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Abstract

Motivation: Multiple sequence alignments (MSAs) with large numbers of sequences are now com-

monplace. However, current multiple alignment benchmarks are ill-suited for testing these types of

alignments, as test cases either contain a very small number of sequences or are based purely on

simulation rather than empirical data.

Results: We take advantage of recent developments in protein structure prediction methods to cre-

ate a benchmark (ContTest) for protein MSAs containing many thousands of sequences in each

test case and which is based on empirical biological data. We rank popular MSA methods using

this benchmark and verify a recent result showing that chained guide trees increase the accuracy

of progressive alignment packages on datasets with thousands of proteins.

Availability and implementation: Benchmark data and scripts are available for download at http://

www.bioinf.ucd.ie/download/ContTest.tar.gz.

Contact: des.higgins@ucd.ie

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Making a multiple sequence alignment (MSA) of nucleotide or

amino acid sequences is a crucial step needed in a wide variety of

bioinformatics studies. To overcome the extreme computational de-

mands of exact algorithms, MSA software uses heuristics to find

near-optimal alignments in a reasonable time. Different software

packages, however, use different heuristics and objective functions

and explicitly focus on different aspects of the MSA process such as

accurate placement of gaps for phylogenetic reconstruction of small

numbers of sequences (Löytynoja and Goldman, 2005) or sheer

speed for making very large alignments e.g. MAFFT PartTree

(Katoh and Toh, 2007). Accurate benchmarks are therefore import-

ant to allow users of MSA software to choose the most appropriate

tools and to guide developers in improving algorithms and heuristics

(Iantorno et al., 2014).

As computational resources and sequence databases grow, and

methods for creating MSAs are improved, the practical upper limit

for the size of MSAs increases. Currently, alignments of tens of thou-

sands of sequences can be made routinely on a desktop computer. It

is therefore important that benchmarks can reflect alignment prob-

lems on this scale. Current protein MSA benchmarks can be divided

into structure-, phylogeny-, simulation- and consistency-based

benchmarks (Iantorno et al., 2014). Structure- and phylogeny-based

benchmarks, in which scores are based on structural superpositions

and accurate inference of phylogenetic trees, respectively, are

strongly grounded in empirical biological data, but they focus on

alignments of small numbers of sequences and are difficult to scale

to larger datasets. Meanwhile, simulation- and consistency-based

benchmarks are based on simulations of protein evolution and sim-

ple agreement between different MSA methods, respectively, and

can involve alignments of arbitrary size. It is unclear, however, how

well simulated sequences model actual biological sequences, while

consistency measures only how similar the results of one heuristic

method are to the results of other heuristic methods.
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MSAs containing large numbers of sequences are generally created

by software using the progressive alignment method. Progressive align-

ment approximates the optimal alignment of multiple sequences by

calculating a series of pairwise alignments according to a bifurcating

tree known as a guide tree (Higgins et al., 1992). Recently, completely

imbalanced—or ‘chained’—guide trees have been shown to increase

the accuracy of some progressive MSA methods (Boyce et al., 2014)

when aligning large numbers of sequences. This result is controversial

(Boyce et al., 2015; Tan et al., 2015) and a benchmark is needed to ac-

curately test the effect of chained guide trees on alignment accuracy.

Here, we describe a benchmark, ContTest, that is able to realistic-

ally test the accuracy of MSAs of very large numbers of amino acid se-

quences, making use of recent developments in the prediction of protein

structures from large MSAs (Marks et al., 2011). We take the MSA that

is to be tested and use it to predict a contact map for a protein in the

alignment that also has a known three-dimensional (3D) structure. This

predicted contact map is then compared with the known contact map

for the same protein, and the alignment is scored based on their agree-

ment (Fig. 1). The benchmark makes use of all the sequences in the

alignment and does not reward over-alignment. It also avoids superpos-

ition of predicted and known structures as this step itself requires the

use of heuristic algorithms. This process gives a very robust scoring sys-

tem based on the assumption that, from a protein structure perspective,

better alignment methods will result in more accurate contact maps.

We used the ContTest benchmark to compare the accuracy of

some widely used MSA packages. We also used it to compare some

different ways of using these packages, e.g. by varying the numbers

of iterations and in particular using chained guide trees with the pro-

gressive alignment methods.

1.1 De novo contact prediction
Recently, several computationally efficient methods have been de-

veloped to predict protein structural information solely from an align-

ment of the sequence of interest with a large number of homologous

sequences (Jones et al., 2012; Marks et al., 2011, 2012; Taylor et al.,

2013). Residues that are in contact in the folded protein can exhibit a

pattern of coevolution, where substitutions at one position may be com-

pensated for by complementary mutations at nearby positions. EVfold-

mfDCA (Marks et al., 2011) and PSICOV (Jones et al., 2012) detect

correlations between the patterns of substitutions in pairs of columns of

an MSA and output a list of pairs of residues predicted to be in contact.

We investigated if we could use the accuracy of contact predic-

tions to infer the accuracy of the input MSAs. For a target protein

with a resolved 3D structure in the Protein Data Bank (PDB)

(Berman et al., 2000) and a large number of homologous sequences

in the Pfam database (Finn et al., 2014), we compare contact predic-

tions made using PSICOV or EVfold-mfDCA from an alignment

of the sequences to a list of known contacts derived from the pro-

tein’s 3D coordinates. Accuracy is evaluated as the precision of the

top L=5 long range contacts predicted, where L is the length of the

target protein. Long range is defined to mean any contact between

residues separated by at least 23 other residues.

2 Materials and methods

2.1 Software versions and parameters
We used the following software to make MSAs:

• Clustal Omega 1.2.0 (Sievers et al., 2011). For one, two or three

iterations we use the parameters:

clustalo -i . . . --guidetree-out¼ . . . -o . . .

where the output of one iteration is reused as the input file to the

next iteration. To use an external HMM we use the parameters:

clustalo -i . . . --hmm-in¼ . . . -o . . .

‘Chained’ guide trees are generated internally using the –pileup

option:

clustalo --pileup -i . . . -o . . .

• Clustal W2.1 (Larkin et al., 2007). We reuse the guide trees cre-

ated by Clustal Omega:

clustalw2 -quiet -infile¼ . . . -outfile¼ . . .

-usetree¼ . . . -outorder¼input

We convert the output file from Clustal format to FASTA format

using the sreformat utility from HMMER.

• HMMER 1.8.5 (hmmt) (Eddy, 1998)

hmmt -o . . . hmm_out infile

• Kalign 2.04 (Lassmann et al., 2009)

kalign -q -i . . . -o . . .

• Kalign 1.04 (Lassmann and Sonnhammer, 2005)

kalign -f -q -i . . . -o . . .

• MAFFT v7.029b (Katoh and Standley, 2013) Default (FFT-NS-

2):

mafft --anysymbol in > out

To make alignments using ‘chained’ guide trees, we create an ex-

ternal guide tree file in MAFFT tree format, which is read using

the --treein option:

mafft --anysymbol --treein . . . in > out

NW-NS-PartTree-1:

mafft --retree 1 --maxiterate 0 --nofft

--parttree --anysymbol in > out

• MUSCLE v3.8.31 (Edgar, 2004). One iteration:

muscle -maxiters 1 -diags1 -sv
-distance kbit20_3 -in . . . -out . . .

Two iterations:

muscle -maxiters 2 -in . . . -out . . .

To make alignments using ‘chained’ guide trees, we create an

external guide tree file in Newick tree format, which is read

using the -usetree option. One iteration, chained guide tree:

muscle -maxiters 1 -diags1 -sv -usetree . . .

-distance kbit20_3 -in . . . -out . . .

Two iterations, chained guide tree:

muscle -usetree . . . -maxiters 2 -in . . .

-out . . .

We used PSICOV version 2.1 (Jones et al., 2012) and

FreeContact version 1.0.21 (Kajan et al., 2014) to predict residue–

residue contacts from MSAs. We used PSICOV with default param-

eters and FreeContact with the --parprof evfold option.
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We used CMView 1.1.1 (Vehlow et al., 2011) to extract contact

maps from PDB files.

2.2 Test case selection and preparation
We based our test cases on the 150 proteins used to test contact pre-

diction software by Jones et al. (2012). Each test case consists of the

full set of sequences from a single Pfam family and a list of experi-

mentally determined residue–residue contacts for a protein in that

family. We retrieved 3D co-ordinates for each target protein from

the PDB and extracted the list of long range residue–residue contacts

using CMview (Vehlow et al., 2011), using an 8 Ångström Cb–Cb

distance threshold (Ca for glycine) and a minimum sequence separ-

ation of 24 positions. We identified Pfam families for each target

protein and downloaded sequences from Pfam in FASTA format,

with all gaps represented by ‘–’ characters and all characters upper-

case. Sequence orders were randomly shuffled before making align-

ments. Where the sequence of a protein differs between the PDB and

Pfam, we perform a pairwise alignment between the PDB sequence

and the Pfam sequence to correctly map columns of the alignment to

beta carbons in the known structure.

Test cases were excluded where PSICOV was unable to make

predictions from any of the alignments tested due to the alignments

containing too few sequences. Test cases were also excluded where

there were too many sequences in the Pfam family to be aligned by

one or more of the alignment packages tested. For instance, Clustal

W2 is unable to align more than 40 000 sequences, and Kalign 2 is

unable to align more than 60 000 sequences.) One test case had too

few true positive contacts to be useful for the benchmark. Fourteen

test cases were excluded using these criteria, leaving a total of 136

test cases for the benchmark. Details of the test cases are given in

Supplementary Table S1.

2.3 Scoring predicted contacts
The PSICOV and Evfold-mfDCA algorithms both assign scores

to each predicted contact. We assess the quality of long range

contact predictions; for amino acid residues at positions i and j

in the protein chain, a contact is defined as long range if

jj� ij > 23. For a test case with a target protein of length L, we cal-

culate the precision of the top scoring L=5 long range contacts out-

put by PSICOV and EVfold-mfDCA, which we refer to as the

PSICOV precision and the EVfold-mfDCA precision for that test

case, respectively.

Because of the dependence of the output MSA on input sequence

order for most methods tested, where possible we made three align-

ments for each test case with each alignment method, randomizing

the order of the input sequences before each alignment. We calcu-

lated the average PSICOV precision and average EVfold-mfDCA

precision over the three replicates. Then, we calculated the geomet-

ric mean of the average PSICOV and average EVfold-mfDCA preci-

sions to arrive at a single number representing the precision of

contact predictions for that test case. We call this the ContTest score

for that test case. We rank alignment methods by the mean

ContTest score over all test cases. Pfam stores only a single align-

ment for each family, while Clustal Omega runs extremely slowly

when using chained guide trees. Therefore, results for Pfam and

Clustal Omega (chained guide tree) are based on a single replicate

only.

While this scoring method involves only a subset of columns in

the alignment, we found that using receiver-operating characteristic

curves to score predicted contacts produced almost the same rank-

ings of alignments (Supplementary Text and Tables S2 and S3).

2.4 Statistical significance of benchmark scores
We calculate the statistical significance of the difference in two

benchmark scores by using the Wilcoxon signed rank test where the

ContTest scores for each of the 136 test cases are paired between the

two conditions.

2.5 Making ‘bad’ alignments
To validate our benchmark, we use two methods to artificially cre-

ate alignments which we expect to be worse than some reference

alignment. First, given a reasonable starting alignment of a set of se-

quences, we expect that shifting a random subset of the sequences

out of alignment with the others will result in an alignment that is

poorer than the original alignment. We shift sequences out of align-

ment by adding a gap character to the start of the aligned sequence

and truncating the last character. For each test case, we take the

Pfam alignment and shift 0.5%, 1%, 2%, 3%, 4% or 5% of the se-

quences out of alignment, creating a series of alignments which we

expect to be of decreasing quality and which should therefore result

in decreasing benchmark scores.

Second, we perform a similar analysis by mutating random resi-

dues, which we expect should decrease contact prediction accuracy.

Starting with the Pfam alignments, we mutate between 0 and 20%

of residues in each alignment to a different residue. We expect that

increasing numbers of mutations should again result in a decreasing

ContTest score.

2.6 Adding HOMSTRAD reference sequences to

ContTest alignments
We found mappings from 80 of the ContTest test cases to

HOMSTRAD (Mizuguchi et al., 1998) alignments using the

PFAM.db package for R (Carlson et al., n.d.). For each of these 80

test cases, we added the dealigned HOMSTRAD sequences to the

unaligned Pfam sequences and randomly shuffled the sequence order

before making alignments and proceeding with the benchmark pro-

cess as usual. We then calculated both the average ContTest score

and the average sum-of-pairs score (SPS) for the HOMSTRAD se-

quences, thus arriving at two measures of quality for the same

alignments.

2.7 Measures of guide tree imbalance
The Sackin score of a rooted, binary tree is defined as the sum of the

depths of its leaves (Sackin, 1972). The Sackin score for a tree with

N leaves, that is as balanced as possible is N � log2ðNÞ; the Sackin

score for a perfectly imbalanced (chained) tree with N leaves is

ðN þ 2Þ � ðN � 1Þ=2. Concrete values for trees of up to eight leaves

can be found in Sievers et al. (2014).

The expected value of the Sackin score depends on the underly-

ing evolutionary model. In the Equal Rates Markov or Yule (Yule et

al., 1925) model, trees are built up, beginning with a node with just

two leaves, by repeatedly selecting a leaf at random and replacing it

with a node with two leaves until the required number of leaves is

reached. The expected Sackin score for a tree with N leaves is calcu-

lated under the Equal Rates Markov model as:

EY½SðNÞ� ¼ 2N
XN
i¼1

1=i

In contrast, under the uniform or Proportional to

Distinguishable Arrangements model, all trees with the same num-

ber of leaves are assumed to be equally likely. This is not strictly a

model of evolution but merely of tree growth. The expected Sackin

816 G.Fox et al.
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score under the uniform or Proportional to Distinguishable

Arrangements model EU[S(N)] can be calculated as a hypergeomet-

ric function 3F2 (Mir et al., 2013), which for large values of N is

asymptotic to
ffiffiffi
p
p

N3=2.

3 Results

We developed ContTest, a benchmark for large protein MSAs based

on the accuracy of de novo contact map prediction. ContTest con-

tains 136 test cases with between 1467 and 43 910 sequences (me-

dian 7098) and an average length of between 31.9 and 370 residues

(median 113.6) (see Supplementary Table S1 and Fig. S1). We used

the benchmark to score alignments made by Clustal Omega (Sievers

et al., 2011), Kalign 2 (Lassmann et al., 2009), MAFFT (Katoh and

Standley, 2013), MUSCLE (Edgar, 2004), Clustal W2 (Larkin et al.,

2007), Kalign 1 (Lassmann and Sonnhammer, 2005) and hmmt

(Eddy, 1998). Additionally, the Pfam database contains MSAs of all

sequences in each protein family, and we used the benchmark to

score the full alignments from Pfam 27. Clustal Omega, Kalign 2,

MAFFT and hmmt were all run with default parameters. To make

alignments in a reasonable time, Kalign 1 was run with the fast heur-

istic -f option, MUSCLE was limited to two iterations and Clustal

W2 reused the guide tree generated by Clustal Omega. Benchmark

scores for these alignment methods are listed in Table 1.

At the top of the rankings are the hmmt, Kalign 1 and Pfam align-

ments. These results are striking and unexpected. Since the method by

which the Pfam alignments are created is not directly applicable to

general MSA problems, the quality of Pfam alignments has not previ-

ously been assessed in MSA benchmark studies. Similarly, neither

Kalign 1 nor hmmt have, to our knowledge, been considered in any

recent benchmarking studies, as Kalign 1 is superseded by Kalign 2

and hmmt is not included in recent versions of HMMER.

The Pfam alignments are created in two steps. First, a manually

curated ‘seed’ alignment is created from a small set of sequences

representative of the sequence family. This seed alignment is used to

train an HMM which is then used to search a sequence database

and align matching sequences to the seed alignment. We note that

this process—aligning sequence matches from a database one-

by-one to a small seed alignment—is effectively performing progres-

sive alignment with an almost perfectly chained guide tree. Kalign 1

uses a traditional progressive MSA strategy, with pairwise sequence

distances estimated by approximate k-tuple matching. However, we

found that Kalign 1 with the fast ‘-f’ option skips pairwise distance

calculations and performs alignment with a fully chained guide tree,

although this is an undocumented feature. Meanwhile, hmmt pro-

duces an MSA as a side effect of training an HMM on the input se-

quences and does not use a guide tree as part of this process. Thus,

the sequence-clustering step which is characteristic of progressive

MSA is not performed by any of these alignment methods.

The next highest scoring method is Kalign 2 (Table 1). Kalign

version 2, like version 1, is a progressive aligner but lacks the option

of its predecessor to use a fully chained guide tree. However, it uses

the Muth-Manber algorithm to perform approximate k-tuple

matching to estimate pairwise sequence similarities before construct-

ing the guide tree. The pairwise distance metric used tends to pro-

duce highly chained guide trees (Boyce et al., 2014). We find that

this is true for our test cases, with Kalign 2 guide trees having high

measures of imbalance when compared with Clustal Omega (Fig. 2),

MAFFT or MUSCLE (Supplementary Figs S2 and S3). This appears

to be related to the length of the sequences aligned, with shorter

average sequence lengths resulting in more chained guide trees

(Supplementary Fig. S4).

3.1 Varying alignment parameters
To verify that the ContTest score correctly ranks alignment methods

by accuracy, we created alignments using different parameter sets of

the same MSA packages. For a given alignment package, we expect

that certain parameter sets produce more accurate alignments than

others, on average. These relationships are reflected in the bench-

mark scores (Table 2).

Both Clustal Omega and MUSCLE are capable of iteratively

refining MSAs and using more iterations results in an increase in

benchmark score for these methods (Table 2). In addition, Clustal

Omega can use an external HMM to guide alignments. Using the

Pfam HMMs for each family during alignment also increases the

benchmark score for Clustal Omega. The NW-NS-PartTree-1 par-

ameter set of MAFFT is recommended for making fast alignments of

large numbers of sequences and is expected to have a lower average

Table 1. Benchmark scores for alignments from Pfam and seven

MSA packages

Alignment method Mean

PSICOV

precision

Mean

EVfold-mfDCA

precision

ContTest

score

hmmt 0.526 0.590 0.551 E
NS

Kalign1 (fast) 0.527 0.581 0.550 E
NS

Pfam 0.535 0.577 0.545 E
**

Kalign 2 0.507 0.533 0.513 E
***

Clustal Omega 0.497 0.390 0.428 E
**

MAFFT (default) 0.433 0.379 0.396 E
NS

Clustal W2 0.413 0.373 0.381 E
NS

MUSCLE (2 iterations) 0.445 0.329 0.371

Mean PSICOV precision and mean EVfold-mfDCA precision are the mean

precisions of the top L/5 long range contacts predicted by PSICOV and

EVfold-mfDCA, respectively. ContTest Score is the geometric mean of the

PSICOV and Evfold-mfDCA precisions. Statistical significances are indicated

for the differences in consecutive pairs of ContTest scores. *P<0.007;

**P< 0.0014; ***P<0.00014 (0.05, 0.001 and 0.001 with Bonferroni cor-

rection for seven tests, respectively); NS, not significant.

Fig. 1. Flowchart of benchmark process for one test case. Sequences from

Pfam are aligned with the method of interest and the resulting MSA is used

to predict residue–residue contacts for one of the proteins in the alignment.

The 3D coordinates of this target protein are used to calculate the true resi-

due–residue contacts. The two lists of contacts are compared to calculate a

score for the alignment
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accuracy than the default parameters. We observe a corresponding de-

crease in the benchmark score for MAFFT when using these parameters.

As noted above, the top three highest scoring sets of alignments,

those from hmmt, Kalign 1 (fast) and Pfam, were created without

the use of a conventional guide tree. To determine the extent to

which the lack of sequence clustering contributes to these methods

having the highest scoring alignments, we created alignments using

MAFFT, MUSCLE and Clustal Omega with fully chained guide

trees (Table 2). Kalign 2 does not accept external guide trees, while

Clustal W ran prohibitively slowly when using chained guide trees.

In all cases, alignments made using chained guide trees score higher

on average than alignments made with the guide trees constructed

internally with each package. With MUSCLE and Clustal Omega,

we see that the score increase due to chained guide trees is greater

than that due to any of the other alternative parameters tested.

3.2 Adding errors to alignments decreases the

benchmark score
As a further test of benchmark accuracy, we studied how the add-

ition of deliberate errors to a set of alignments affects the bench-

mark score. First, we selected random subsets of sequences in each

Pfam alignment to ‘misalign’ by adding a gap to the start of the

aligned sequence, while truncating the final character (see Section

2.5). We observed that greater the percentage of sequences in each

alignment that were misaligned, the greater the drop in contract pre-

diction precision from the starting alignments. Figure 3 shows

PSICOV and EVfold-mfDCA precisions for alignments with 0.5%,

1%, 2%, 3%, 4% and 5% misaligned sequences. Second, we per-

formed a similar analysis by randomly mutating 5%, 10%, 15% or

20% of individual residues in each alignment. We found a clear cor-

relation between increasing mutations and decreasing contact pre-

diction precision (Supplementary Fig. S6).

3.3 Adding HOMSTRAD sequences to alignments

allows a second measurement for alignment quality
To compare the ContTest benchmark method with the more trad-

itional structure-superposition benchmark method, we created a hy-

brid benchmark by adding HOMSTRAD reference sequences to the

Pfam sequences in 80 test cases for which we identified a match

between the Pfam family and a HOMSTRAD alignment. We then

calculated both the ContTest score of each alignment and the SPS

for the embedded HOMSTRAD sequences. Scores for the

HOMSTRAD sequences are listed in Table 3. A plot of the

ContTest score against the mean HOMSTRAD SPS is shown in

Supplementary Figure S7. The SPS and the ContTest scores notably

disagree on Clustal Omega, which is the most accurate method as

ranked by SPS. MAFFT NW-NS-PartTree-1 and Kalign 2 also differ

slightly in their rankings between the two benchmark scores. It is

unclear why Clustal Omega is ranked so differently by the two ac-

curacy measures. Since the SPS measures only the number of cor-

rectly aligned residue pairs in an alignment, it does not penalize

‘overalignment’, i.e. false-positive aligned residues in the MSA. It is

possible that MSA methods which are tuned for sensitivity over spe-

cificity may be ranked higher when measured by SPS or total column

score than when ranked by ContTest or other accuracy measures.

3.4 ContTest rankings differ from PREFAB rankings
PREFAB (Edgar, 2004) is a structure-superposition-based MSA

benchmark containing 1682 test cases. Test cases each contain two se-

quences for which a reference alignment is available and up to 48

other homologs. We calculated the SPS on the PREFAB benchmark

for all MSA methods for which we previously calculated ContTest

scores (Supplementary Table S4). The rankings of alignment methods

differ greatly between ContTest and PREFAB, with hmmt and

‘chained’ alignments scoring particularly poorly on PREFAB, while
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Fig. 2. Comparison of Kalign 2 and Clustal Omega guide tree imbalance. The

Sackin score (sum of distances from leaves to root) produced by each pro-

gram is plotted against the number of sequences in the alignment for each

test case. Values for fully chained and balanced trees and expected values

under the Equal Rates Markov and Proportional to Distinguishable

Arrangements models of tree growth are indicated with lines

Table 2. Benchmark scores for a variety of parameter sets of

MAFFT, MUSCLE and Clustal Omega

Alignment method Mean

PSICOV

precision

Mean

EVfold-mfDCA

precision

ContTest

score

Clustal Omega (chained) 0.501 0.540 0.513***

Clustal Omega (Pfam HMM) 0.527 0.420 0.459***

Clustal Omega (3 iterations) 0.510 0.400 0.441 NS

Clustal Omega (2 iterations) 0.516 0.398 0.441 NS

Clustal Omega (default) 0.497 0.390 0.428

MAFFT (chained) 0.509 0.530 0.517***

MAFFT (default) 0.433 0.379 0.396

MAFFT NW-NS-PartTree-1 0.469 0.334 0.389 NS

MUSCLE (chained, 2 iterations) 0.508 0.553 0.526***

MUSCLE (2 iterations) 0.445 0.329 0.371

MUSCLE (chained, 1 iteration) 0.499 0.541 0.516***

MUSCLE (1 iteration) 0.415 0.314 0.354

Statistical significances of the differences in ContTest score between default

and variant parameters of each package is indicated. Clustal Omega with

chained guide trees, external HMM and two and three iterations are com-

pared with default Clustal Omega scores. MAFFT PartTree and MAFFT with

chained guide trees are compared with default MAFFT. MUSCLE with two it-

erations and a starting chained guide tree is compared with two iterations of

MUSCLE. MUSCLE with a chained guide tree and one iteration is compared

with MUSCLE with one iteration.

***P< 0.001.
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being among the highest scoring methods when ranked by

ContTest. The difference in ranking is unsurprising given the large

difference in numbers of sequences between PREFAB and

ContTest. ‘Chained’ guide trees have previously been shown to be

effective only for alignments of large numbers of sequences (Boyce

et al., 2014). Meanwhile, the greater sequence diversity present in

the larger ContTest test cases is likely to facilitate the HMM train-

ing at the core of hmmt’s alignment process. It should be noted

that for alignments of tens of sequences, as in PREFAB, many

slower, more accurate MSA methods are available which cannot

make MSAs of the size required for the ContTest benchmark and

thus were not included in our study.

4 Discussion

ContTest is the first protein MSA benchmark to realistically test

alignments of large numbers of sequences and base scores on

empirical biological data. Although structure-based benchmarks

may contain alignments with many sequences, e.g. HomFam

(Blackshields et al., 2010), scores are always based on reference

alignment of a small subset of sequences contained in the MSA. This

could allow large errors in non-reference sequences to go unpun-

ished. In addition, the structure-based reference alignment must it-

self be created, and this alignment depends on heuristic structure

comparison algorithms. Meanwhile, the phylogeny-based species-

discordance benchmark of Dessimoz and Gil (2010)—in which

phylogenetic trees are inferred from MSAs and compared with a

known reference tree—is restricted to testing alignments of six se-

quences. Simulation-based benchmarks allow for arbitrary numbers

of sequences in test alignments but depend on simplified models of

evolution and may not realistically model gap placement in real pro-

teins. Our benchmark method uses information from all sequences

in the input alignments. Test cases must contain a minimum of

about 1000 sequences, so there is sufficient information in the align-

ment to make contact predictions, but there is no practical upper

limit on the number of sequences.

Our benchmark scores confirm the utility of completely chained

guide trees, as described by Boyce et al. (2014). That result has been

controversial (Tan et al., 2015) but, at least for alignments of many

sequences from structurally conserved regions, the results appear

clear and robust. Alignments made with fully or even largely

chained guide trees consistently outscore alignments made with

more traditional guide trees. Each of the alignment packages that ac-

cepts user-specified guide trees benefitted from using chained guide

trees, and the increase in score due to chained guide trees was

greater than the increase due to extra iterations of Clustal Omega

or MUSCLE or using a high quality external HMM with

Clustal Omega. Our scores also demonstrate the quality of the

alignments in the Pfam database, which may have previously been

neglected, as well as suggesting that both Kalign 1 and hmmt be
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Fig. 3. Introducing random misalignments decreases the benchmark score. Each boxplot represents 20 replicates where a different random subset of sequences

is misaligned. There is a strong correlation between more errors and decreasing benchmark score

Table 3. Sum-of-pairs scores and ContTest scores for 80 test cases

with embedded HOMSTRAD sequences

Alignment method Mean SP score ContTest score

Clustal Omega (default) 0.722 0.410

Kalign 1 (fast) 0.722 0.548

hmmt 0.718 0.543

Kalign 2 0.709 0.507

MUSCLE (2 iterations, chained) 0.696 0.519

MUSCLE (1 iteration, chained) 0.676 0.509

MAFFT FFT-NS-2 0.610 0.376

MUSCLE (2 iterations) 0.588 0.355

MAFFT NW-NS-PartTree-1 0.567 0.389

MUSCLE (1 iteration) 0.529 0.331
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revisited as useful methods for creating alignments of large numbers

of sequences.

We have shown that the ContTest benchmark is in general agree-

ment with structure-based benchmarks for large numbers of se-

quences. However, we observe that the methods that produce the

most accurate alignments for large numbers of sequence do not ne-

cessarily perform well for small number of sequences, as measured

by the PREFAB benchmark (Supplementary Table S4). ContTest is

likely to be most sensitive to alignment errors in regions which are

structurally conserved but without very high levels of sequence con-

servation. That is, regions of the protein in which amino acid substi-

tutions are accepted but must be compensated for at co-evolving

sites. A limitation of this benchmark is that all alignments inherently

involve only sequences of a single protein domain, without any large

insertions. It is likely that certain methods might perform poorly on

more general alignment problems involving multiple domains. In

particular, for hmmt alignments, it is necessary that a sensible

HMM can be trained on the input sequences, which may not be pos-

sible in the general case. However, these are problems that may be

addressed by future benchmarks, and alignments of single protein

domains are common and important in many applications.

Finally, these results give some clear pointers toward the best

methods for making MSAs intended for use with de novo structure

prediction methods and show that choice of alignment method can

have a large influence on the quality of contact predictions, even

when using the same software package with different parameters.
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