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Introduction

Diffusion-weighted imaging (DWI) utilizes diffusion signal attenuated due to the random microscopic motion of water molecules in-
fluenced by cell density, membrane integrity, tissue microstructure, perfusion and diffusion heterogeneity within the tissue (1). When 
compared with benign lesions and healthy tissue, more restricted water mobility of malignant lesions engenders slower attenuation of the 
diffusion signal captured from a set of images acquired with different degrees of diffusion weighting (reported as b-value) (2). 

Quantitative diagnosis of cancer from DWI relies on metrics computed as the parameters of a “signal attenuation” model fitted to the dif-
fusion signal data. The need for reliable and precise metrics motivates new studies on development of advanced models for better fittings to 
the diffusion signal data or advanced methods for optimized estimation of diffusion metrics (3). There exist several advanced exponential 
signal attenuation models such as stretched exponential (4), bi-exponential (known as intravoxel incoherent motion) (5), statistical (6) and 
kurtosis (7) capable of describing complex diffusion processes of the breast tissue. However, the parameters derived from these models are 
difficult to estimate and quite complex for use in diagnosis. For instance, physiological basis of the heterogeneity index of the stretched 
exponential model is reported to be uncertain and likewise pseudo-diffusion coefficient of the biexponential model is thought to be un-
reliable (8). On the other hand, these models involve several parameters that complicate both the diffusion estimation process and the 
diffusion weighted imaging protocol. To get accurate diffusion estimates, the initial value and the limits for any model parameter should 
be determined very carefully and an appropriate optimization method should be employed (9). To reach consistent numerical solutions, 
the number of b-values of the diffusion weighted imaging protocol must set to be more than the number of parameters in the model and 
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ABSTRACT

Objective: To investigate the diagnostic value of dual-phase apparent diffusion coefficient (ADC) compared to traditional ADC values in quantita-
tive diffusion-weighted imaging (DWI) for differentiating between benign and malignant breast masses. 

Materials and Methods: Diffusion-weighted images of pathologically confirmed 88 benign and 85 malignant lesions acquired using a 3.0T MR 
scanner were analyzed. Small region-of-interests focusing on the highest signal intensity of lesions were used. Lesion ADC estimates were obtained 
separately from all b-value images (ADC; b=50, 400 and 800s/mm2), lower b-value images (ADClow; b=50 and 400s/mm2) and higher b-value images 
(ADChigh; b=400 and 800s/mm2). A set of dual-phase ADC (dpADC) models were constructed using ADClow, ADChigh and a perfusion influence 
factor ranging from 0 to 1. 

Results: Strong positive correlation is observable between ADC and all dpADCs (ρ=0.80-1.00). Differences in ADC and dpADCs between 
the benign and the malignant lesions are all significant (p<0.05). In detecting malignancy, traditional lesion ADC provides a good performance 
(AUC=89.9%) however dpADC0.5 (dpADC with a factor of 0.5) accomplishes a better performance (AUC=90.8%). At optimal thresholds, ADC 
achieves 94.1% sensitivity, 72.7% specificity and 83.2% accuracy while dpADC0.5 leads to 92.9% sensitivity, 79.5% specificity and 86.1% accuracy. 

Conclusion: Dual-phase ADC modelling may improve the accuracy in breast cancer diagnosis using DWI. Further prospective studies are needed 
to justify its benefit in clinical setting.
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large number of b-values would lengthen the imaging time remarkably 
making it unmanageable in clinical practice. These challenges promote 
the use of a mono-exponential model, that offers only one free param-
eter (namely apparent diffusion coefficient) estimated from two dif-
ferent b-value images with simplicity and high reproducibility, as the 
traditional model in diagnostic DWI in clinical practice (10). 

Diffusion-weighted imaging and the use of apparent diffusion coef-
ficient has been reported to be a very beneficial technique adjunct to 
dynamic contrast-enhanced imaging in diagnosis of breast cancer us-
ing magnetic resonance (MR) imaging (11, 12). While DWI holds 
potential to improve the detection and biological characterization of 
breast cancer (13), apparent diffusion coefficient (ADC) is capable of 
reflecting breast tissue cellularity, fluid viscosity, membrane perme-
ability, macromolecular structures, microvascularity and lesion blood 
flow (14). Benign lesions have higher ADC than malignant lesions, 
especially the invasive carcinomas mainly due to their less compact 
cellularity (15). However, overlap between the ADC estimates from 
benign and malignant breast lesions motivate new studies to improve 
the performance of ADC in distinguishing benign lesions from ma-
lignant lesions.

The b-value set used during diffusion weighted imaging has an impact 
on the fitting performance of the mono-exponential model and on the 
diagnostic performance of ADC consequently (16). The lowest b-value 
is set to be sufficiently high so as the model can describe the diffusion 
signal data appropriately (b≥50s/mm2 is usually used) while the high-
est b-value should be chosen so as to provide adequate suppression of 
water signal from normal fibroglandular tissue and maximum breast 
lesion visibility (17) (The use of b≥800s/mm2 is usually recommended 
(18, 19)). Incorporating more than two b-values into the imaging pro-
tocol has been reported to provide more precise sampling of the diffu-
sion signal and consistent ADC estimates (20, 21). 

Diagnostic performance of ADC is also influenced by the methods 
used during image analysis and computation. A smaller region-of-
interest (ROI) focusing on the highest signal intensity for the lesion is 
reported to have a better differential value for ADC when compared 
with a larger ROI for the overall lesion, especially in discrimination 
of invasive carcinomas (22). Normalized ADC (also called ADC ra-
tio) calculated from the ratio of the lesion ADC to a reference tissue 
ADC (usually ipsilateral glandular breast tissue) is illustrated to make 
some improvements in the overall performance of ADC (23-25). Two 
separate ADCs from a lesion, one estimated from low b-value images 
and the other estimated from high b-value images, are demonstrated 
to be potentially more useful than a single lesion ADC in assessing the 
non-Gaussian water diffusion in vivo that is more closely related to the 
advanced models (26). In this study, we introduce dual-phase ADC 
modelling that integrates two separate ADCs, one from low b-value 
images and the other from high b-value images, and evaluate the utility 
of the modeling for breast masses in comparison with the histopatho-
logic findings in quantitative DWI.

Materials and Methods

Patient Population 
A total of one hundred seventy-three lesions (88 benign and 85 ma-
lignant) from 173 women aged 18-78 years (mean, 46 years), who 
underwent standard breast MRI including diffusion weighted imaging 
to clarify uncertain clinical, mammographic, sonographic findings or 
to assess preoperative staging of patients with known malignancies, 

have been retrospectively enrolled in this study. Written informed 
consent was obtained from each woman and local ethics committee 
approval was received. All findings were verified by histopathological 
examination. Average lesion size was 18.2±8.1mm. The benign lesions 
were 45 fibroadenomas, 14 columnar cell changes, 8 fibroses, 6 adeno-
ses, 5 abscesses, 5 apocrine metaplasias and 5 other benign changes. 
The malignant lesions were 61 invasive ductal carcinomas, 9 invasive 
lobular carcinomas, 8 ductal carcinomas in situ, 3 invasive mucinous 
carcinomas, 1 invasive apocrine carcinoma, 1 medullary carcinoma, 1 
medullary like carcinoma and 1 liposarcoma. 

Breast MR Imaging Protocol
Breast MR imaging was performed by a 3T MR scanner (Magnetom 
Verio, Siemens Healthcare, Erlangen, Germany) using a dedicated 
16-channel breast coil while patients were lying in prone position. At 
first, T2-weighted images were acquired using an axial turbo spin-echo 
with 70ms echo time (TE), 4100ms repetition time (TR), 448×381 
matrix size, 320mm field of view (FOV), 3mm slice thickness. Next, 
diffusion-weighted images were captured in the axial plane using a 2D 
spin-echo echo-planar imaging (EPI) sequence at three b-values (b=50, 
400 and 800s/mm2) with the following parameters: 86ms echo time, 
9700ms repetition time, 90° flip angle, 3 averages, 82×192 matrix 
size, 155×360mm FOV and 4mm slice thickness (leading to an in-
plane resolution of 1.9×1.9×4mm3). Finally, axial dynamic contrast-
enhanced MR images were taken using 3D volumetric interpolated 
breath-hold (VIBE) imaging sequence with the following parameters: 
1.77ms echo time, 5.01ms repetition time, 10° flip angle, 512×512 
matrix size, 340mm FOV and 1mm slice thickness. During and im-
mediately after the bolus injection of contrast agent Gadobutrol 
(0.1mmol/kg Gadovist®, Bayer Schering Pharma, Berlin, Germany) or 
Gadoterate Meglumine (0.1mmol/kg Dotarem®, Guerbet, Villepinte, 
France), one pre-contrast and six postcontrast bilateral images were 
acquired with a temporal resolution of 88 seconds. 

Image Evaluation and ROI Delineation
All images acquired during imaging were transferred to workstation 
and evaluated by two experienced radiologists (with 4 and 17 years 
of experience in breast MRI, respectively) using Syngo. Via 3D read-
ing and advanced visualization software (Siemens Healthcare, Erlan-
gen, Germany) installed on the workstation. Both radiologists were 
blinded to pathology during evaluation. The radiologists first analyzed 
the dynamic contrast-enhanced images to localize lesions. The radiolo-
gists next evaluated each localized lesion on diffusion-weighted images 
and manually placed a region of interest (ROI) with consensus on the 
diffusion-weighted image with b=800s/mm2 with care to include only 
the solid portion of the lesion with the highest signal intensity, exclud-
ing the necrotic and the cystic regions. All ROIs were defined to be 
circular with a diameter of 5mm. For each ROI placed, average signal 
intensity for each b-value of the diffusion-weighted imaging protocol 
given by the software was recorded for use to estimate apparent diffu-
sion coefficients.

Dual-phase Apparent Diffusion Coefficient Modelling 
Dual-phase ADC modelling integrates the two ADC estimates:  
ADClow from lower b-value images (b=50-400s/mm2) and ADChigh 
from higher b-value images (b=400-800s/mm2) by using the following 
formula introduced in this study:

dpADCpf = pf ×ADClow + (1- pf)×ADChigh 		  (1)
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Here pf is “perfusion” influence factor that ranges from 0 to 1. When 
pf is set to 0, the influence of ADClow is omitted giving dpADC0 = AD-
Chigh. In contrast, if pf is set to 1, the influence of ADChigh is omitted 
and dpADC1.0=ADClow. ADClow is influenced by perfusion mostly and 
diffusion in a certain degree while ADChigh reflects diffusion only. By 
voluntarily modifying the value of pf, different dual-phase ADC models 
can be obtained. The apparent diffusion coefficient can be estimated by 
using the mono-exponential model and the average signal intensity for 
an ROI recorded for n-th b-value of the diffusion-weighted image, S(bn):

n-b  × ADC
n 1S(b ) = S(b ) × exp 		  (2)

In this study, ADC estimates were obtained for all breast lesions sepa-
rately by using average signal intensity values from all b-value images 
(ADC; b=50, 400 and 800s/mm2), from only lower b-value images 
(ADClow; b=50 and 400s/mm2) and from only higher b-value images 
(ADChigh; b=400 and 800s/mm2). The estimations were performed us-
ing our own in-house developed computer software based on MatLab 
(Mathworks, Natick, MA) implementing a nonlinear fitting method 
based on the Trust-Region-Reflective least squares algorithm with the 
same pre-set initial value and the same limits for the ADC parameter 
(initial value=1.5×10-3mm2/s, upper and lower limits=3.0×10-3mm2/s 

and 0.3×10-3mm2/s, respectively) (Figure 1). 

Statistical Analysis
Systematic difference in ADC and dpADC of the lesions were tested 
using Wilcoxon signed-ranks test. Spearman’s rho (ρ) was used to test 
correlation between lesion dpADC and lesion ADC. Absolute relative 
difference between dpADC and ADC was measured using 

Δrel =
dpADC-ADC

ADC
×100 			   (3)

Systematic differences in ADC and dpADC between benign and ma-
lignant lesions were tested using Mann-Whitney U-test. Diagnostic 
performance was assessed by plotting the receiver operating charac-
teristic (ROC) curves and calculating the areas under the ROC curves 
(AUC). A p value of <0.05 was considered to be statistically significant.

Optimal thresholds for ADC and dpADC were determined by apply-
ing Youden statistics to the results of ROC analysis while consider-
ing improvements in both sensitivity and specificity. The classification 
performances of the optimal thresholds were assessed using sensitiv-
ity (Se), specificity (Sp), positive predictive value (PPV) and accuracy 
(Ac). All statistical analyses were performed using SPSS software for 
Windows (version 23; SPSS, Chicago, IL).

Results

Dual-phase apparent diffusion coefficient models using a set of per-
fusion influence factor (pf ) and overall dual-phase ADC values 
(dpADC) estimated by the models from all breast lesions enrolled in 
this study are seen in Table 1. dpADC is at its minimum when pf is set 
to zero while dpADC is at its maximum when pf is set to one show-
ing that dpADC is directly proportional to the perfusion influence 
factor: an increase in the factor leads to an increase in dpADC. ADC 
estimate from all lesions is 1.47±0.51×10-3mm2/s and a very similar 
value of 1.47±0.52×10-3mm2/s is obtained by the dpADC model with 
a pf of 0.7 leading to the lowest absolute relative difference among 
all the dpADC models studied (Δrel=1.6%). However, there are sys-
tematic difference in ADC and dpADC from all the models, but sig-
nificant positive correlations are present between ADC and dpADC 
at all (p<0.05). Strong correlations exist between ADC and dpADC 

Figure 1. a-c. A 48-year-old woman with a benign lesion (a 
fibroadenoma) finding on the left breast and (a) the ROI placed for 
the lesion (solid red line contour) on the diffusion-weighted image at 
b=800mm2/s. (b) Plots for the average signal intensity measurements 
recorded and for the results of the nonlinear fittings obtained 
(ADC=1.64×10-3mm2/s, ADClow=1.73×10-3mm2/s and ADChigh=1.42×10-

3mm2/s) and (c) Plot for the dpADC computed for a specific 
“perfusion” influence factor
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obtained by the models using pf values of 0, 0.1 and 0.2 (ρ=0.80-0.90) 
but the rest of the models offer very strong correlations (ρ=0.90-1.00) 
(Figure 2). Table 2 shows the ADC and dpADC estimates from the 
benign and the malignant lesions. Independent of the perfusion influ-
ence fraction considered during modelling, low dpADC values indi-
cate malignancy as in traditional ADC case. The differences in dpADC 
estimates between benign and malignant lesions from all the models 
are significant (p<0.05). 

Results of the ROC analyses of ADC and dpADC in differentiation 
of malignant lesions from benign lesions are as presented in Table 
3. The dpADC models using a pf value of 0.2, 0.3, 0.4, 0.5 or 0.6 
provides better performance (AUC≥90.0%) when compared to ADC 
(AUC=89.9%). Among these models, the model dpADC0.5 that en-

Table 1. Dual-phase ADC models and lesion 
dpADC with respect to perfusion influence factor 
and corresponding correlations and relative 
differences between dpADC and ADC 

Model	 pf	 dpADC	 ρ	 Mean Δrel(%)

dpADC0	 0	 1.31±0.61 	 0.80 	 20.4

dpADC0.1	 0.1	 1.33±0.58	 0.85	 17.4

dpADC0.2	 0.2	 1.36±0.56	 0.88	 14.3

dpADC0.3	 0.3	 1.38±0.54	 0.93	 11.3

dpADC0.4	 0.4	 1.40±0.52	 0.96	 8.2

dpADC0.5	 0.5	 1.43±0.51	 0.99	 5.2

dpADC0.6	 0.6	 1.45±0.51	 1.00	 2.1

dpADC0.7	 0.7	 1.47±0.51	 1.00	 1.6

dpADC0.8	 0.8	 1.49±0.52	 0.99	 4.0

dpADC0.9	 0.9	 1.52±0.53	 0.97	 7.1

dpADC1.0	 1.0	 1.54±0.55	 0.94	 10.1

Mean±SD in 10-3mm2/s, overall ADC is (1.47 0.52)x10-3mm2/s
All statistical values are significant (p<0.05) 
pf: perfusion influence factor; dpADC: dual-phase ADC; ρ: spearman’s rho; 
Δrel: absolute relative difference

Table 2. Benign and malignant lesion dpADCs 

Model	 Benign Lesion	 Malignant Lesion

dpADC0	 1.68±0.56 a	 0.92±0.38

dpADC0.1	 1.70±0.52	 0.95±0.35

dpADC0.2	 1.72±0.49	 0.98±0.33

dpADC0.3	 1.73±0.46	 1.00±0.31

dpADC0.4	 1.75±0.45	 1.04±0.30

dpADC0.5	 1.76±0.44	 1.07±0.30

dpADC0.6	 1.78±0.43	 1.10±0.30

dpADC0.7	 1.80±0.44	 1.13±0.32

dpADC0.8	 1.81±0.45	 1.16±0.34

dpADC0.9	 1.83±0.48	 1.19±0.34

dpADC1.0	 1.84±0.51	 1.23±0.40

aMean±SD in 10-3mm2/s 
All statistical values are significant (p<0.05) 
dpADC: dual-phase ADC; ADC: apparent diffusion coefficient

Table 3. Diagnostic performance of dpADC and of 
ADC (in %)

	 95% Confidence Interval of AUC

	 AUC	 SE	 Lower Bound	 Upper Bound

dpADC0.5	 90.8	 2.2	 86.4	 95.2

dpADC0.4	 90.7	 2.3	 86.3	 95.2

dpADC0.3	 90.6	 2.3	 86.2	 95.1

dpADC0.6	 90.3	 2.3	 85.7	 94.8

dpADC0.2	 90.0	 2.4	 85.3	 94.7

ADC	 89.9	 2.4	 85.3	 94.5

dpADC0.7	 89.7	 2.4	 85.0	 94.3

dpADC0.1	 89.1	 2.5	 84.2	 94.0

dpADC0	 88.1	 2.6	 82.9	 89.9

dpADC0.8	 88.0	 2.5	 83.0	 93.2

dpADC0.9	 86.2	 2.7	 80.8	 91.5

dpADC1.0	 84.1	 3.0	 78.3	 89.9

ADC: apparent diffusion coefficient; dpADC: dual-phase ADC; AUC: area 
under the curve; SE: standard error

Table 4. Classification performance of dpADC and 
of ADC

		  False 
	 Thresholda	  Detections	 Se 	 Sp 	 PPV	 Ac 

dpADC0.5	 1.50	 24 [18b+6b]	 92.9	 79.5	 81.4	 86.1

dpADC0.6	 1.54	 25 [19+6]	 92.9	 78.4	 80.6	 85.5

dpADC0.2	 1.29	 26 [14+12]	 85.9	 84.1	 83.9	 85.0

dpADC0.3	 1.33	 26 [14+12]	 85.9	 84.1	 83.9	 85.0

dpADC0.4	 1.44	 26 [18+8] 	 90.6	 79.5	 81.1	 85.0

dpADC0.1	 1.35	 28 [10+18] 	 88.2	 79.5	 80.6	 83.8

ADC	 1.61	 29 [24+5]	 94.1	 72.7	 76.9	 83.2

dpADC0.7	 1.53	 29 [12+17]	 85.9	 80.7	 81.1	 83.2

dpADC0	 1.13	 30 [19+11]	 77.6	 87.5	 85.7	 82.7

dpADC0.8	 1.40	 33 [18+15]	 78.8	 83.0	 81.7	 80.9

dpADC0.9	 1.42	 35 [21+14]	 75.3	 84.1	 82.1	 79.8

dpADC1.0	 1.47	 37 [21+16]	 75.3	 81.8	 80	 78.6

aIn 10-3 mm2/s
bNumber of false positives and cNumber of false negatives
ADC: apparent diffusion coefficient; dpADC: dual-phase ADC; Se: 
sensitivity; Sp: specificity; PPV: positive predictive value; Ac: accuracy88
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Figure 2. Plots for the ADC estimates with respect to dpADC estimates by the model using a pf of (a) 0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, (f) 0.5, 
(g) 0.6, (h) 0.7, (i) 0.8, (j) 0.9 and (k) 1.0 from all lesions 89
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rolls a perfusion influence fraction of 0.5 stands out in terms of its 
highest diagnostic accuracy (AUC=90.8%). 

Diagnostic performances of ADC and dpADC form the models for 
optimal thresholds determined are listed in Table 4 and the corre-
sponding plots for sensitivity, specificity and accuracy of the models 
are seen in Figure 3. ADC achieves 94.1% sensitivity, 72.7% specific-
ity, 76.9% positive predictive value and 83.2% accuracy due to 5 false-
negative and 24 false-positive detections (29 false detections in total) 
at an optimal threshold of 1.61×10-3mm2/s. Among the dpADC mod-
els, dpADC0 offers low sensitivity (77.6%) but the highest specificity 
(87.5%) meanwhile dpADC0.5 and dpADC0.6 provide the highest sen-
sitivity (92.9%) but lower specificities (79.5% and 78.4%, respective-
ly). However, the best performance is given by dpADC0.5: 92.9% sen-
sitivity, 79.5% specificity, 81.4% positive predictive value and 86.1% 
accuracy due to 6 false-negative and 18 false-positive detections (24 
false detections in total) at an optimal threshold of 1.50×10-3mm2/s. 
These results show that when compared to ADC, dual-phase ADC can 
provide almost the same sensitivity but considerably higher specificity 
that improves the positive predictive value and the accuracy.

Discussion and Conclusion

Challenges in quantitative diagnosis of breast cancer from diffusion-
weighted imaging (DWI) motivate new studies to develop enhanced 
methods focusing on better modelling of the diffusion signal data and 
on enhancing the diagnostic performance of diffusion coefficients from 
the models. This study introduces a dual-phase apparent diffusion co-
efficient modeling that may improve the dialogistic performance of 
traditional ADC in breast cancer.

The dual-phase apparent diffusion coefficient model integrates two 
separate ADCs: one from low b-value images (b=50-400s/mm2) and 
the other from high b-value images (b=400-800s/mm2) of DWI. The 
model estimates a single diffusion coefficient value (dpADC) by sum-
ming the two ADCs weighted by a perfusion influence factor. The 
value of the factor may range from 0 to 1 and different dpADC esti-

mates can be obtained by using different factor values. In the current 
study, analyses are performed using the factor values of 0, 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0.

A meta-analysis of thirteen studies evaluating the diagnostic perfor-
mance of ADC in quantitative breast DWI from 964 lesions (615 ma-
lignant and 349 benign) demonstrates that pooled mean ADC from 
malignant lesions is significantly lower than that of benign lesions that 
may range from 0.87 to 1.61×10−3mm2/s and the recommended ADC 
threshold for cancer diagnosis may vary from 0.90 to 1.76×10−3mm2/s 
(27). In the current study, ADC estimations are performed by nonlin-
ear fitting the mono-exponential model to average lesion signal inten-
sity data to ensure high precision in the estimates (use of commonly 
preferred linear fitting complemented with log transformation in ADC 
estimations is reported to lower the precision (28)). The mean malig-
nant lesion ADC and the optimal ADC threshold for cancer diagnosis 
are found to be 1.12×10−3mm2/s and 1.61×10-3mm2/s, respectively, all 
in agreement with the literature. The optimal ADC threshold leads 
to misclassification of 29 lesions (24 benign and 5 malignant lesions) 
from 173 lesions (88 malignant and 85 benign) analyzed.

Mean dpADC from the malignant lesions is significantly lower than 
that of benign lesions independent of the perfusion influence factor 
used in the model that demonstrates a possible use of dual-phase ADC 
modelling in cancer diagnosis. The dual-phase ADC model with a per-
fusion influence factor of 0.5 offers the best performance among all 
the models. From this model, the mean malignant lesion dpADC is 
1.07×10−3mm2/s and the optimal dpADC threshold for cancer diag-
nosis is 1.50×10-3mm2/s. The model misclassifies 24 lesions (18 benign 
and 6 malignant lesions) from the 173 breast lesions analyzed. 

One invasive ductal carcinoma, 1 liposarcoma, 1 ductal carcinoma in 
situ and 2 invasive mucinous carcinoma are misclassified by both ADC 
and dpADC. Use of dpADC lead to misclassification of one invasive 
lobular carcinoma additionally. On the other hand, 5 fibroadenomas, 
4 abscesses, 3 adenoses, 2 columnar cell changes, 3 fibroses and 1 intra-
ductal papilloma are misclassified by both ADC and dpADC. Use of 
ADC resulted in misclassification of other 6 benign lesions: 3 fibroad-
enomas, 1 abscess, 1 apocrine metaplasia and 1 columnar cell change. 
Dual-phase ADC modelling reduces the number of false-positive de-
tections remarkably. 

Some precautions should be considered for dpADC. Although 
dpADC of malignant lesions is significantly lower than that of benign 
lesions, mucinous carcinoma can reveal high dpADC values and can 
be misdiagnosed as benign while papilloma, abscess and fibrosis may 
demonstrate low dpADC values and therefore can be misdiagnosed as 
cancer. These shortcomings can be due to the underlying pathophysi-
ology of these specific lesions. The mucinous carcinoma is among the 
malignant lesions, but it may reveal low cellularity and with relatively 
high-water content (29). Also, abscess, papilloma, and fibrosis are the 
benign lesions that may exhibit high cellularity (30). The current study 
imaging protocol schedules DWI before DCE-MRI scan and in the 
case of DWI immediately after DCE-MRI, presence of contrast agent 
in the tissue may lead to an artificial increase in dpADC from malig-
nant lesions (A similar artificial increase has been recognized for ADC 
(30)). 

During this retrospective study, a dedicated post-processing software 
has been developed and used to obtain the two separate ADC esti-
mates within the dual-phase ADC model. However, the vendor-specif-

Figure 3. Plots for the sensitivity, specificity and overall accuracy of 
the dpADC models
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ic software packages installed on the main MR consoles are equipped 
with functionality to obtain different ADC maps (3) and can be set-up 
with little effort to obtain the maps required for dpADC modelling. 
This would facilitate the use of dpADC in clinic practice. 

There are some limitations of the current study. The clinical utility of 
the dpADC for multi-centers and the repeatability and reproducibility 
of the dpADC from different brand MR scanners are questionable 
since this study enrolls breast lesions imaged using a 3.0T MR scanner 
at a single center. Small region-of-interests are placed for the breast le-
sions manually. This process requires utmost attention and experience 
especially for the lesions obscured with architectural distortion and 
if not performed precisely, may lead to a great variability in dpADC. 
The value of dpADC is calculated using two different ADC estimates 
and three different b-value images from DWI. More precise calcula-
tions can be accomplished with more number of images acquired with 
well selected b-values (20, 21). The current study has been designed to 
assess the best dpADC model in differentiating the breast masses us-
ing DWI only. Its use in clinical setting and value in multiparametric 
imaging complemented with dynamic contrast-enhanced MR imaging 
should be evaluated with further prospective studies.

In conclusion, dual-phase ADC modelling can provide almost the 
same sensitivity but considerably better specificity than traditional 
ADC calculations. Thus, dual-phase ADC modelling can improve the 
diagnostic accuracy of quantitative DWI in differentiating breast can-
cers from benign lesions. Requiring acquisition of only three different 
b-value images and benefiting from easy-to-setup ADC mapping tools 
installed on the main MR console, dpADC based evaluations can be 
easily adoptable to current imaging and evaluation protocols. Further 
prospective studies considering multiple institutions and multiple 
scanners are needed to justify its benefit in clinical setting and its value 
in diagnosis of breast lesions.
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