approach for large

collections. Bioinformatics, 29, 1–7.

Deorowicz,S. and Grabowski,S. (2011) Robust relative compression of gen-

omes with random access. Bioinformatics, 27, 2979–2986.

Golomb,S.W. (1966) Run-length encodings. IEEE Trans. Inform. Theor., 12,

399–401.

Huffman,D. (1952) A method for the construction of minimum-redundancy

codes. Proc. Inst. Radio Eng., 1098–1101.

Kurtz,S. et al. (2004) Versatile and open software for comparing large gen-

omes. Genome Biol., 5, R12.

Levy,S. et al. (2008) The diploid genome sequence of an Asian individual.

Nature, 456, 60–66.

Moffat,A. (1990) Implementing the PPM data compression scheme. IEEE

Trans. Commun., 38, 1917–1921.

Ochoa,I. et al. (2014) iDoComp: a compression scheme for assembled gen-

omes. Bioinformatics, 31, 626–633.

Pavlichin,D. et al. (2013) The human genome contracts again. Bioinformatics,

29, 2199–2202.

Peter,E. (1975) Universal codeword sets and representations of the integers.

IEEE Trans. Inform. Theor., 21, 194–203.

Pinho,A.J. et al. (2012) GReEn: a tool for efficient compression of genome

resequencing data. Nucleic Acids Res., 40, e27.

Saha,S. and Rajasekaran,R. (2015) ERGC: an efficient referential genome

compression algorithm. Bioinformatics, 31, 3468–3475.

Shanika,K. et al. (2011) Optimized relative lempel-ziv compression of gen-

omes. 34thAustralasian Computer Science Conference, 113, pp. 91–98.

Stephens,Z.D. et al. (2015) Big data: astronomical or genomical? PLoS Biol.,

13, e1002195.

Wang,C. and Zhang,D. (2011) A novel compression tool for efficient storage

of genome resequencing data. Nucleic Acids Res., 39, E45–U74.

Ziv,J. and Lempel,A. (1977) A universal algorithm for sequential data com-

pression. IEEE Trans Inform. Theor., 23, 337–343.

Table 4. Phase-wise time decomposition of NRGC

Dataset Reference Target First

phase

Second

phase

Third

phase

Total

D1 hg19 hg18 2.39 5.23 6.62 14.25

KO131 2.63 5.30 8.42 16.36

KO224 2.81 5.63 8.04 16.49

YH 2.10 5.38 7.05 14.54

D 2 hg18 hg19 2.25 5.02 7.42 14.70

KO131 2.40 5.29 6.84 14.55

KO224 2.46 5.44 7.03 14.94

YH 2.02 5.41 6.88 14.32

D3 KO224 hg19 2.12 5.83 6.94 14.90

hg18 2.43 5.41 6.52 14.37

KO131 2.46 5.40 5.85 13.72

YH 1.97 5.33 6.52 13.83

D4 YH hg19 2.20 5.99 7.03 15.22

hg18 2.39 5.41 6.42 14.23

KO131 2.40 5.45 6.61 14.47

KO224 2.38 5.39 6.64 14.42

Note: CPU-elapsed times are given in minutes.

3412 S.Saha and S.Rajasekaran


	btw505-TF1
	btw505-TF2
	btw505-TF3

