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SUMMARY

Vocalizations play a significant role in social communication across species. Analyses in rodents 

have used a limited number of spectro-temporal measures to compare ultrasonic vocalizations 

(USVs), which limits the ability to address repertoire complexity in the context of behavioral 

states. Using an automated and unsupervised signal processing approach, we report the 

development of MUPET (Mouse Ultrasonic Profile ExTraction) software, an open access 

MATLAB® tool that provides data-driven, high-throughput analyses of USVs. MUPET measures, 

learns, and compares syllable types and provides an automated time-stamp of syllable events. 

Using USV data from a large mouse genetic reference panel and open source datasets produced in 

different social contexts, MUPET analyzes the fine details of syllable production and repertoire 

use. MUPET thus serves as a new tool for USV repertoire analyses, with the capability to be 

adapted for use with other species.

IN BRIEF

Van Segbroeck et al. present open-access software that uses signal-processing techniques to 

perform rapid, unsupervised analysis of mouse ultrasonic vocalization repertoires, including 

unbiased syllable discovery, new metrics to compare syllable production and use, and syllable 

time-stamp enabling next-step behavioral analyses.
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INTRODUCTION

Vocalizations play a significant role in social communication across species (Bradbury and 

Vehrencamp, 2011). Although the complexity of communication varies considerably 

between vocal learning and innate vocalizing species, there is broad conservation of the use 

of frequency and amplitude modulation, multisyllabic patterns, and variable syllable 

durations and rates to signal caller identity, sex, intentionality, and affective state (Bradbury 

and Vehrencamp, 2011; Doupe and Kuhl, 1999; Fischer and Hammerschmidt, 2011; Sales 

and Pye, 1974). Auditory processing mechanisms for natural vocalizations also are broadly 

conserved across vocal learning and innate vocalizing species (Arriaga and Jarvis, 2013; 

Bennur et al., 2013; Woolley and Portfors, 2013). Studies of the underlying neurobiological 

basis and heritable nature of these mechanisms have identified promising genes and neural 

networks that support vocal production, auditory processing, and social communication 

(Arriaga et al., 2012; Konopka and Roberts, 2016).

Comparative analyses in mice serve as effective strategies to examine genetic and 

environmental factors that influence vocal communication (Fischer and Hammerschmidt, 

2011; Konopka and Roberts, 2016). Mice generate complex multisyllabic ultrasonic 

vocalizations (USVs, >25 kHz) throughout development and in diverse social and 

motivational contexts (Chabout et al., 2015; Liu et al., 2003; Portfors, 2007; Sewell, 1970). 

Mouse syllables are defined as units of sound that are composed of one or more notes and 

which are separated by silent pauses and occur as part of sequences (vocalization bouts) 

(Arriaga and Jarvis, 2013; Holy and Guo, 2005; Portfors, 2007; Scattoni et al., 2010). Mice 

generate a diversity of syllable types and a syllable repertoire is composed of the full 

collection of syllable types used by a specific mouse (or strain) in a particular condition. 

USVs support essential social behaviors across development (Chabout et al., 2012; 

Hammerschmidt et al., 2009; Hanson and Hurley, 2012; Holy and Guo, 2005; Pomerantz et 

al., 1983; Sales and Pye, 1974; Sewell, 1970). Although mice are innate vocalizers (Arriaga 

and Jarvis, 2013; Hammerschmidt et al., 2015; Mahrt et al., 2013), the acoustic structure 

(e.g., mean frequency, amplitude) and contextual use of their syllable repertoires varies 

considerably across genetic strains (Panksepp et al., 2007; Scattoni et al., 2010; Sugimoto et 

al., 2011; Thornton et al., 2005; Wohr et al., 2008), behavioral and social environments 

(Chabout et al., 2015; Chabout et al., 2016; Hanson and Hurley, 2012; Liu et al., 2003; Yang 

et al., 2013), and development (Grimsley et al., 2011; Liu et al., 2003). Understanding 

complex vocalization structure of mice will be key to advancing vocal and social 

communication research.

There is a rich history of efforts to assess the social meaning of USVs, yet despite evidence 

that they serve important communicative functions in mice, it remains unclear which 

acoustic features and types relate to specific biological states or affect social outcomes. To 

address the social meaning of USVs, the field has used syllable classification schemes, 

among the most popular being manual or semi-automated classification of syllables into ~9–

12 broad categories based on spectral shapes (e.g., chevron, upward, frequency-step) 

(Grimsley et al., 2011; Portfors, 2007; Scattoni et al., 2008; Scattoni et al., 2010), or 

classification into ~4–15 categories based on instantaneous changes in frequency within a 
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syllable (‘frequency jumps’) (Arriaga and Jarvis, 2013; Arriaga et al., 2012; Chabout et al., 

2015; Holy and Guo, 2005; Mahrt et al., 2013). Categorization based on cluster analyses has 

revealed potentially meaningful spectral features in different strains and experimental 

contexts (Grimsley et al., 2013; Hammerschmidt et al., 2012; Sugimoto et al., 2011; von 

Merten et al., 2014). Several automated and semi-automated software programs have been 

developed to rapidly measure USV features and apply specific syllable classification 

schemes [e.g., SASLab Pro (Avisoft Bioacoustics, Germany), Mouse Song Analyzer v1.3 

(MSA; (Arriaga et al., 2012; Chabout et al., 2015)], VoICE (Burkett et al., 2015)). Yet, there 

remains a lack of consensus on which classification schemes provide the best biological 

insights (Arriaga and Jarvis, 2013; Grimsley et al., 2013; von Merten et al., 2014), and 

indeed, the most informative spectro-temporal features may vary across genetic and 

environmental conditions. In our initial attempts to examine genetic and environmental 

factors that influence USV production and syllable repertoires in a large genetic reference 

panel (GRP) of recombinant inbred (RI) mouse strains, we encountered theoretical and 

technical challenges using current categorical approaches in large datasets (>500,000 

syllables). In particular, categorical (rule-based) syllable classification might not provide 

sufficient sensitivity to detect unique syllable types, which could have condition or strain-

specific meaning. In addition, no technique included important signal detection features 

(noise detection and removal, time-stamp) needed to facilitate processing of large volumes 

of recordings across conditions or laboratories and, ultimately, to determine if differences in 

syllable timing and type meaningfully relate to ongoing behaviors and behavioral transitions

—a long standing question in the field. One strategy to address these issues is the application 

of signal-processing methods used in human speech and language analysis (O’Grady and 

Pearlmutter, 2008; Ramanarayanan et al., 2013; Smaragdis, 2007; Van Segbroeck and Van 

hamme, 2009), providing a methodological balance between data-driven detection of 

recurring types and rapid data optimization and comparative analyses.

Here, we report a novel NeuroResouce, open access Mouse Ultrasonic Profile ExTraction 

(MUPET) software. This MATLAB® tool with graphical user interface (Figure S1) is 

inspired by human speech processing (Patterson et al., 1987; Valero and Alias, 2012) and 

uses a Gammatone filterbank to convert USVs into compact acoustic feature representations, 

or “GF-USVs” (Gammatone Filterbank Ultrasonic Vocalization features, see Results and 

STAR Methods). The latest version of MUPET, including a subset of the audio recordings 

described in this paper and an experimental tutorial, are available for download at http://

sail.usc.edu/mupet.

RESULTS

Using an automated and unsupervised algorithmic approach, MUPET has five core 

capabilities that enable it to detect, learn, and compare syllable types and repertoires: 1) 

syllable detection—the isolation and measurement of basic spectro-temporal syllable 

parameters, 2) acoustical dataset analysis—analysis of overall vocalization features, such as 

syllable number, rate and duration, spectral density and fundamental frequency, 3) syllable 

repertoire building—the extraction of up to several hundred of the most highly represented 

syllable types (“repertoire units”, RUs) in individual datasets using machine learning, 4) 

measures of syllable repertoire similarity—rank order comparisons of the similarity of 
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spectral types of individual RUs across datasets, and 5) RU-cluster analysis—a centroid-

based cluster analysis of RUs composing different dataset syllable repertoires in order to 

measure the frequency of use of different RUs (syllable types) across conditions.

MUPET builds syllable repertoires—a collection of different syllable types used by a 

specific mouse or strain under various experimental conditions—and compares them both 

independently, and as a function of, how frequently each syllable type is used. Syllables 

occur in patterned sequences (syntax) and communicative information in USVs is likely 

encoded through both syntax and several features of individual syllables, including mean 

frequency, amplitude, duration, and shape (Chabout et al., 2015; Holy and Guo, 2005; von 

Merten et al., 2014). A central feature of MUPET is to determine the specific syllable types 

that are present in mouse vocalization repertoires. The software accomplishes this by 

examining the entire frequency contour (slope, duration and frequency modulation of each 

note), but not as a function of fundamental frequency or amplitude. This is supported by 

evidence in humans and mice that syllables (phonemes) are the basic communicative units 

and that variations in fundamental frequency (intonation, prosody) and amplitude convey 

additional information about social motivation, mood, or genetic background (Adolphs et al., 

2002; Lahvis et al., 2011; Narayanan and Georgiou, 2013). MUPET provides users with 

spectro-temporal measures for each syllable and dataset (Figure S1). MUPET is designed to 

build separate syllable repertoires for each strain or condition, which are used for subsequent 

repertoire comparisons. This strategy increases the precision of syllable repertoire builds, 

which facilitates the accuracy of subsequent comparisons of vocal production and repertoire 

use across strains and behavioral conditions (see below).

The design features for MUPET are based on techniques commonly used in automated 

signal processing analyses of human speech (Bregman and Campbell, 1971; Gunawan and 

Ambikairajah, 2004; Johnson, 1997; Rabiner and Schafer, 2010; Smaragdis, 2007) and 

include 1) optimization of the signal-to-noise ratio (SNR) to enable detection of vocalization 

activity (Ramirez et al., 2007), 2) transformation of the original sound data into a more 

compact representation, which retains essential acoustic shape information and facilitates 

rapid analysis of large volumes of data (Davis and Mermelstein, 1980; Schluter et al., 2007; 

Shao et al., 2009), and 3) newly developed application of unsupervised machine learning 

algorithms to automatically identify recurring syllable types. Detailed descriptions of each 

step, and the rationale for using certain technical strategies are in STAR Methods.

1) Optimization of SNR

The quality of automated sound analyses depends critically upon optimization of SNR to 

maximize syllable (and minimize noise) detection. This process can be challenging in mice 

due to recording environments, and the high intrinsic variability in fundamental frequency, 

amplitude (energy), and syllable type, which is characteristic of their vocalizations. MUPET 

addresses these signal detection challenges by 1) high-pass filtering of the recordings to the 

ultrasonic range (25–125 kHz), 2) using spectral subtraction to remove the stationary noise 

in the recordings originating from background noise and recording equipment distortions 

(Martin, 2001; Van Segbroeck et al., 2013), and 3) computing the power of spectral energy 

in the ultrasonic range that exceeds a noise floor threshold (Yu Song et al., 2013). MUPET 
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provides the user the ability to select noise to be removed from the final analyses. Users also 

can control 6 key features of SNR optimization—noise reduction, minimum and maximum 

syllable duration, minimum total and peak syllable energy, and the minimum inter-syllable 

interval that is needed to separate rapidly successive notes into distinct syllables. As with all 

automated sound detection software, visual comparison of the sonograms generated by 

MUPET to the original spectrograms is an important initial step in defining optimal 

parameters. This step is aided by time-stamp information for each detected syllable, as well 

as by the ability to rapidly build and compare syllable repertoires using several SNR 

settings.

2) Transformation of sonograms into a computationally compact format

Mouse USVs are produced on millisecond time scales and are recorded using high sampling 

rates (e.g., 250 kHz), capturing the frequency and amplitude modulation. This high sampling 

rate generates a computationally dense, highly dimensional sonogram due to the high time-

frequency resolution. This high-dimensionality creates challenges for the application of 

unsupervised signal-processing approaches, which function by iteratively processing and 

reprocessing large datasets. Unsupervised data-driven analyses of human speech transform 

the spectral representation of speech into “low dimensional” features, which capture the 

spectral shape of the phonemes and maintain the key spectro-temporal features that are 

likely to hold the most communicative significance (Bertrand et al., 2008; Joder and 

Schuller, 2012; Van Segbroeck and Van hamme, 2009). This automated decomposition 

process involves using non-negative matrix factorization (NMF) (Lee and Seung, 2001) to 

identify a set of non-negative spectral bases (the fundamental computational units that 

compose the vocalization array) that optimally compress the data and eliminate redundancy 

in representing the amplitude and frequency modulation (Figure S2). These spectral bases 

(‘basis units’) act as a set of band-pass filters (‘filterbanks’) that can be used to represent the 

auditory spectrum with a smaller number of data points along the frequency axis. The 

biological relevance and perceptual fidelity of the transformed sounds is supported by 

studies showing that the spectral bases that decompose speech using NMF are highly similar 

to the human cochlea’s biological and perceptual time-frequency resolution (“auditory 

filters”) (Fletcher, 1940; Gelfand, 2009), as well as to perceptual scales, such as the Mel 

(Stevens et al., 1937) or Bark scales (Zwicker, 1961). These experiments in humans yield 

strong evidence that NMF decompositions retain the most salient and informative features of 

sound in biological contexts.

Here, we applied a similar strategy to generate perceptually filtered representations of mouse 

USVs by determining the spectral bases in which they can be decomposed. Briefly, the 

sonograms were first computed using a short-term Fourier transform (STFT) algorithm with 

an analysis window of 2 milliseconds that was shifted every 1.6 milliseconds and then 

normalized to unit energy to prevent the decomposition process from being dominated by 

high energy syllables. We then applied NMF on the normalized sonograms from all of the 

USV data, resulting in decomposition of the original high-resolution frequency contours into 

a sparse set of basis units comprised of narrow-width frequency bands along the ultrasonic 

frequency range in which mice vocalize (Figures 1 and S2). With this strategy, USV 

sonograms can be approximated by a weighted sum of the basis unit functions. Finding the 
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weights of each basis unit corresponds to applying a filterbank operation on the sonograms 

with the bases serving as band-pass filters. By applying a regression analysis on the base 

function’s peak frequencies, a logistic curve is obtained. The logistic curves (Figures 1A and 

S2) are derived for each mouse strain and are centered on the mean frequency (Gaussian fit 

line) of their power spectral density (PSD) functions (see below; Figures 4A and S3). The 

filterbank covers the ultrasonic range from 25 to 125 kHz and consists of a predefined 

number of band-pass filters (here 64), each modeled by a gammatone band-pass function 

(Figure 1B). Gammatone filters exploit psycho-acoustically defined properties of the human 

auditory system, such as spectral resolution along the frequency axis and inherent 

redundancy in the spectral envelope, to obtain a compact representation of salient acoustic 

cues that relate to distinctive speech sound units or phones. The band-pass filters are 

symmetrically distributed, with the frequency region containing the highest number of 

relevant auditory events (determined empirically) modeled by narrow bandwidth filters of 

increasing density (0.5–1 kHz). The upper and lower bounds of the mouse USV frequency 

range contain less acoustic content and are captured by a smaller number of wider 

bandwidth filters (2–4 kHz) (Figure 1A,B). Thus, the sonograms are spectrally transformed 

into low dimensional vector representations, Gammatone Filterbank USV features (GF-

USVs). The GF-USVs have the advantage of representing the mouse syllables with reduced 

dimensionality (here 64 frequency dimensions) and maintained saliency, facilitating further 

application of signal processing methods to model mouse vocalization repertoires. We show 

an example sonogram of 1.4 sec duration (Figure 1C) and the corresponding GF-USV 

representation (Figure 1D). Despite small differences in the ultrasonic NMF plots (Figure 

S2), we used a filterbank design (spacing and number of filters) that is equal for all mouse 

strains, to avoid bias in the GF-USV representation that can be attributed to different 

filterbank features.

3) Application of unbiased machine learning algorithms

MUPET uses k-means clustering to automatically learn the most recurring syllable types. As 

described above, the computationally compact GF-USV feature representation allows 

automatic and unsupervised grouping of large sets of recorded syllables based on spectral 

shape similarities. The basic analytic steps are summarized in Figure 2, with a detailed flow 

chart of processing steps and data files generated by MUPET shown in Figures 3 and S1. 

The ultrasonic recordings are first processed to detect the presence (non-presence) of 

syllable activity over time (Figure 2A, top panel) and the detected syllables are subsequently 

transformed into GF-USVs (Figure 2A, bottom panel) from which a three-dimensional 

tensor representation is constructed (Figure 2B). Each tensor image corresponds to exactly 

one syllable segmented from the audio stream using the time-stamp information provided by 

the syllable detector. To eliminate syllable groupings based on their position in the time-

frequency plane, all images of the syllable matrix are centered according to their 

corresponding spectral gravity center (i.e., centered in time and frequency). This allows 

syllable types to be compared without respect to mean frequency, but maintains comparisons 

based on syllable length. Next, k-means matrix clustering is done with the syllable matrix. 

The clustering is applied to the vectorized images and the cosine similarity is used as a 

distance function to measure the orientation between two vectors independent of their 

magnitude. This approach prevents the grouping of syllable units according to their 
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amplitude, instead focusing on spectral shape. The outcome of the matrix clustering method 

is a syllable repertoire composed of individual “repertoire units” (RUs) (Figure 2C), which 

are the centroids (average shapes; exemplars) of all the individual syllables that were 

grouped within a specific RU based on their shape similarity. During syllable repertoire 

refinement, the user selects RUs (representing noise) to be removed from the repertoire, 

dataset and syllable information files (Figures 2D and S1). The user then builds ‘final’ 

syllable repertoires of various sizes (20–200 RUs) from the refined datasets and selects an 

optimal repertoire size(s) based on repertoire modeling scores and RU goodness-of-fit 

measures (see below). After syllable repertoires have been constructed for different mouse 

strains or experimental conditions the similarity of spectral shapes of different RUs can be 

compared using Pearson correlation values, which are measured between the RUs of two 

different repertoires in a manner that is either independent of the frequency of use of each 

RU (‘Cross Repertoire Similarity Matrix’; Figure 2E) or dependent upon the frequency of 

use of each RU (‘Cross Repertoire Similarity Boxplot’; Figure 2F). Finally, the RUs 

identified across strains and conditions can be grouped based on shape similarity into a 

‘Master Repertoire’ using k-medoids clustering of RU centroids and ‘RU-cluster’ frequency 

of use compared across datasets to identify shared and unique shapes (Figure 2G).

Genetic influences on USV production

Our laboratory has an interest in understanding the environmental and heritable factors that 

contribute to heterogeneity in social communication. To demonstrate the utility of MUPET 

for rapid analysis of large datasets and identification of shared and strain-specific syllable 

types, we measured heterogeneity in USV production and syllable repertoires in 12 

genetically related adult mouse strains from the BXD GRP—the C57BL/6 (C57) and DBA/2 

(DBA) parental strains, the F1 cross (B6D2F1) and 9 RI offspring strains—during direct 

social interaction (DSI) with an unfamiliar juvenile male partner. We recorded USVs emitted 

by adult males (Figure 3), selecting BXD strains that showed moderate-to-high levels of 

vocalizations to maximize the number and diversity of syllable types analyzed. All USVs 

were produced by the adult males based on several lines of evidence from our analyses that 

juvenile males do not vocalize during this task (see STAR Methods). There is a 3.0-fold 

range in DSI and an 11.0-fold range in mean USV counts across the 12-strain panel (Figure 

3A,B). For both DSI and USV count, the F1 cross shows an intermediate phenotype 

compared to the parental strains, providing evidence of incomplete dominance. We note that 

DSI and USV count are positively correlated across the 12 strains (R2 = 0.62, P < 0.01).

Figure 3C depicts the ‘syllable repertoire analysis method’, which uses a combination of 

automated and manual steps. We compared the sonograms generated by MUPET to the 

original spectrographs and found that the default SNR settings provided optimal syllable 

detection, with minimal detection of noise (Figure 3C–E, steps 1–4). Using these settings, 

all detected events in the sonograms were automatically converted into GF-USVs and 

compiled into an initial (unrefined) dataset for each strain (Figure 3C, step 2). Datasets are 

available for export as CSV files (Figure S1). From the initial datasets we built repertoires of 

size 100 (or greater) for each strain (Figure 3C, step 3) in order to identify and remove RUs 

representing noise prior to final repertoire builds (Figure 3C, step 4; Figure S1). As a point 

Van Segbroeck et al. Page 7

Neuron. Author manuscript; available in PMC 2018 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of reference, the average time to process one 6-min .wav file is 30-sec, and repertoires can 

be built in less than 5 min.

MUPET generates several measures graphically (Figure 4). To determine the energy 

distribution along the frequency axis of the vocalizations, PSD is computed for each strain, 

normalized by the total power over all frequencies. The normalized PSD curves are fit well 

by a Gaussian distribution, defining an overall mean frequency and standard deviation for 

each strain (Figures 4A and S3). The mean frequency ranges from 65.5 to 95.1 kHz 

(F(11,229) = 4.87, P < 0.001; Figures 4A,B and S3). To derive meaningful statistics defining 

syllable bouts, we used syllable on- and offset times to define syllable duration, syllable rate, 

and inter-syllable interval (Figure 4C–E) for syllable bouts that contain less than 200 

milliseconds of silence. Bout length was determined empirically based on the value that 

eliminated bout-length outliers. When all syllable types generated by a strain are combined, 

only the mean frequency and frequency bandwidth show significant differences across 

strains. For all measures, the DBA and B6D2F1 strains appear more similar to each other 

than to the C57 strain, suggesting a dominant inheritance pattern.

Strain differences in syllable repertoires

The goal of the repertoire build step (Figure 3C, steps 5–6) is to learn the full diversity of 

syllable types within each dataset. MUPET builds syllable repertoires ranging in size from 

20 to 200 RUs, in increments of 20 units. In signal processing approaches, determining an 

optimal ‘build size’ is a tradeoff between minimizing model complexity (i.e., minimizing 

RU number) and maximizing model accuracy (i.e., maximizing Pearson correlations 

between the shape of individual syllables and their RU centroid). These choices depend 

upon the size of the dataset and the diversity of syllable types it contains. To aid the user in 

selecting an appropriate repertoire size, MUPET provides 4 measures of model strength for 

each repertoire size: 1) the Bayesian information criterion (BIC), which measures model 

accuracy as a function of model complexity, 2) the average log likelihood of the RU 

centroid measure, 3) the overall repertoire modeling score, which gives the global average 

of the normalized cosine distance between each syllable and its corresponding RU centroid, 

and 4) the RU goodness-of-fit, which provides the average Pearson correlation for all 

syllables within an RU to the RU-centroid. In step 5, the user builds repertoires of various 

sizes and then selects a range (or specific) repertoire size that minimizes BIC and maximizes 

the average log likelihood, overall repertoire modeling score, and RU goodness-of-fit across 

datasets. Note that the subsequent repertoire similarity and clustering steps require same-size 

repertoires across datasets. This is readily achievable for similarly sized datasets, as the 

combined modeling scores typically indicate a range of optimal repertoire sizes. Users can 

rapidly compare repertoires of several sizes to assess how different priorities (e.g., model 

accuracy vs. complexity) impact the repertoire similarity comparisons across datasets. To 

illustrate the use of the modeling measures in step 6, syllable repertoires of every size (20–

200) for each of the 12 strains were built. The modeling measures across strains are 

presented in Figure 5 and in Figure S4. Dataset sizes varied across strains and this affected 

the repertoire size needed to minimize BIC. For all strains, BIC was minimized at ~40 RUs 

with the exception of DBA/2 (the largest dataset; ~51,000 syllables), which had a minimal 

BIC at 140 RUs. Despite this gap in minimal BIC, the rate of increase in BIC with larger 
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repertoire sizes was modest for the 11 other datasets. Visual inspection of the BIC data 

suggested an optimal size of 100–140 RUs across strains (Figure 5A). We next inspected the 

average log likelihood and overall repertoire modeling scores, which are always maximal at 

the largest repertoire size due to the increase in shape correlations as model complexity 

increases (i.e., an RU containing a single syllable has syllable-to-RU centroid Pearson 

correlation of 1.0). Here again, the rate of change of these measures slows as repertoire size 

increases and inspection of the repertoire sizes past the inflection points suggested an 

optimal repertoire size of 100–140 RUs across strains, consistent with the BIC (Figure 5B–

C). These results are consistent with the RU goodness-of-fit measures, which also increase 

as a function of repertoire size, but improvement plateaus at 100–140 RUs across all strains 

(Figure 5D–F and S4). Finally, the number of RUs that contain a small number of syllables 

(e.g., <10) increases rapidly for repertoires larger than 140 (Figure S4) and this was used as 

an additional measure of model complexity. We performed subsequent comparisons with 

repertoires of size 100–140, with no substantive differences in the results (data not shown). 

Building larger repertoires will increase RU goodness-of-fit and maximize the ability to 

resolve rare syllable types, which otherwise may be condensed into spectrally impure units. 

Thus, selecting a suitable repertoire size also depends upon user goals. For clarity, we 

present the results for repertoires of size 100 generated during step 6 (Figure 5G–I and S5). 

Many of the RUs learned by the algorithm can be associated with one of the syllable 

categories reported previously (Arriaga et al., 2012; Grimsley et al., 2011; Scattoni et al., 

2008), but it is apparent that the algorithm is able to differentiate many forms of each 

canonical syllable (e.g., upward and chevron-shaped syllables with different slopes, 

durations, and magnitudes of frequency modulation). MUPET generates CSV files with 8 

spectro-temporal measures for each RU (Figure S1).

Repertoire comparison between mouse strains – 1) Cross Repertoire Similarity Matrix

To compare vocal production between syllable repertoires, in step 7 MUPET computes a 

Cross Repertoire Similarity Matrix of Pearson correlations (as well as the sorted syllable 

repertories, see below), which can be used for inspecting shape similarity between pairs of 

RUs. The algorithm generates the matrix by progressively pairing RUs with highest-to-

lowest shape similarity in descending order (Figure 6A, left panel). The algorithm performs 

this process by identifying the RU-pair with the highest Pearson correlation, which then 

occupies the first position of the matrix diagonal. Each RU is paired only once and the 

similarity of RU shapes is considered independently of how often the RU is used by each 

strain. MUPET generates new images of each repertoire with RUs sorted from high-to-low 

similarity. Visually inspecting the matrix diagonal and sorted repertories provides the user 

with an initial assessment of the most and least similar RU shapes between two distinct 

repertoires (Figure 6A, right panels; Figure S7). Because RUs are learned without respect to 

mean frequency, the similarity metric determined here does not take mean frequency into 

account. The spectral range of frequencies in which mice vocalize is measured during 

syllable detection and hence can be used as a separate metric when comparing syllable 

repertoires.
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Repertoire comparison between mouse strains – 2) Cross Repertoire Similarity Boxplot

In step 7, MUPET uses a boxplot representation to automatically display the similarity 

between a reference and to or more comparison repertoires as a function of how frequently 

each RU is used (Figures 6B,C and S6). The algorithm calculates the Pearson correlations 

for shape similarity for the top 5, 25, 50, 75 and 95% of most frequently produced RUs. 

Note that the repertoire similarity scores are not symmetric between the C57 and DBA 

reference repertoires (see boxplots in Figure 6B, C) due to the integration of RU activity. 

The boxplot can be used to rapidly assess and quantify overall repertoire similarity based on 

the 75% or 95% similarity scores, and the similarity of the most frequently produced units 

based on the 5% and 25% similarity scores. Upward (or downward) skew in the interquartile 

range with respect to the median indicates a repertoire in which the similarity scores change 

more considerably in the top (or bottom) half of most frequently produced RUs. In the same 

way, repertoires with large interquartile (or overall) ranges indicate repertories in which 

there are RUs that are both highly similar and dissimilar from the reference repertoire. In 

contrast, small interquartile (or overall) ranges, signal repertoires that are consistently 

similar (or dissimilar) from the reference repertoire, depending on their median similarity 

score. In comparison to the C57 repertoire (Figure 6B), the median similarity scores for the 

other strains range from 0.79 to 0.90. Examining the overall (95%) repertoire similarity 

scores reveals that BXD77 (0.86) and BXD43 (0.71) are the most highly similar and 

dissimilar to the C57 repertoire, respectively. The DBA and F1 cross have among the least 

similar repertories compared to C57 based on median similarity scores, yet all strains show 

similarity scores ≥0.9 for the top 5% of syllables (range 0.90–0.96), revealing that the most 

frequently used syllable types tend to be highly similar. To obtain summary statistics from 

activity-based Pearson correlations, MUPET generates repertoire comparison scores in 1% 

increments of RU activity (Figure S1). The average similarity of the 11 comparison strains 

to the C57 reference repertoire differs significantly (F(10,160) = 3.30, P < 0.001; one-way 

ANOVA across 11 strains; Figure 6B). To identify the strains with significant differences in 

repertoire similarly compared to the C57 strain, we determined the average similarity of 

replicate C57 studies (Figure 7) and used a 12-strain ANOVA with Dunnett’s post tests to 

compare the mean similarity of each strain to this hypothetical C57 comparison repertoire. 

The average similarity of replicate C57 studies (size 100) is 0.91 ± 0.03, with average 

similarly scores of 4 strains being significantly different: BXD48 (P < 0.001), DBA (P < 

0.01) and B6D2F1 and BXD16 (P < 0.05).

In comparison to the DBA reference repertoire (Figure 6C), the median similarity scores 

range from 0.88 to 0.92. Overall, the top 5% of most frequently produced RUs across strains 

are highly similar to the DBA reference repertoire (range: 0.91–0.98). Of all 11 strains, the 

overall B6D2F1 repertoire is most similar to the DBA repertoire, consistent with the high 

similarity between these strains for other vocalization features. The average similarity of the 

11 comparison strains to the DBA reference repertoire differs significantly across strains 

(F(10,158) = 2.80, P < 0.01; Figure 6C). As above, we determined the average similarity of 

replicate DBA studies (Figure 7) to be 0.94 ± 0.03 and used this value in a 12-strain 

ANOVA. Five strains have average similarly scores that are significantly different from the 

hypothetical DBA repertoire: C57 (P < 0.001), BXD48, BXD62 and BXD77 (P < 0.01) and 

BXD6 (P < 0.05). In addition, the boxplot comparisons reveal that the BXD48 repertoire is 

Van Segbroeck et al. Page 10

Neuron. Author manuscript; available in PMC 2018 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significantly different from both parental repertories, suggesting divergence from the 

parental strains.

The similarity metrics also provide an opportunity to assess syllable repertoire stability 

across studies or conditions. The C57 and DBA datasets were generated from recordings 

collected during 7 replicate studies performed with a C57 juvenile partner across 3 years. 

We also recorded vocalizations when the parental strains were paired with a juvenile male of 

a different genetic background (129S1). The Cross Repertoire Matrix and Boxplot similarity 

metrics were used to examine the similarity of syllable repertoires across studies. Four C57 

studies had a small number of vocalizations (<600). Thus, to avoid potential bias in 

similarity due to incomplete repertoire sampling, we only performed the comparisons with 

the 4 C57 studies (3 C57 partner, 1 129S1 partner) and 8 DBA studies, which had sufficient 

syllables (>1300) to build repertoires of size 80. Figure 7 shows the matrix diagonal with 

specific Pearson correlations for the combined-C57 and DBA datasets and individual studies 

generated with juvenile partners. Together with the boxplot comparisons, the analyses reveal 

that within each parental strain, there are no significant differences in syllable repertoire 

usage across replicate studies or across studies with different strain partners. The data are 

consistent with the hypothesis of a strong genetic influence on syllable repertoires (Arriaga 

and Jarvis, 2013; Hammerschmidt et al., 2015; Mahrt et al., 2013).

Master Repertoire: RU-cluster identification using k-medoid clustering across strains

A final level of analysis is to determine the proportion of similar and unique RU types 

present across datasets. To do so, MUPET uses k-medoids clustering to build master 

repertoires composed of RU-clusters, which are groups of RUs with similar shapes, learned 

from all the RUs present in different datasets. In step 8 (Figure 3C), the user determines the 

optimal master repertoire size, based on Pearson correlations for the shape similarity 

between the RUs and their RU-cluster, as well as data on the total number of RUs and 

syllables in each cluster. These data guide decisions on optimal master repertoire size. We 

note that RU-clusters containing a single RU will have a Pearson correlation of 1.0. We 

applied a k-medoids clustering on the combined set of 1200 RUs learned from the 

repertoires of each of the 12 strains (Figures 8 and S5). To illustrate the use of the Pearson 

correlations, in step 9 we built master repertoires from 5–100, in 5 unit increments. A master 

repertoire of size 45 (Figure 8B) maximizes the proportion of RU-clusters that have an 

average Pearson correlation greater than 0.8, yet minimizes the proportion of RU-clusters 

containing a relatively small number of RUs (5 or less out of a total of 1200 RUs; Figure 

8A). Master repertoire modeling can also be considered in terms of the proportion of RUs 

and syllables that are contained within RU-clusters with different levels of goodness-of-fit 

(Figure S8). The k-medoids clustering approach is similar to the k-means approach used 

during repertoire learning to identify and represent similar shapes, with the exception that 

the displayed unit representing the ‘RU-cluster’ is an actual RU from an individual dataset 

repertoire and not the mean (weighted combination) of multiple RUs. For example, the 

image shown for RU-cluster #28 from master repertoire size 45 (Figure 8B) is C57BL/6 RU 

#68 (see Figure 5G). Thus, the RU that is displayed is the cluster medoid and represents the 

shape of the RUs in the cluster. Medoid-based clustering was selected for this stage to avoid 

excessive blurring of the RU-cluster shapes, which could occur if the shapes of a relatively 
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small number of RUs were averaged. In this context, the Pearson correlations for the RU-

clusters provide an important indicator of goodness-of-fit. Nevertheless, there are possible 

limitations in the display of a single RU, rather than an RU average, in facilitating the 

interpretation of the overall type differences between RU-cluster categories.

We determined the ‘strain of origin’ of different RU-cluster types based on whether the RUs 

(and syllables) within the RU-cluster were: 1) shared by both parental strains, and could be 

present in offspring strains, 2) unique to one parental-strain, but could be present in 

offspring strains, and 3) unique to the offspring strains, meaning observed in the F1-cross or 

BXD offspring strains, but not in the parental strains. Thus, the emergence of unique syllable 

types in the F1 cross and BXD strains can be identified. Figure 8C shows the assignment of 

each of the RU-clusters to the strain of origin categories. Visual examination of the syllable 

types contained in the parental, F1 cross, and BXD strains of origin reveal a diversity of 

types, including chevrons, chevrons with tails (‘waves’, ‘complex’ calls) and chevrons with 

a low frequency base note, two-component calls, short and upward shapes. BXD16 

generated all the “Single BXD” RU-clusters shown in Figure 8C, revealing high repertoire 

diversity in this strain. Figure 8D–E summarize the distribution of syllable types as a 

function of the percentage of syllables (Figure 8D) and the percentage of RUs (Figure 8E) 

that are present within RU-clusters from each strain of origin. Examining the ‘Both Parental’ 

columns in Figure 8D–E reveals that for each offspring strain, a high proportion of syllables 

and RUs are contained within RU-clusters that include syllables from both parental strains. 

Here, BXD16 and BXD48 show the greatest syllable repertoire diversity, while BXD79 

shows the least. Future application of MUPET in studies in unrelated inbred and mutant 

strains, or under different social conditions, may reveal greater syllable diversity or all-or-

none patterns of syllable usage compared to a GRP, which tends to show continuous trait 

variation.

Comparison of selected software programs

MUPET is one of several software programs currently available to analyze mouse USVs. 

Each takes a different approach to syllable detection, classification, and repertoire 

comparison. To aid the user in selecting a program(s) that will best address their 

experimental questions and goals, Table 1 provides a summary of the theoretical approach, 

key design features, input and output materials, and the syllable and syllable repertoire 

analyses provided by three automated software programs: MUPET, MSA (Arriaga et al., 

2012; Holy and Guo, 2005), and VoICE (Burkett et al., 2015). Each program classifies 

syllables based on different criteria—MUPET employs unbiased discovery of hundreds of 

unnamed syllable patterns, while MSA and VoICE generate a smaller number of named 

categories based on pre-defined rules (Arriaga et al., 2012; Holy and Guo, 2005; Scattoni et 

al., 2010). MUPET and MSA are high-throughput and provide similar spectro-temporal 

measures for each syllable, while VoICE can be challenging to apply to very large datasets 

due to .wav file pre-processing requirements and manual classification steps, especially if 

vocalizations are highly variable. MUPET is the only tool to provide automated repertoire 

similarity comparisons and repertoire clustering for mouse vocalizations. MUPET is 

uniquely sensitive to novel syllable types and advances new signal detection features (noise 

removal, time-stamp), which will facilitate relating syllables types to behavior states and 
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transitions. Syntax analysis using separate software is advanced by MUPET and MSA, 

providing exportable files with syllable sequences and categories. We note that the large 

number of syllable types identified as RUs and RU-clusters by MUPET will require 

advanced sequence analysis approaches to analyze syntax. MSA provides an option of 

generating 4–15 syllable categories, enabling a simplified syntax analysis that has been used 

successfully to identify syntactical changes across conditions and strains (Chabout et al., 

2015; Chabout et al., 2016).

Comparison of data analyzed with MSA and MUPET

Using MUPET and MSA, we analyzed three large, open source datasets (Chabout et al., 

2015) available on mouseTube (Torquet et al., 2016). We reanalyzed syllable features and 

repertoires from recordings of sexually-experienced B6D2F1 males vocalizing in response 

to female urine (UR), an anesthetized female (AF), and awake female (FE). MUPET and 

MSA generated similar syllable counts and spectro-temporal measures of individual 

syllables (data not shown). There was a high degree of similarity between dataset measures 

for each condition and those generated from our study of B6D2F1 males vocalizing in 

response to a juvenile male [e.g., PSDs are diverse in the panel (Figure 4), but were highly 

similar across B6D2F1 conditions; data not shown]. MSA classified syllables into 4-

categories: 1) simple (S)—syllables composed of a single note, 2) up-jump (U) or 3) down-

jump (D)—syllables containing one frequency jump in the up or down direction, and 4) 

multiple (M)—syllables containing more than one frequency jump. Chabout and colleagues 

found that males generate simpler syllables in response to an awake female compared to 

more complex (M and D) syllables in response to female urine, with the following category 

breakdowns: UR: 65% S, 17% M, 16% D, and 2% U; AF: 83% S, 4% M, 9% D, 4% U; FE: 

80% S, 7% M, 10% D, 3% U. The syllable repertoires built by MUPET for each social 

condition reveals readily apparent differences in syllable types and frequency of use (Figure 

S9). MUPET is unique in enabling the user to visualize the full diversity of syllable types 

composing the repertoire. Figure S10 quantifies these differences using the Cross Repertoire 

Matrix and Boxplot similarity metrics, with both showing that the UR and FE repertoires are 

least similar and the AF repertoire is highly similar to both the UR and FE repertoires. These 

data corroborate the increased repertoire complexity in the UR condition and provide new 

evidence that the AF repertoire, in which the female is present, but unresponsive, is 

intermediate in complexity to the UR and FE conditions. MUPET enables the user to 

visualize similar and dissimilar syllable types between each condition in the sorted 

repertoires generated with the matrix diagonal. To further identify shared and unique RU 

types across repertoires we created a master repertoire of 35 RU-clusters (Figure S11). 

Analysis reveals that 100% of the FE repertoire contains syllable types that are also present 

in the UR and AF conditions, while only ~91% of the AF and ~71% of the UR repertoires 

are shared across conditions. MUPET also shows syllable shapes composing the non-shared 

portions of the AF and UR repertoires, revealing that there is an increased number of 

syllables whose frequency is highly modulated (large-bandwidth), including chevrons (e.g., 

RU-cluster 7), continuous upward notes (e.g., RU-cluster 14), and chevrons with a lower 

frequency base note (e.g., RU-cluster 1). Neither the 4-category classification scheme nor 

the criteria described in Scattoni et al., 2010 would reveal differences in the types of 

chevrons used (e.g., compare RU-cluster 31 and 26 in the shared condition to RU-cluster 7 
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in the UR condition), missing the opportunity to identify both the diversity of syllable types 

that are altered in different social conditions as well as the specific ways in which they are 

altered (e.g., altered levels of frequency modulation). Analysis with MUPET thus provides 

increased sensitivity to detect changes in syllable repertoires across strains or conditions.

DISCUSSION

MUPET software was developed as an open-access tool to provide advanced capabilities to 

generate and analyze mouse syllable repertoires. The software uses signal processing 

approaches similar to those applied to human speech (Rabiner and Schafer, 2010), including 

SNR optimization, filterbank-based transformation of sonograms into low-dimensional 

(compact) feature representations (GF-USVs), and machine learning algorithms to extract 

recurring syllable types. MUPET provides the ability to remove RUs learned from noise and 

rapidly generate spectro-temporal measures for syllables and datasets, such as amplitude, 

mean frequency, duration, and syllable rate, which may hold salient communicative 

information. MUPET also employs new repertoire similarity metrics and centroid-based 

clustering of RUs to assess differences in vocal production and repertoire use across strains 

and conditions. This combination of features makes MUPET well-suited for the efficient 

comparison of syllable types extracted from large datasets. In humans, these signal 

processing approaches have related subtle differences in vocal production (e.g., cadence, 

intonation) to underlying differences in emotionality and intention (Narayanan and 

Georgiou, 2013). This has not been readily attainable in mice. MUPET identifies subtle 

variations in syllable production and use, enabling the investigation of the communicative 

signification of shape variations and the influence of genetic factors and behavioral states on 

patterns of communication. The automated time-stamp feature of MUPET establishes a 

means for relating communication patterns to behavioral status across time. These have been 

long-standing goals (Grimsley et al., 2011; Holy and Guo, 2005; Lahvis et al., 2011; Sewell, 

1970). While not done here, MUPET also has the capability to be adapted for analysis of 

vocalizations of species with different frequency ranges by deriving species-specific 

filterbanks that optimally represent the spectral information in syllables and updating 

software algorithms (see STAR Methods). Finally, as an open access software platform, the 

scientific community can contribute additions and improvements to MUPET’s analytical 

capabilities.

MUPET advances data-driven syllable repertoire construction and analysis

A key feature of MUPET is the ability to automatically learn and compare the recurring 

syllable types (RUs) that are present in datasets containing thousands of syllables. Given the 

signal processing approach used by MUPET, the results depend upon three elements of the 

datasets: 1) number of syllables used to train the algorithm, 2) size of the repertoire build, 

and 3) size of the master repertoire build (RU-clustering). Because of the unbiased approach 

to developing the repertoire, MUPET is leveraged most effectively when trained with a 

modest-to-large number of syllables, which enables the software to learn the shapes of 

common and rare syllable types. For each experiment, determining the number of required 

syllables to build an accurate repertoire will depend upon the diversity of syllable production 

in the mouse strains and behavioral conditions being analyzed. MUPET provides four 
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repertoire modeling scores, which enable the user to select repertoire size(s) that balance 

model complexity and accuracy. It is important to note that the algorithm will extract the 

specified number of RUs. Thus, if a repertoire consisted solely of one syllable type (e.g., 

chevrons), MUPET will extract hundreds of examples of chevrons from the dataset, which 

may differ in specific parameters, such as duration and shape. Here, the repertoire modeling 

scores aid the user in assessing the number of RUs needed to capture the full diversity of 

syllables types, and in this example, would likely support a smaller repertoire build. 

Determining the biological distinguishability and significance of separate, but visually 

similar, RUs and RU-clusters is a high priority for future work and will be aided by 

psychophysical and behavioral experiments assessing the perceptual discrimination and 

social significance of different RUs and RU-clusters and overall repertoire variations.

An additional feature of MUPET is that the efficiency of automated analysis allows users to 

assess the precision of a syllable repertoire (convergence upon the true “strain” syllable 

repertoire in terms of syllable types and use) by empirically resampling the dataset and 

determining the number of syllables needed to obtain stable repertoire similarity metrics and 

RU-clusters. In doing this, we found that DBA and C57 master repertoires that were built 

from ~7K (C57) and ~50K (DBA) total syllables recorded across 7 separate studies were 

highly similar to the repertoires built from the analyses of the individual studies that 

contained only 1.3–12K syllables, suggesting a lower limit of ~1.3–4K syllables to obtain 

accurate strain repertoires (Figure 7). This is a modest number of syllables, given that the 

builds are typically based on multiple recordings from a particular strain. Additionally, mice 

typically produce hundreds of syllables per minute during DSI with a juvenile male, and 

even more when paired with an estrous female or during isolation distress. We note that 

MUPET also is useful for rapid assessment of types present in smaller datasets (or even 

from single mice) using smaller repertoire builds.

Analysis of a genetic reference panel highlights MUPET’s features

The present study analyzed syllable repertories from a subset of high vocalizing strains from 

the BXD RI mouse panel, which share various combinations of C57 and DBA genomes. The 

analyses provide evidence of heterogeneity in syllable production and use across the panel 

and confirm genetic regulation of syllable repertoires in the parental stains. We used two 

novel similarity metrics to measure the overall similarity of spectral shapes between 

repertoires, both dependent upon (and independent of) the frequency of RU use. Based on 

the RU-cluster analyses, we observed RU types that were 1) shared—observed in both 

parental strains and could be present in offspring strains, 2) unique to a parental-strain—

observed in only one parental strain, but could be present in offspring strains, and 3) unique 

to the offspring strains—observed in the F1-cross or BXD offspring lines, but not in the 

parental strains. There was a high degree of repertoire similarity across replicate studies of 

the DBA and C57 strains, as well as when parental strains were paired with a C57 versus a 

129S1 juvenile partner. The findings indicate that strain genetics of the adult is an important 

determinant of USV syllable type. The study design using RI strains allowed us to further 

assess the genetic architecture of vocalization in the F1 cross. We found that all parameters 

were most similar to the DBA parental strain, consistent with vocalization parameters being 

driven by DBA alleles in the F1 cross. We also observed a high degree of syllable repertoire 
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similarity between sexually-naïve F1 males paired with juvenile males in the present study 

and with sexually-experienced F1 males paired with female stimuli in Chabout et al., 2015, 

but with quantifiable differences for each of these social conditions (data not shown). These 

findings are consistent with growing evidence that mouse vocal communication is under 

strong genetic control (Hammerschmidt et al., 2012; Kikusui et al., 2011; Mahrt et al., 

2013). The scalability of MUPET will enable complex analyses of syllable production and 

use in different behavioral contexts and strains, providing a new tool to address the 

biological significance of vocalization differences.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Pat Levitt (plevitt@med.usc.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—We examined heterogeneity in mouse ultrasonic vocalization (USV) repertoires 

using a subset of 12 strains from the BXD genetic reference panel: C57BL/6 (C57) and 

DBA/2 (DBA) parental strains, F1 cross (B6D2F1), and 9 recombinant inbred offspring 

strains (BXD6, 16, 29, 42, 43, 48, 62, 77, and 79) (Peirce et al., 2004; Taylor et al., 1977; 

Taylor et al., 1999). Adult experimental mice were obtained from The Jackson Laboratory 

(Bar Harbor, ME) at 7–10 weeks of age and allowed to acclimate to the facility for 2–4 

weeks prior to testing. Juvenile males were bred in house from breeders obtained from The 

Jackson Laboratory. To determine whether the genetic background of the juvenile partner 

influences syllable production or use, in separate studies we examined USVs generated by 

the parental strains during interaction with C57 or 129S1/SvImJ (129S1) juvenile males. 

Experimental mice were housed in same strain pairs and juvenile partner mice were group-

housed (2–3/cage) following weaning at P21. Mice were maintained on a 12-hour light/dark 

cycle (lights on 6:00 A.M. to 6:00 P.M.) with ad libitum access to food and water, except 

during testing, and behavioral tests were conducted during the light cycle (between 8:00 

A.M. and 5:00 P.M.). All procedures were approved by the Institutional Animal Care and 

Use Committee of the University of Southern California and conformed to National 

Institutes of Health guidelines. As part of a larger study of the BXD genetic reference panel, 

8 cohorts of C57 and DBA parental strains (n=10/cohort) were tested across 3 years, 

providing an opportunity to examine the stability of USV repertoires across cohorts.

METHOD DETAILS

Detailed methods for the mouse USV studies and the development and implementation of 

MUPET are provided below. Our rationale for selecting specific signal processing methods 

and analysis strategies used by MUPET are described in detail after the methods.

Direct social interaction task: Affiliative social interaction and vocal communication were 

assessed using a direct social interaction (DSI) task with synchronous USV recording. In 

this task, adult experimental mice were acclimated to the testing chamber (30 × 19 × 19 cm, 

L × W × H; transparent polycarbonate) for 10-min and then allowed to freely interact with 
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an unfamiliar juvenile male for 6-min. Juvenile males (P26–P30) were used in order to 

minimize aggressive and sexual behaviors. Interaction sessions were video-taped and 

vocalizations were recorded using a CM16/CMPA ultrasound microphone, positioned 16 cm 

above the chamber floor, and an UltraSoundGate 116H recorder (Avisoft Bioacoustics). 

Videos were scored for the duration and frequency of sniffing the juvenile, self-grooming, 

aggression and sexual behavior using MOOSES Observation software (Jon Tapp, Vanderbilt 

Kennedy Center). For all strains the nature of the interaction was affiliative and contained 

negligible levels of aggression or sexual behavior. All USVs were attributed to the adult 

(experimental) male based on several lines of evidence that juvenile males do not vocalize 

during this task: 1) we did not observe overlapping vocalization streams, consistent with a 

single vocalizer, 2) vocalizations were highly synchronous with adult sniffing of the 

juvenile, 3) we observed broad heterogeneity in the number of USVs generated by different 

BXD strains, but consistent levels within a strain, despite all strains being paired with a C57 

juvenile, and 4) MUPET provided evidence of distinct syllable types, which were driven by 

the identity of the experimental strain, rather than the genetic identity of the juvenile.

Audio pre-processing: MUPET automatically performs all pre-processing of audio files and 

currently supports .wav file formats. Audio files were each 6-min in duration and collected 

at a sampling rate of 250 kHz. MUPET can be used to analyze files of any length and with 

sampling rates larger than 90 kHz. All analyses in this study were performed using 

MATLAB® version 14b on a Macbook Pro running OS X Yosemite (2.5 GHz Intel Core i5 

processor, 8 GB 1600 MHz DDR3 memory). The audio files are first high-pass filtered using 

an 8th order Chebychev filter with a 25 kHz corner frequency in order to extract the 

ultrasonic frequency range. MUPET generates the sonograms by calculating the power 

spectrum on Hamming windowed data using a frame size of 500 samples (2 msec) and a 

frame shift of 400 samples (1.6 msec). The spectra are computed using a 512-point STFT 

algorithm resulting in a frequency resolution of ~0.5 kHz. The parameter settings were 

selected empirically to optimize the trade-off between time and frequency resolution. For 

subsequent feature analysis, background noise reduction was performed on the sonogram by 

spectrally subtracting the noise floor spectrum computed over the ultrasonic frequency 

range. The user can modify the degree of noise subtraction to a desired trade-off between 

minimizing the number of noise events and enabling the detection of faint syllables. All 

analyses were performed using the default SNR settings in MUPET (Noise-reduction, 5.0 

[scale 0–10]; Minimum syllable duration, 8.0 msec; Maximum syllable duration, 200 msec; 

Minimum syllable total energy −15 dB; Minimum syllable peak amplitude −25 dB and 

Minimum syllable distance [hold-time], 5.0 msec).

Gammatone filterbank: Non-negative matrix factorization (NMF) decomposes the spectral 

data of the USVs into basis units from which meaningful information can be derived about 

the acoustic production of mouse syllables, which is likely related to their auditory acuity 

(Ehret and Haack, 1982; Holmstrom et al., 2010; Neilans et al., 2014) (Figure S2). This 

strategy has been used in a similar fashion to find optimal decompositions for the analysis of 

human speech (Stevens et al., 1937; Zwicker, 1961). The time-frequency representation of 

mouse vocalizations can be interpreted as a superposition of narrow frequency bands at 

different spectral energy. To find the frequency band decomposition we applied NMF (Lee 
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and Seung, 2001) on the sonograms. At each frame of the sonogram the spectral vectors are 

normalized to obtain unit energy. By concatenating all spectral vectors over all available data 

from a given mouse strain, a matrix V is constructed of dimension N × T, where N is the 

number of frequency bins and T is the total number of frames in the audio file. By applying 

NMF on V, and by enforcing non-negative constraints on all matrices, the matrix is 

approximated by

V ≈ WH subject to D (V‖WH) (1)

with D(V‖WH) = ∑i j Ci j log
Ci j

(WH)i j
− Ci j + (WH)i j (2)

The Kullback-Leibler divergence criterion is used as a cost function to address the high 

dynamic range of syllable amplitude across frequencies, thus normalizing frequency data 

independent of amplitude. The factorization corresponds to a linear combination of basis 

spectra that characterize the recordings and which are found in the columns of W, while the 

corresponding rows of H contains activation values of these spectra. The number of basis 

spectra N is a design parameter of the algorithm and is a trade-off between obtaining an 

accurate frequency resolution per frequency band and finding multiple base spectra 

modeling the same frequency band. We found that a good choice for N is 64 to capture the 

most relevant acoustic information along the frequency axis while minimizing the number of 

frequency filters. The value of N defines the dimensionality of the Gammatone feature 

representation and permits the computational feasibility of subsequent signal processing 

analysis. Figure S2 shows the outcome of this approach applied on audio recordings from 

several mouse strains after sorting the base functions according to peak frequency. 

Regression analysis on the base function’s peak frequencies produces a logistic curve 

(Figure 1A, S2), which converts the peak frequencies f in the ultrasonic range into the 

Gammotone filterbank scale:

n = N

1 + e
−γ( f 0 − f ) with γ = 2α/fs . (2)

Here, fs is the sampling frequency and N corresponds to the chosen number of filters in the 

filterbank. The midpoint frequency f0 and the slope variable α were derived by regression 

analysis applied on the basis spectra spanned by the columns of W of the NMF algorithm: f0 

= 68.5kHz and α = 16.2. From equation (2) we can derive the center frequencies fn of the 

Gammatone scale filterbank. The associated equivalent rectangular bandwidth (ERB) of 

each nth Gammatone filter is set equal to:
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ERB(n) = 1
2 ( f n − 1 − f n) . (3)

The filterbank integration of the USV sonograms represents the USVs in the spectral domain 

as a weighted linear combination of the band-pass filter functions. The weights of each 

function relate to the spectral magnitude associated with the corresponding filter. This 

mathematical model also resembles the task of an auditory filterbank operation. To smooth 

out frequency peak energies of the filterbank outputs, additional post-processing was 

performed by applying an autoregressive moving average (ARMA) filtering on the filterbank 

integrated spectra. The resulting feature representation is the Gammatone Filterbank USV 

feature (GF-USV). Calculation of minimum, maximum, starting and ending frequency is 

done by selecting the minimum and maximum Gammatone filter (out of 64) and then 

searching for these features in the corresponding frequency band. Based on evidence that the 

parental and BXD strains vocalize at a similar mean frequency, and to avoid biases in shape 

extraction that could be caused by using filters with different resolution across the ultrasonic 

range, we conducted all analyses with the same filterbank. While MUPET is readily 

applicable to the analysis of vocalizations from other developmental ages of mice, or other 

species that vocalize in the ultrasonic range, one needs to establish an optimal filterbank for 

new species and possibly for aged or developing mice (see below).

Clustering methods for repertoire learning: The first step in the syllable repertoire 

building approach is the segmentation of the audio recordings into individual syllables. To 

this end, we applied the syllable activity detector to find the beginning and ending time for 

each syllable. Each segmented window was transformed into the GF-USV feature 

representation and padded until a window length of 200 milliseconds, which corresponds to 

the maximum syllable duration. These window-extended patches are subsequently 

centralized in both time and frequency. The latter step is required to constrain the clustering 

of the syllables primarily to their spectral shape. We apply image clustering on the 

vectorized images of these centralized time-frequency shapes by means of k-means 

clustering. This is accomplished by determining the cosine distance between two vectorized 

images. The outcome of the repertoire machine learning algorithm is a set of cluster 

centroids. The time-frequency representations of the centroids are repertoire units (RUs) that 

represent the population based on the cluster analysis and compose the syllable repertoire. 

To address the problem of finding an optimal repertoire size, we used the Bayesian 

Information Criterion (BIC), average log likelihood, overall repertoire modeling score, and 

RU goodness-of-fit measures that are generated for each repertoire size (see Results). In 

addition to repertoire learning, MUPET allows the user to further refine the repertoires by 

removing undesired units, e.g. units that model noise events. Repertoire refinement involves 

deleting the RUs that correspond to the undesired clusters from the dataset and regenerating 

the repertoire using only the desired units as cluster centroids to initialize the k-means 

clustering. To compare the frequency of use of similar and unique RU types across multiple 

datasets, MUPET uses k-medoids clustering to generate ‘master’ repertoires, which are 

smaller numbers of RU-clusters identified from the total number of dataset RUs. Each unit 

of the master repertoire therefore represents a group of spectrally similar RUs (RU-clusters) 
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from the individual datasets. MUPET generates RU-cluster goodness-of-fit measures to aid 

the user in selecting an optimal master repertoire size(s) (see Results).

Use of MUPET with other species: In the current version of MUPET, we have derived a 

filterbank that optimally represents the spectral information in mouse syllables (see Results 
for a summary of the specific processing steps). For users that are interested in using 

MUPET with other species we recommend the following strategy: 1) Determine the 

vocalization frequency range and call duration and rate for the species. Any knowledge 

about species-specific vocal production mechanisms can inform choices for analyzing the 

vocalization properties such as overall frequency ranges and temporal patterning of sounds 

produced. The duration of each vocalization will determine the analysis time window. For 

mouse USVs, we used a STFT algorithm of 512 bins to derive the sonograms and Hamming 

windowed frames with an approximate overlap of 75% of the frame length. 2) In the next 

step, the user needs to estimate the spectral bands into which this sonographic representation 

can be decomposed. In our work, we have used NMF to decompose the sonograms into 64 

spectral base functions. Each base function is characterized by a peak frequency and a 

frequency band, and can be approximated by a gammatone band-pass function centered 

around the peak frequency with an equivalent rectangular bandwidth (ERB) (see STAR 
Methods, Gammatone filterbank). To uniquely derive a filterbank for a new species, we 

advise applying the NMF algorithm to sonograms from large numbers of clean audio 

recordings (i.e. several hours of recordings with thousands of vocalizations). This ensures 

that all possible calls and associated spectral shapes are represented and ensures that the 

spectral base functions retrieved from the NMF algorithm will represent well the full 

spectral range of vocalizations expected from the new species. 3) The final step in uniquely 

defining the filterbank is to construct a mathematical function that analytically describes the 

center frequencies of the gammatone filters of the filterbank. This function corresponds to 

the best fitting line that connects the peak frequencies of NMF base functions. One can 

derive the function formula either empirically or by using regression tools. Users may 

contact the authors to facilitate derivation of the new filterbank and for support analyzing the 

vocalizations of different species in MUPET.

Comments on MUPET design features

NMF strategy: When NMF is applied to the spectrogram of speech signals, the NMF base 

functions resemble the individual filter response of the perceptual filterbank (see Smaragdis, 

2007). Most speech processing applications primarily rely on speech filtered by this 

filterbank in the pre-processing steps as it easily allows software to discriminate, categorize 

and recognize difference between phones (e.g. for machine speech recognition, speaker 

verification). We opted for a similar strategy when processing the mouse USVs, that is, to 

apply NMF on the sonograms of USVs to estimate a filterbank that optimally extracts the 

spectro-temporal information. We observed that the peak frequencies of the base functions 

resembled a sigmoid shaped function, which could be controlled by two variables: the 

midpoint frequency and the slope. The midpoint frequencies can physically be interpreted as 

the center frequencies of the vocalization, while the slope characterizes the frequency 

sensitivity of the acoustical information in the USV band in which the mice vocalize. There 

are two major reasons why a model fit using low-order polynomials will not work well for 
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MUPET. Whereas some calls are simple in structure (e.g., syllables comprised of single 

notes), and thus can be accurately modeled by low-order polynomials, others are complex 

(e.g., harmonic and multi-note syllables), and need to be modeled by either high-order or 

multiple polynomials. Therefore, it would not be possible to accurately describe the wide 

variety of syllable types with low-order polynomials. Secondly, polynomial based 

representations do not easily lend themselves to call clustering and repertoire generation. In 

contrast to the feature based representation, which is obtained by the gammatone-scaled 

spectral filtering and can be clustered using standard pattern classification methods, 

clustering of polynomials requires clustering strategies that rely on heuristics and are not 

generalizable.

We also refer readers to work in which a similar strategy was followed for human speech 

(and other audio) signals (Bertrand et al., 2008; Smaragdis, 2007). We are not aware of any 

other alternatives than NMF to extract the spectro-temporal patterns in an unsupervised 

manner, due to the non-negative constraint that is enforced on the data, as opposed to PCA 

or ICA based methods. We have reviewed more recent approaches that involved 

Convolutional Neural Network and Autoencoder that are able to extract base functions 

similar to NMF, but these involve supervised methods, i.e. syllable labels. Thus, we believe 

NMF on GF-USVs is an ideal choice for MUPET.

Use of NMF Loadings: The loading matrix that emerges from the factorization shows the 

activation of the NMF bases along the frequency axis for each time frame. The difference 

between the scree plots of the activations and the outputs produced by the Gammatone-

filterbank is that the NMF has been applied on the matrix V, which contains spectral frames 

that are normalized to unit energy (see STAR Methods, Gammatone filterbank). Hence, 

the loadings do not contain any information regarding the energy distribution. Loadings are 

not used directly to prevent variability in the generated filterbank. The NMF should be 

applied offline and independent of the dataset to be processed. The pre-computed NMF on a 

large dataset of various mouse calls produces a mathematical formulation that well 

represents the more general USV spectrum of mouse vocalizations.

Filter number and bandwidth: The design strategy in MUPET to use GF-USVs resulted 

from an objective trade-off between optimally representing the spectral shape of the 

syllables, while minimizing computational complexity. From our experiments in the 

MUPET framework, and given the redundancy present in the acoustic representations, we 

found that USV spectral details are well preserved for values above 32 filters. In the 

software, we conservatively set the number of filters to double this value (64), at the cost of 

more computational requirements that are needed to process the data in later stages (e.g., 

repertoire generation and comparisons). Using a fixed bandwidth with an increased number 

of filters also works in MUPET. However, there are two reasons why the use of a 64-

component filterbank with variable bandwidth filters is optimal. The NMF algorithm 

estimates base functions with different bandwidth across the ultrasonic spectrum. This 

suggests that in the frequency regions where the bandwidth is higher, we need less 

information to characterize the syllable shapes. Thus, variable bandwidth filters enable one 

to represent the same amount of information with a smaller number of feature components. 
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This design feature reduces the computational requirements without sacrificing accuracy. 

Another benefit comes from the higher spectral resolution in the frequency regions where 

most information is present, i.e. in the regions proximate to the mid-frequency. The 

gammatone-spectral representation with variable bandwidth filters exploits this behavior by 

assigning more feature components to these regions. This has a positive impact on syllable 

clustering and repertoire generation, because the most relevant spectral regions receive a 

higher weight in the decision making process.

Power spectral density: The Gaussian fit for the PSD is an approximation that is designed 

to provide an estimate of the frequency bandwidth, but not to optimally model the PSD (i.e., 

in some cases, two or more Gaussian curves would yield a better model for the PSD). Here, 

the use of a single Gaussian adequately estimates the frequency bandwidth and allows for an 

objective comparison between different datasets.

Selecting a repertoire build size: The k-means algorithm is designed to find a good fit 

within clusters, and high distance between them, by means of solving the Expectation 

Maximization problem and the distance function of choice. Picking a suitable repertoire size 

remains a user-defined step (guided by goodness-of-fit metrics) due to the nature of solving 

an unsupervised clustering problem. The lack of a priori knowledge of how many different 

syllable types are present in a dataset limits the ability to objectively measure the accuracy 

of the clustering or to train a supervised (more accurate) model. While there is no better 

method currently available to determine repertoire sizes, we expect that additions from open 

source users of the current version of MUPET, and our own efforts, will facilitate 

improvements in the labeling task and clustering methods.

Clustering approach: There are different categories of clustering techniques such as 

hierarchical, agglomerative, Bayesian and partitional clustering (to which k-means belongs). 

Hierarchical clustering is very slow on large datasets and makes this computationally 

(O(2^n)) intractable. Bayesian clustering on the other hand requires labels available for 

some data of the training datasets to generate a posteriori distribution over the data. These 

labels (knowledge of different syllable types present) are not available when clustering the 

USV syllables, which leaves the option of a partitional clustering method. From the different 

methods available in partitional clustering, MUPET utilizes the k-means algorithm due to its 

popularity of usage and its efficient and easy to understand implementation. We have further 

modified the k-means distance criterion by a cosine distance function to ensure syllables are 

clustered based on their space, and not their energy or amplitude (as would be the case with 

the conventional Euclidean distance function). There are limitations of k-means clustering, 

and of other clustering methods. MUPET will become fully automated with future efforts to 

advance the clustering steps and empirically define the distance between clusters.

QUANTIFICATION AND STATISTICAL ANAYSIS

Statistical Analyses—Data are presented as the mean ± SEM unless otherwise noted 

Differences in the means of three or more groups were tested using one-way analysis of 

variance (ANOVA) followed by Dunnett’s post hoc tests.
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DATA AND SOFTWARE AVAILABILITY

The latest version of MUPET, including a subset of the audio recordings described in this 

paper and an experimental tutorial, are available for download at http://sail.usc.edu/mupet

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Open-access software automatically generates mouse vocalization repertoires.

• New similarity metrics enable comparisons of syllable production and use.

• MUPET compares syllable repertoires across mouse strains and social 

conditions.
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Figure 1. Generating perceptually filtered representations of mouse USVs
(A) Frequency warping curve with a logistic shape, illustrating the 64 gammatone filters (X-

axis), corresponding mouse ultrasonic vocalization frequencies (blue line; left Y-axis) and 

gammatone filter bandwidths (gray line; right Y-axis).

(B) Gammatone filterbank composed of 64 band-pass filters. Each filter is modeled by a 

gamma distribution function, where the center frequency and bandwidth of the gammatone 

impulse responses are derived from the frequency warping curve. The band-pass filters are 

symmetrically distributed, with the frequency region containing the highest number of 

auditory events modeled by narrow filters and the upper and lower bounds of the mouse 

USV frequency range modeled by a smaller number of wider filters. For clarity, the image 

shows 32 filters, with example band-pass filters highlighted in blue.

(C) Sonogram showing frequency versus time for a 1.4 sec excerpt of USVs from a DBA/2 

mouse recording.

(D) Gammatone Filterbank USV feature (GF-USV) representations of the sonogram in C, 

obtained from the 64-channel Gammatone filterbank. The plot illustrates how the filterbank 

captures the salient spectral features of the USVs. The reduced dimensionality of the GF-

USV representation facilitates subsequent signal processing by lowering the computational 

requirements.
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Figure 2. Computational framework for syllable repertoire learning and repertoire analysis 
functions
(A) The mouse USV recordings are loaded into MUPET and the syllable detector segments 

individual syllables by measuring the power spectrum (black lines) in the ultrasonic range 

and comparing it with a noise threshold. The regions of vocalized activity/non-activity (red 

boxes; top panel) are used to extract the syllable types from the GF-USV spectral 

representation (bottom panel). The center (dashed blue line) and duration (red horizontal 

line) of the GF-USV, and key spectro-temporal features, are automatically measured.

(B) During processing, the extracted syllable shapes are centered along the time and 

frequency axes and subsequently vectorized before stacking them into a data matrix. 

Iterative clustering is then performed with a k-means algorithm using the cosine distance 

measure, which enables the algorithm to learn the most repeated spectral shapes in the 

dataset.

(C–D) The algorithmic output (C) is a collection of exemplar ‘repertoire units’ (RUs; cluster 

centroids), which show the average shape of the different syllables that recur in the dataset. 

RUs learned from noise (red box in C) are removed during syllable repertoire refinement 

(D).

(E–F) MUPET compares the shapes of RUs from different repertoires using two similarity 

metrics (E) The Cross Repertoire Similarity Matrix gives the Pearson correlations between 

RU-pairs from two different repertoires, which are sorted from highest to lowest shape 
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similarity (see diagonal), irrespective of frequency of RU use in each repertoire. (F) The 

Cross Repertoire Similarity Boxplot gives the Pearson correlations between collections of 

RUs, which represent the top 5, 25, 50, 75, and 95% of most frequently used RUs in each 

repertoire.

(G) To compare the frequency of use of similar and unique RU types across different 

datasets, MUPET performs a cluster analysis of RU types in order to generate a ‘master 

repertoire’ of RU-clusters (top panel). MUPET provides information on the frequency of use 

of each RU-cluster, enabling the user to identify shared and unique RU types and usage 

across strains or conditions (bottom panels).
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Figure 3. MUPET proof-of-principle and a workflow for the syllable repertoire analysis method
(A–B) Heterogeneity in affiliative social interaction (A) and USV count (B) in the C57BL/6 

(black bar) and DBA/2 (white bar) parental strains, F1 cross (B6D2F1, dark gray bar), and 9 

recombinant inbred BXD strains (mean ± SEM; N=9–10/BXD and B6D2F1 strains; N=70–

72/parental strains).

(C) Syllable repertoire analysis method. MUPET learns and compares syllable repertoires in 

10 steps. Fully automated steps are show in gray and steps requiring user input based on 

analysis results are shown in blue. MUPET generates eight exportable CSV files containing 

spectro-temporal and sequence measures for the syllables and repertoire units, modeling 

measures for the repertoire and master repertoire builds, and similarity measures for the 

repertoires.

(D) Summary of key study parameters and analysis time requirements in MUPET.

(F) Summary of total syllable number (excluding noise) for each of the 12 strains.
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Figure 4. Spectro-temporal measurements of USV datasets
(A) Example power spectral density (PSD) functions for all USVs emitted by the C57BL/6, 

DBA/2, and B6D2F1 strains. PSD curves (black trace) can be fit by Gaussian functions 

(blue curve) with the mean frequency indicated by the dashed red line. STD, standard 

deviation.

(B–E) Boxplots representing (B) frequency bandwidth, (C) syllable duration, (D) syllable 

rate, and (E) inter-syllable interval across strains. Boxplots display the interquartile range of 

the Gaussian functions that were fit to each PSD, centered around the mean (black vertical 

line), with the entire frequency range depicted by dashed horizontal black line.
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Figure 5. Analyses of syllable repertoires
(A–F) Repertoire modeling measures provided by MUPET and shown for each of the 12 

strain datasets. Optimal repertoire build sizes seek to minimize the (A) Bayesian information 

criterion and maximize the (B) average log likelihood, (C) overall repertoire modeling score, 

and (D–F) the proportion of repertoire units (RUs) that have average Pearson correlations 

greater than (D) 0.6, (E) 0.7, and (F) 0.8. Boxes highlight a range of repertoire sizes (100–

140) that optimize the repertoire modeling measures.

(G–I) Repertoires showing the top 100 syllable types (repertoire units, RUs; black numbers) 

learned from processing recordings from the C57BL/6, DBA/2, and B6D2F1 strains. RUs 

are listed in order of frequency of use from left to right (1–100), with the total number of 

syllables that are present in each RU given in blue.
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Figure 6. Similarity metrics used to compare repertoire unit type across strains
(A) Similarity Matrix (left panel) of the spectral types of pairs of repertoire units (RUs) 

learned from the C57BL/6 and DBA/2 datasets (right panels). The matrix diagonal gives the 

Pearson correlation for sequential pairs of C57BL/6 and DBA/2 RUs ranked from most to 

least similar (e.g., Unit 1 in both repertories are highly similar). Comparison of RU types is 

performed by centering RUs along the time and frequency axes and then by sequentially 

pairing units of greatest to least shape similarity, independent of frequency of use. The 

parental strains produce both highly similar (e.g., unit 1–40) and distinct (e.g., units 60–100) 

repertoire units. Black boxes highlight RUs that show low similarity across the parental 

strains.

(B–C) The Similarity Boxplots determined by comparing the similarity of RU types as a 

function of how frequently the RU is used by each of the ‘comparison’ strains (X-axis) in 

comparison to the C57BL/6 (B) and DBA/2 (C) ‘reference’ strains. The Y-axis is the % 

Similarity Score (average Pearson correlations) between collections of RUs compared 

between the reference and comparison repertoires. The star (*) denotes the Pearson 

correlations for the top 5% of the most frequently used RUs, where the boxplot shows the 

mean and interquartile range of these correlations, and the plus sign (+) shows the 

correlation of the top 95% of the most frequency used RUs. # Indicates strains with 

statistically significant (P < 0.05) differences in mean repertoire similarity compared to the 

reference repertoire.
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Figure 7. Syllable repertoire stability in the parental strains across replicate studies
(A) Similarity Matrix used to assess the similarity of the spectral shape of pairs of repertoire 

units (RUs) learned from the full C57BL/6 and DBA/2 datasets (“C57BL/6-All”, “DBA/2-

All”) when these strains were paired with a C57BL/6 juvenile partner (X-axis, DBA/2 

(white) with juvenile C57BL/6 (black) mouse; Y-axis, C57BL/6 (black) with juvenile 

(black) C57BL/6 mouse.

(B) Similarity Matrices computed between the full C57BL/6 repertoire (Y-axis) and 

individual studies in which the C57BL/6 strain was tested with a C57BL/6 (left panel) or 

129S1 (right panel; light gray) juvenile, showing high repertoire similarity regardless of 

partner strain.

(C) Similarity Matrices computed between the full DBA/2 repertoire (Y-axis) and individual 

studies in which the DBA/2 strain was tested with a C57BL/6 (left panel) or 129S1 (right 

panel) juvenile, showing high repertoire similarity regardless of partner strain.

(D–E) Similarity Boxplot representation of RU similarity. Repertoires built from 4 distinct 

studies with C57BL/6 (B6) mice and 8 distinct studies with DBA/2 (D2) mice (individual 

studies are listed on the X-axis) in comparison with full repertoires built from all C57BL/6 

and DBA/2 studies conducted with C57BL/6 juveniles. The B6 and D2 studies conducted 

with 129S1 juvenile partners (Study 4, S4) are also shown. # Indicates ‘comparison’ strains 
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(X-axis) with statistically significant differences in average repertoire similarity compared to 

the ‘reference’ repertoire (title). P < 0.05.
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Figure 8. Master repertoire generation and comparison of repertoire unit (RU)-cluster usage and 
‘strain of origin’
(A) Pearson correlations for different master repertoire sizes (i.e., number of RU-clusters 

used to model the 12 strain repertoires). Pearson correlations are shown as a percentage of 

the total number of RU-clusters meeting different threshold correlation values. The box 

highlights a master repertoire size (45), which maximizes Pearson correlations while 

minimizing the proportion of RU-clusters that contain a relatively small number of RUs, 

which is a measure of model complexity.

(B) Master repertoire of 45 units generated using k-medoid clustering applied to the 12 

individual strain repertoires (each 100 RUs; 1200 RUs total). MUPET assigns RUs learned 

from each strain to one of the 45 RU-clusters (black numbers), enabling determination of 

shared and unique RU types across strains (‘strain of origin’). The total number of RUs and 

syllables in each cluster are shown in blue and red, respectively.

(C) Each of the RU-clusters is assigned to a strain of origin based on whether the RUs it 

contains are 1) observed in both parental strains, with or without presence in the offspring 

strains, 2) unique to a parental strain—observed in only one parental strain (DBA/2 or 

C57BL/6), with or without presence in the offspring strains, 3) unique to the F1 cross 

(B6D2F1)—observed in neither parental strain, but present in B6D2F1 and offspring strains, 
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4) multiple BXD strains—present in neither of the parental nor B6D2F1 strains, but present 

in multiple BXD strains, or 5) unique to a single BXD strain (in this analysis only BXD16 

generated unique RU-clusters).

(D–E) The percentage of syllables (D) and RUs (E) present within RU-clusters that are 

generated by each strain of origin.
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Table 1

Software Mupet 2.0 Mouse Song Analyzer v1.3 VoICE

Primary References Van Segbroeck et al. Holy and Guo, 2005; Arriaga 
et al., 2012; Chabout et al., 
2015

Burkett et al., 2015

No. of Syllables Analyzed ~200K ~60K (Chabout et al., 2015) ~8K

Analysis Platform Matlab Matlab Matlab and R

Input Original (unmanipulated) wav files Original (unmanipulated) 
wav files

Independent method is 
needed to detect and ‘clip’ 
each syllable into a 
separate .wav file.

Signal Detection Modifiable parameters to optimize 
syllable detection.

Modifiable parameters to 
optimize syllable detection.

Not supported* (see Input)

Noise Detection Built-in noise detection and removal Noise filtered out as 
unclassified syllables

Not supported (see Input)

Syllable Classification Approach Automated, unbiased discovery of 
recurring syllable shapes using 
machine learning.

Automated, rule-based 
categorization of syllable 
shapes based on Holy and 
Guo, 2005 and Scattoni et al., 
2010.

Automated, hierarchical 
clustering of similar shapes 
(e.g., ~70 clusters in Burkett 
et al., 2015) which facilitates 
manual, rule-based 
categorization of a smaller 
number of cluster eigencalls 
(and individual syllables) as 
described in Scattoni et al., 
2010.

Syllable Categorization Dimensions • Entire frequency 
contour, including 
duration, slope and 
curvature of each note.

• Does not include mean 
frequency or 
amplitude.

• Multi-note 
syllables are 
classified 
based on the 
number and 
direction of 
frequency 
jumps, but not 
based on the 
duration, slope 
or curvature of 
each note.

• Option to 
classify single-
note syllables 
and harmonics 
as described in 
Scattoni et al., 
2010.

• Does not 
include mean 
frequency or 
amplitude.

• Hierarchical 
clustering 
based on mean 
frequency, and 
the slope, 
duration, and 
curvature of 
each note.

• Final syllable 
categories are 
assigned as 
described in 
Scattoni et al., 
2010.

Syllable Categories ~60–200 unnamed categories (e.g., 
RUs 1–200), with option to cluster 
RUs across datasets to identify 
shared and unique shapes.

A limited number (~4–15) of 
named categories (e.g., 
simple, up-jump, down-up-
down jump).

A limited number (~9–12) of 
named categories (e.g., flat, 
chevron, frequency step) as 
described in Scattoni et al., 
2010.

Output - Syllables and Repertoires 1 Syllable information: 
Includes syllable 
sequence with RU 
designation and 10 
spectro-temporal and 
amplitude measures.

2 Syllable time-stamp 
(start and end time)

1 Syllable 
information: 
Includes 
syllable 
sequence with 
syllable 
category 
designation 
and 11 

1 Dataset 
information: 
Pie graphs 
showing the 
percentage of 
syllables 
assigned to 
each category.
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Software Mupet 2.0 Mouse Song Analyzer v1.3 VoICE

3 Dataset information 
(averaged across all 
syllables): Includes 
PSD, syllable rate, ISI 
and duration.

4 Syllable repertoire: 
Visual dictionary of 
syllable shapes (RUs) 
identified in each 
dataset.

spectro-
temporal and 
amplitude 
measures.

Notes:

• Syllable time-
stamp is not 
provided, but 
an 
approximate 
time-stamp can 
be computed 
manually from 
the start-time 
of the first 
syllable (which 
can be 
determined 
from the 
sonogram) and 
from the 
syllable 
duration and 
ISI 
measurements 
generated by 
MSA.

• Dataset 
information 
can be 
calculated 
manually from 
the syllable 
information.

2 wav files are 
sorted into 
folders for 
each cluster 
and syllable 
assignment.

Notes:

• VoICE does 
not generate 
syllable time-
stamp, spectro-
temporal or 
amplitude 
measures.

• VoICE does 
not generate 
the 
information 
required to 
calculate 
dataset 
information.

Output - Comparisons of 
Repertoires Across Datasets

1 Compare 2 or more 
syllable repertoires:

• Cross 
Repertoire 
Similarity 
Matrix: 
Compares 
RU shapes 
between 2 
dataset 
repertoires 
irrespective 
of 
frequency 
of use.

• Cross 
Repertoire 
Similarity 
Boxplot: 
Compares 
RU shapes 
across all 
dataset 
repertoires 
as a 
function of 
frequency 
of use.

2 Master repertoire: 
Clusters RU shapes 
from all datasets to 
generate a “master 
repertoire” of RU-
clusters. Information 

• MSA does not 
provide 
automated 
syllable 
repertoire 
comparisons.

• VoICE does 
not provide 
automated 
syllable 
repertoire 
comparisons.
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is provided on the 
number of RUs and 
syllables from each 
dataset that are present 
in each cluster, 
enabling shared or 
unique syllable shapes 
to be identified across 
datasets.

Repertoire Modeling Scores 1 Repertoire modeling 
scores: 3 scores 
summarizing model 
complexity and 
accuracy for syllable 
repertoires of different 
sizes.

2 Goodness-of-fit 
measures: Average 
Pearson correlations 
for the syllables within 
each RU and the RUs 
within each RU-
Cluster, informing the 
selection of syllable 
and master repertoire 
sizes.

• MSA 
categorizes 
syllables based 
on limited 
specto-
temporal 
measures 
rather than 
based on the 
entire 
frequency 
contour (see 
Holy and Guo, 
2005 and 
Arriaga et al., 
2012). There is 
no 
straightforward 
methodology 
to determine 
the similarity 
of shapes 
within the 
same category 
(e.g., up-jump) 
and categories 
frequently 
contain 
syllables with 
a diversity of 
note durations, 
slopes and 
contours.

• VoICE 
categorizes 
syllables based 
on limited 
specto-
temporal 
measures 
rather than 
based on the 
entire 
frequency 
contour (see 
Scattoni et al., 
2010). There is 
no 
straightforward 
methodology 
to determine 
the similarity 
of shapes 
within the 
same category 
(e.g., upward) 
and categories 
frequently 
contain 
syllables with 
a diversity of 
note durations, 
slopes and 
contours.

Syntax Analysis • Syllable sequence and 
ISI available for 
syntax analysis outside 
of MUPET.

• Note that high number 
of syllable categories 
(e.g., 100 RUs) will 
require higher order 
syntax analysis 
methods.

Syllable sequence and ISI 
available for syntax analysis 
outside of MSA.

Syllable category could be 
combined with information 
about ISI (generated by an 
independent method) and 
used for syntax analysis 
outside of VoICE.

Progress Toward Behavioral 
Analysis

Automated syllable time-stamp and 
unbiased discovery of different 
syllable shapes advances the field’s 
ability to relate syllable onset and 
type to time-logged behaviors. Note: 
behaviors must be scored with 
separate software.

More challenging in the 
absence of precise syllable 
time-stamp information (see 
Output Notes).

Not supported (see Output 
Notes).

High-Throughput Analysis of 
>100K syllables

Yes Yes No, manual classification of 
eigencalls and individual 
syllables significantly slows 
processing of large datasets.

Sensitive to Novel Syllable Shapes Yes. Unbiased discovery of recurring 
syllable shapes is designed to be 
sensitive to unique syllable shapes. 

Possibly. Complex and 
unique shapes could be 
detected as a new pattern of 

Miscellaneous category could 
capture novel shapes.
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However, we note that because 
MUPET generates an average 
syllable shape (“RU centroid”), 
highly complex shapes will only be 
accurately detected if represented in 
the dataset a sufficient number of 
times (e.g., 10–100 syllables). More 
complex shapes show increased 
between-call variability and thus, 
require more example syllables to 
generate an RU-centroid that well 
represents the syllable shape.

up- and down-jumps that 
occurs more frequently. The 
absence of an ability to easily 
observe the frequency 
contours of syllables within 
each category challenges 
detection of novel syllable 
shapes.

Species Mouse. Signal processing and 
machine learning approach can be 
adapted for other species.

Mouse Mouse, Bird
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(2)Here, fs is the sampling frequency and N corresponds to the chosen number of filters in the filterbank. The midpoint frequency f0 and the slope variable α were derived by regression analysis applied on the basis spectra spanned by the columns of W of the NMF algorithm: f0 = 68.5kHz and α = 16.2. From equation (2) we can derive the center frequencies fn of the Gammatone scale filterbank. The associated equivalent rectangular bandwidth (ERB) of each nth Gammatone filter is set equal to: 
(3)The filterbank integration of the USV sonograms represents the USVs in the spectral domain as a weighted linear combination of the band-pass filter functions. The weights of each function relate to the spectral magnitude associated with the corresponding filter. This mathematical model also resembles the task of an auditory filterbank operation. To smooth out frequency peak energies of the filterbank outputs, additional post-processing was performed by applying an autoregressive moving average (ARMA) filtering on the filterbank integrated spectra. The resulting feature representation is the Gammatone Filterbank USV feature (GF-USV). Calculation of minimum, maximum, starting and ending frequency is done by selecting the minimum and maximum Gammatone filter (out of 64) and then searching for these features in the corresponding frequency band. Based on evidence that the parental and BXD strains vocalize at a similar mean frequency, and to avoid biases in shape extraction that could be caused by using filters with different resolution across the ultrasonic range, we conducted all analyses with the same filterbank. While MUPET is readily applicable to the analysis of vocalizations from other developmental ages of mice, or other species that vocalize in the ultrasonic range, one needs to establish an optimal filterbank for new species and possibly for aged or developing mice (see below).Clustering methods for repertoire learning: The first step in the syllable repertoire building approach is the segmentation of the audio recordings into individual syllables. To this end, we applied the syllable activity detector to find the beginning and ending time for each syllable. Each segmented window was transformed into the GF-USV feature representation and padded until a window length of 200 milliseconds, which corresponds to the maximum syllable duration. These window-extended patches are subsequently centralized in both time and frequency. The latter step is required to constrain the clustering of the syllables primarily to their spectral shape. We apply image clustering on the vectorized images of these centralized time-frequency shapes by means of k-means clustering. This is accomplished by determining the cosine distance between two vectorized images. The outcome of the repertoire machine learning algorithm is a set of cluster centroids. The time-frequency representations of the centroids are repertoire units (RUs) that represent the population based on the cluster analysis and compose the syllable repertoire. To address the problem of finding an optimal repertoire size, we used the Bayesian Information Criterion (BIC), average log likelihood, overall repertoire modeling score, and RU goodness-of-fit measures that are generated for each repertoire size (see Results). In addition to repertoire learning, MUPET allows the user to further refine the repertoires by removing undesired units, e.g. units that model noise events. Repertoire refinement involves deleting the RUs that correspond to the undesired clusters from the dataset and regenerating the repertoire using only the desired units as cluster centroids to initialize the k-means clustering. To compare the frequency of use of similar and unique RU types across multiple datasets, MUPET uses k-medoids clustering to generate ‘master’ repertoires, which are smaller numbers of RU-clusters identified from the total number of dataset RUs. Each unit of the master repertoire therefore represents a group of spectrally similar RUs (RU-clusters) from the individual datasets. MUPET generates RU-cluster goodness-of-fit measures to aid the user in selecting an optimal master repertoire size(s) (see Results).Use of MUPET with other species: In the current version of MUPET, we have derived a filterbank that optimally represents the spectral information in mouse syllables (see Results for a summary of the specific processing steps). For users that are interested in using MUPET with other species we recommend the following strategy: 1) Determine the vocalization frequency range and call duration and rate for the species. Any knowledge about species-specific vocal production mechanisms can inform choices for analyzing the vocalization properties such as overall frequency ranges and temporal patterning of sounds produced. The duration of each vocalization will determine the analysis time window. For mouse USVs, we used a STFT algorithm of 512 bins to derive the sonograms and Hamming windowed frames with an approximate overlap of 75% of the frame length. 2) In the next step, the user needs to estimate the spectral bands into which this sonographic representation can be decomposed. In our work, we have used NMF to decompose the sonograms into 64 spectral base functions. Each base function is characterized by a peak frequency and a frequency band, and can be approximated by a gammatone band-pass function centered around the peak frequency with an equivalent rectangular bandwidth (ERB) (see STAR Methods, Gammatone filterbank). To uniquely derive a filterbank for a new species, we advise applying the NMF algorithm to sonograms from large numbers of clean audio recordings (i.e. several hours of recordings with thousands of vocalizations). This ensures that all possible calls and associated spectral shapes are represented and ensures that the spectral base functions retrieved from the NMF algorithm will represent well the full spectral range of vocalizations expected from the new species. 3) The final step in uniquely defining the filterbank is to construct a mathematical function that analytically describes the center frequencies of the gammatone filters of the filterbank. This function corresponds to the best fitting line that connects the peak frequencies of NMF base functions. One can derive the function formula either empirically or by using regression tools. Users may contact the authors to facilitate derivation of the new filterbank and for support analyzing the vocalizations of different species in MUPET.
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