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Abstract

It is now well established that nearby beating pairs of eukaryotic flagella or cilia typically 

synchronize in phase. A substantial body of evidence supports the hypothesis that hydrodynamic 

coupling between the active filaments, combined with waveform compliance, provides a robust 

mechanism for synchrony. This elastohydrodynamic mechanism has been incorporated into ‘bead-

spring’ models in which the beating flagella are represented by microspheres tethered by radial 

springs as they are driven about orbits by internal forces. While these low-dimensional models 

reproduce the phenomenon of synchrony, their parameters are not readily relatable to those of the 

filaments they represent. More realistic models which reflect the underlying elasticity of the 

axonemes and the active force generation, take the form of fourth-order nonlinear PDEs. While 

computational studies have shown the occurrence of synchrony, the effects of hydrodynamic 

coupling between nearby filaments governed by such continuum models have been theoretically 

examined only in the regime of interflagellar distances d large compared to flagellar length L. Yet, 

in many biological situations d/L ≪ 1. Here, we first present an asymptotic analysis of the 

hydrodynamic coupling between two extended filaments in the regime d/L ≪ 1, and find that the 

form of the coupling is independent of the microscopic details of the internal forces that govern 

the motion of the individual filaments. The analysis is analogous to that yielding the localized 

induction approximation for vortex filament motion, extended to the case of mutual induction. In 

order to understand how the elastohydrodynamic coupling mechanism leads to synchrony of 

extended objects, we introduce a heuristic model of flagellar beating. The model takes the form of 

a single fourth-order nonlinear PDE whose form is derived from symmetry considerations, the 

physics of elasticity, and the overdamped nature of the dynamics. Analytical and numerical studies 

of this model illustrate how synchrony between a pair of filaments is achieved through the 

asymptotic coupling.

I Introduction

In nearly all of the contexts in biology in which groups of cilia or flagella are found they 

exhibit some form of synchronized behavior. At the level of unicellular organisms this often 

takes the form of precise phase synchrony as in the breaststroke beating of biflagellated 

green algae [1], but it has also been known since the work of Rothschild [2] that swimming 

sperm cells can synchronize the beating of their tails when they are in close proximity. In 

multicellular organisms such as Paramecium [3] and Volvox [4, 5], and in the respiratory and 

reproductive systems of higher animals one often observes metachronal waves, which are 

long-wavelength modulations in the beating of ciliary carpets. There are three primary 
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dynamical behaviors of ciliary groups, two involving beating waveforms that have a ‘power 

stroke’ in which the filament pivots as a nearly straight rod, followed by a ‘recovery stroke’ 

in which it is strongly curved, and a third in which the flagella beating is undulatory. In the 

first two cases it is useful to categorize the different geometries on the basis of the 

orientation of the power strokes of adjacent flagella. If we follow reference points along 

each flagellum - say, each center of mass - then they will move with either parallel (cilia) or 

anti-parallel (biflagellate) angular velocities (Figs. 1a & b). In the undulatory case (Fig. 1c), 

found in mutants of Chlamydomonas and during the ‘photoshock response’ [6], nearby 

flagella beat parallel to each other.

Based on the observations of Rothschild [2] on synchronized swimming of nearby sperm 

cells, Taylor [7] investigated the possibility that hydrodynamic interactions could lead to 

synchrony. His ‘waving sheet model’ considered two infinite parallel sheets each in the 

shape of a prescribed unidirectional sinusoidal traveling wave. Examining the rate of viscous 

dissipation as a function of the phase shift between the two waves, he found that the 

synchronized state had the least dissipation. While highly plausible as an explanation of 

synchronization, this model does not include a dynamical mechanism by which the 

synchronized state is achieved from arbitrary initial conditions. Subsequent work [8] has 

shown that adding waveform flexibility to the model yields a true dynamical evolution 

toward synchrony, and this has been confirmed by experiment [9]. The recognition that 

hydrodynamic interactions alone are insufficient to generate dynamical evolution toward 

synchrony, and that some form of generalized flexibility is necessary had already been seen 

in the study of rotating helices as a model for bacterial flagella [10]. This notion of ‘orbital 

compliance’ was subsequently incorporated into several variants of bead-spring models [11–

13] of ciliary dynamics in which each beating filament is replaced by a moving microsphere 

which is driven around an orbit by internal forces and allowed to deviate by a radial spring. 

Under the assumption that radial motions evolve rapidly relative to azimuthal ones, these 

models generically yield a nonlinear ODE for the phase difference between the oscillators 

that takes the form of the Adler equation [14].

While these models lead to a microscopic interpretation of the generic Adler equation, they 

are most appropriate for the situation in which the distance d between the flagella is large 

compared to their length L, where a far-field description in terms of Stokeslets is valid [15]. 

But many of the most interesting situations, such as the parallel and undulating geometries 

in Figs. 1b&c, are in precisely the opposite limit, d/L ≪ 1, while still in the regime a ≪ d, 

where a is the filament radius. In this limit it is clear that a proper description of the entire 

filament is necessary, because there are very strong near-field interactions all along them, 

and therefore a representation by a single point force would not be realistic. While 

computations incorporating microscopic models of flagella embedded in a viscous fluid 

show that synchronization does indeed occur through hydrodynamic interactions in this 

regime [16, 17], it was only in subsequent work that the formally exact nonlocal description 

of hydrodynamic interactions in multi-filament systems was presented [18]. Taking 

advantage of the separation of scales a ≪ d ≪ L, we present in Section II an asymptotic 

derivation of the leading-order hydrodynamic coupling between two filaments. In particular, 

we find that the relevant small coupling parameter is ϵ = ln(L/d)
ln(L/a) . The analysis leading to this 
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result is reminiscent of the ‘localized induction approximation’ in vortex filament dynamics 

[19].

At present, there is no single generally-accepted microscopic model for eukaryotic flagellar 

beating, although recent studies have begun to address the relative merits of several 

promising candidate models [20–22], which typically consist of a pair of coupled equations, 

one for the filament displacement, incorporating filament bending elasticity and viscous 

drag, and the other for the active bending forces associated with molecular motors. To 

illustrate how the hydrodynamic coupling and waveform compliance lead to 

synchronization, in Section III we introduce and analyze a heuristic single PDE, of the form 

hi t
= 𝒩 hi ; i = 1, 2, where𝒩is a nonlinear operator, which displays self-sustained finite-

amplitude wavelike solutions. Section IV considers, both analytically and numerically, the 

dynamics of two filaments of the type introduced in Section III interacting through the 

coupling derived in Section II. The concluding Section V discusses possible applications of 

the model.

II Asymptotics

We consider two slender filaments of length L undergoing some waving motion, as shown in 

Fig. 2. Their mean separation is d and we assume that their waving amplitude is at most of 

order d. We seek to derive, in the linear regime of small amplitude displacements, the forces 

resulting from hydrodynamic interactions in the asymptotic limit d ≪ L.

Let h1 and h2 denote the vertical displacements of the filaments from their mean positions. 

We present the derivation of the force on one filament only, say filament 1, as the dynamics 

of the other can be deduced by symmetry. In the linear regime, it is only necessary to 

consider the balance of forces in the vertical direction. Using the framework of resistive-

force theory (RFT) [23], the vertical component F1 of the hydrodynamic force per unit 

length acting at the point (x1, h1) of filament 1 is

F1 = − ζ⊥
∂h1
∂t x1, t − uy

2 1 x1, h1 , (1)

where ζ⊥ is the drag coefficient for motion normal to the filament. We now proceed to 

calculate the flow uy
2 1 x1, h1  induced by filament 2. In the linear regime, this flow arises 

from a superposition of hydrodynamic point forces acting in the y direction along filament 2. 

Neglecting end effects, the flow uy
2 1 can thus be written as the following integral of 

Stokeslets:

uy
2 1 x1, h1 = ey ⋅ ∫

0

L 1
8πμ

1
r + rr

r3 ⋅ f2 dx2, (2)
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where μ is the dynamic viscosity, 1 the identity, and r the vector that points from (x2, d + h2) 

on filament 2 towards (x1, h1) on filament 1 (Fig. 1). In the linear regime, the force density is 

simply given by that from RFT as

f2 = ζ⊥
∂h2
∂t x2, t ey, (3)

where the positive sign indicates that the force f2 acts on the fluid. We thus have

uy
2 1 x1, h1 =

ζ⊥
8πμ∫0

L 1
r +

r ⋅ ey
2

r3
∂h2
∂t dx2 . (4)

Substituting r = [x1 − x2, h1 − d − h2] into Eq. (4) and linearizing for small h1 and h2, we 

obtain

uy
2 1 x1, h1 ≃

ζ⊥
8πμ∫0

L x2 − x1
2 + 2d2

[ x2 − x1
2 + d2]3/2

∂h2
∂t dx2 + .... (5)

In order to compute the asymptotic value of Eq. (5) in the limit d ≪ L we introduce the 

dimensionless lengths xi′ = xi/L, i = 1, 2, define ϵ1 = d/L, and obtain

I x1 = ∫
0

1 x2 − x1
2 + 2ϵ1

2

[ x2 − x1
2 + ϵ1

2]3/2
∂h2
∂t dx2, (6)

where for convenience we have dropped the prime on the integration variable, while all other 

quantities in (6) are still dimensional. This integral has two contributions: a local integral, IL, 

where x2 is close to x1 and a nonlocal one, INL where |x2 − x1| ≫ ϵ1. To evaluate INL, we 

choose an intermediate length scale δ satisfying ϵ1 ≪ δ ≪ 1. Then, the nonlocal integral can 

be rewritten as

INL x1 = ∫
0

x1 − δ

+ ∫
x1 + δ

1 x2 − x1
2 + 2ϵ1

2

[ x2 − x1
2 + ϵ1

2]3/2
∂h2
∂t dx2 . (7)

By construction |x1 − x2| is at least δ ≫ ϵ1 and thus it is possible to neglect ϵ1 in the 

nonlocal integral to obtain
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INL x1 ≃ ∫
0

x1 − δ
1

x1 − x2

∂h2
∂t dx2 +∫

x1 + δ

1 1
x2 − x1

∂h2
∂t dx2 . (8)

Provided that x1(1 − x1) ≫ δ2, then in the limit δ → 0, the integral in Eq. (8) diverges 

logarithmically as

INL x1 = − 2 ln δ + O 1
∂h2
∂t x2 = x1

. (9)

Similarly, and with the change of variables Δ = x2 − x1, the local part of the integral can be 

written as

IL x1 = ∫
−δ

δ Δ2 + 2ϵ1
2

[ Δ2 + ϵ1
2]3/2

∂h2
∂t d Δ , (10)

where h2 is now understood to be a function of Δ. In the limit δ → 0, the term ∂h2/∂t takes 

its value near Δ = 0, and the remaining integral can be computed exactly, yielding

IL x1 ≃ ln
δ2 + ϵ1

2 + δ

δ2 + ϵ1
2 − δ

+ 2δ

[δ2 + ϵ1
2]1/2

∂h2
∂t Δ = 0

. (11)

Because ϵ1 ≪ δ the result to order ϵ1 reads

IL x1 ≃ 2 ln δ + 2 ln 2 − 2 ln ϵ1 + 2 + O
ϵ1

2

δ2
∂h2
∂t Δ = 0

. (12)

Remarkably, the ln δ divergence from Eq. (9) exactly cancels out the one from Eq. (12) 

producing a result which is independent of the particular choice made for the cutoff δ. Thus, 

the final expression for I reads

I(x1) = [ − 2 ln ϵ1 + O(1)]
∂h2
∂t x2 = x1

, (13)

Thus, the vertical component of the hydrodynamic force on filament 1 is
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F1 ≃ − ζ⊥
∂h1
∂t x1,t

−
ζ⊥

4πμ ln L
d

∂h2
∂t x2 = x1,t

≃ − ζ⊥
∂h1
∂t x1,t

− ϵ
∂h2
∂t x2 = x1,t

, (14)

where we have used ζ⊥ ∼ 4πμ/ ln(L/a), with a the radius of the flagella, and

ϵ ≡ ln(L/d)
ln(L/a) . (15)

As in nearly all applications of slender body hydrodynamics, the parameter ϵ is 

asymptotically small only in the unphysical case when the aspect ratio is exponentially large. 

However, it is well-known that use of the leading order approximation of slender body 

hydrodynamics for larger values of ϵ is robust [24, 25].

Finally, it is important to note that even in the case when the filaments are in phase and 

h1(x1, t) = h2(x2, t) = h̃(x, t) everywhere, and where

F1 ≃ − ζ⊥(1 − ϵ)∂h
∂t x, t

, (16)

it is not appropriate to evaluate Eq. (16) at close contact between the two flagellar filaments 

(d = 2a). because the induced flow was computed as a superposition of Stokeslets only. This 

is a good approximation only when all other singularities present have decayed away, in 

particular the (potential) 1/r3 source dipole which arises from the finite-size of the flagella. 

Thus, the approximation requires that d ≫ a from every point of flagella 1 to every point in 

flagella 2 (and vice-versa). In other words, the result (14) is valid only within the limits a ≪ 
d ≪ L. For example, for eukaryotic flagella with L ∼ 50 μm and a ∼ 0.1 μm, then the 

analysis is valid when the flagella are separated by a few microns, in which case ϵ decreases 

from 0.5 for d ∼ 2 μm to 0.25 for d ∼ 10 μm.

The results above imply that if each of two nearby filaments is governed by an equation of 

the form ∂hi/∂t = 𝒩ci
hi , where {ci} are the parameters that differentiate the flagella, then 

the coupled pair evolves according to

∂h1
∂t = 𝒩c1

(h1) + ϵ
∂h2
∂t , (17a)

∂h2
∂t = 𝒩c2

(h2) + ϵ
∂h1
∂t . (17b)
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As we have only computed the hydrodynamic interaction to order ϵ, it is appropriate to 

consider the leading-order form of (17) as 

∂hi/∂t = 𝒩ci
hi + ϵ𝒩c j

h j  for i, j = 1, 2 and i≠ j.

III Phenomenological Model of a Single Filament

A Background and model

Here, to represent the situation in which a flagellum is attached to an organism’s surface, we 

focus on the case of a finite beating filament, say 1, pinned at its left end to a fixed support, 

with a free right end. As with all models for systems of this type, and the analysis in the 

previous section, we focus on low Reynolds number dynamics. The structure of the most 

general equation of motion for a filament arising from balancing its tangential and normal 

forces and bending moments is well known [20, 21, 26, 27]. Under the further assumption of 

linear filament elasticity and resistive force theory, and assuming that the filament deviates 

only slightly from straight, the linearized equation of motion for the tangent angle ψ(s, t) as 

a function of the arc length s and time t takes the form ζ⊥ψt = afss − EIψssss, where E is the 

Young’s modulus and I the moment of inertia, per unit density, of the filament cross section 

about the axis of rotation, and f is the active bending moment. Recognizing that within this 

approximation ψ ≃ ∂xh1 we obtain

ζ⊥
∂h1
∂t = a∂ f

∂x − A
∂4h1
∂x4 , (18)

where A = EI is the bending modulus of the filament. The distinction between different 

models of active bending is to be found in the particular form of f, which may be coupled 

back to the geometry (e.g. ψ and its derivatives) through an auxiliary equation of motion.

Recent work [21] has studied the linearized dynamics of the unstable modes that arise in 

three models of the form (18), known as sliding-control [28], curvature-control [27], and the 

geometric clutch [29]. The sliding control model, whose equation of motion does not 

explicitly break left-right symmetry, was shown not to exhibit base-to-tip propagating modes 

of the kind seen in experiment. In contrast, both the curvature-control and geometric clutch 

models, which do display modes with the qualitatively correct behavior, have a symmetry-

breaking term ∂xxxh1. Furthermore, as the dynamics is translational invariant in y, there can 

be no terms explicitly dependent on h1 itself. Motivated by these results, and with an eye 

toward the simplest PDE that will encode a characteristic wavelength, amplitude, and 

frequency of flagellar beating, we propose a form in which the left-right symmetry is broken 

with the derivative of the lowest order possible,

a∂ f
∂x = − b

∂h1
∂x + G(κ), (19)

Goldstein et al. Page 7

Phys Rev Fluids. Author manuscript; available in PMC 2018 May 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



where G is a nonlinear amplitude-stabilizing function of κ ≃ ∂xxh1, the filament curvature. 

The presence of this advective term does not reflect any explicit fluid flow, rather it encodes 

processes internal to the filament that break symmetry. If we assume that the filament has h1 

→ −h1 symmetry, then G will be an odd function of its argument. Expressing G as a Taylor 

expansion up to cubic order we arrive at the model of interest, henceforth called the 

advective flagella (AF) model

ζ⊥
∂h1
∂t = − C

∂h1
∂x − D

∂2h1
∂x2 − A

∂4h1
∂x4 + B

∂2h1
∂x2

3

, (20)

where A, B, C and D are heuristic parameters of the model. We can now introduce 

dimensionless variables ξ = αx, τ = ϖt and h = Hh1, where α, ϖ and H are constants. Direct 

substitution of these new variables into (20), with the choice c = CA1/2(2/D)3/2, α = (D/

2A)1/2, ϖ = D2/(4ζ⊥A) and H = A(2/BD)1/2 yields the characteristic length ℓc = α−1 = [A/

(ϖζ⊥)]1/4, and the dimensionless PDE

∂h
∂τ = − c∂h

∂ξ − 2∂2h
∂ξ2 − ∂4h

∂ξ4 + ∂2h
∂ξ2

3
, (21)

where 0 ≤ ξ ≤ Λ, with Λ = αL. The length ℓc is the well-known elastohydrodynamic 

penetration length that arises in the study of actuated elastic filaments [30, 31], and thus Λ is 

the so-called Sperm number. Of the many possible boundary conditions we adopt the 

simplest: hinged at the left end (h(0, τ) = hξξ (0, τ) = 0) and free at the right end (hξξ (Λ, τ) 

= hξξξ (Λ, τ) = 0). In this rescaled form, the dynamics of a single filament is completely 

specified by c and Λ. Note that the dynamics (21) does not enforce filament length 

conservation beyond linear order, but this should not introduce any qualitative changes in the 

results below.

The linear operator in (21) is that of the advective version [32] of the Swift-Hohenberg 

model [33] without the term linear in h, and is identical to that in the phenomenological 

model of dendrite dynamics introduced by Langer and Müller-Krumbhaar [34] and studied 

by Fabbiane, et al. in the context of control theory [35]. Heuristically, we recognize that the 

second and fourth derivatives naturally select a most unstable length scale for a linear 

instability of the state h = 0, the advective term leads to rightward wave propagation, and the 

nonlinearity leads to amplitude saturation. The intuitive understanding that these are the 

minimum necessary, but also sufficient, ingredients for a model of the beating of a single 

flagellum, is proven to be correct by the numerical and analytic work presented in the 

following subsections. Moreover, in Section IV, we will also show that the dual features of 

linear terms −2hξξ − hξξξξ which lead to a band of unstable modes, and amplitude 

saturation through nonlinearity will allow for waveform compliance when two filaments are 

hydrodynamically coupled.
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B Numerical studies of a single filament

In this section we present the dynamical behavior of the AF model obtained through 

numerical computations. The model (21) was solved numerically using an implicit finite-

difference scheme described in detail by Tornberg and Shelley [18], including one-sided 

stencils for derivatives at the filament endpoints. We shall see that for any choice of c and Λ 
the model selects a wavelength λ (wavenumber k = 2π/λ), frequency ω and maximum 

amplitude A. Of particular interest are the limiting regimes Λ/λ ∼ 1 and Λ/λ ≫ 1. The 

former is the regime seen in many experiments (Fig. 1), while the latter corresponds to a 

semi-infinite system whose behavior far from the pinning wall approximates a traveling 

wave.

Following a short transient, we find that the filament evolves toward a periodic waveform of 

nonuniform, finite amplitude. Figure 3a shows overlays of h(ξ, τ) at various times during a 

full cycle for Λ = 15 and three values of c. We observe that for this length, and c = 1 (top 

waveform) the oscillation amplitude has not reached saturation at the free end. Thus, even 

larger values of c (middle and bottom) naturally advect the waveform even faster to the right, 

resulting in a smaller maximum amplitude at the free end. As seen by comparing the two 

examples in Fig. 3b with the top in Fig. 3a, where all three filaments have c = 1 but different 

length, for Λ = 10 the amplitude envelope is clearly linear in ξ, for S = 15 there is the 

beginning of a rollover, and for Λ = 30 there is clear saturation. For Λ/λ ∼ 1 the maximum 

amplitude of the waveform is reached at the free end of the filament, as seen in the natural 

biological waveforms and also in the models described above [21]. In general, for a given 

value of c, as Λ grows relative to λ, the filament displays two distinct regions: a transition 

region adjacent to the wall where the amplitude grows along ξ up to a characteristic ℒ, and 

a region beyond where the amplitude saturates and the oscillations approximate a traveling 

wave. The ‘healing length’ ℒ increases with c.

In the regime Λ/λ ≫ 1, and far from the wall, the amplitude A, wave vector k, and 

frequency ω of the approximate traveling wave are determined by c only. The solid symbols 

in Figure 4 indicate those numerical results. To put these results in context, note that a linear 

stability analysis of the operator −2hξξ − h4ξ leads to a growth rate which is maximized at 

k* = 1 where, without loss of generality, we consider only the positive branch of solutions. 

We see from Fig. 4a that the value of k selected by the system is always less than 1, but k → 
1 as c increases, and also, from Fig. 4b, that the selected frequency is consistent with the 

relation ω ≃ ck. Finally, the saturated amplitude A of the waveform far from the wall is a 

strongly decreasing function of k (Fig. 4c).

C Approximate analytical solution

1 Amplitude saturation—Far away from the wall the solution of (21) is well 

approximated by a traveling wave with a time dependent amplitude of the form

h ξ, τ = A(τ cos kξ − ωτ . (22)
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Substituting (22) into (21), rewriting the cubic cosine term with the multiple angle formula, 

ignoring terms involving 𝒪 3 kξ − ωτ , and equating the coefficients of the sine and cosine 

to zero yields an evolution equation for A(τ) and a relationship between the wavenumber k 
and the angular frequency ω, namely

ω = ck, (23a)

Aτ ≃ k2(2 − k2)A − 3
4k6A3 . (23b)

The evolution equation for the amplitude A(τ) is of the Bernoulli type and can be easily 

solved after making the change of variables z = A−2, with solution of the form z = Beβτ + γ, 

where B, β, and γ are constants, corresponding to a time dependent amplitude given by

A(τ) = Be−2(2k2 − k4)τ + 3k4

4(2−k2)

−1/2
. (24)

Provided 0 < k < 2, A has a finite value as τ → ∞, namely

A∞(k) = 2 2 − k2

3k2 . (25)

A∞(k) is shown as the solid line in Fig. 4c, and it is in excellent agreement with the 

numerical data for A expressed now as a function of the numerically selected k. We note that 

the steady-state solution can be found exactly in terms of elliptic integrals by transforming 

into a moving coordinate system with X = ξ − cτ, h(ξ, τ) → F (X) and solving −2G − GXX 

+ G3 = 0 for G = FXX. However, the slight increase in accuracy that this approach produces 

comes at the expense of a lack of clarity compared to the one-mode approximation (22).

2 Wavenumber and frequency selection—While the traveling wave solution is a 

good approximation far away from the wall, it only provides an asymptotic relationship 

between the wavenumber and the frequency but does not yield any information about the 

possible numerical values of k and ω. In order to find these numerical values the linearized 

evolution equation

∂h
∂τ = − c∂h

∂ξ − 2∂2h
∂ξ2 − ∂4h

∂ξ4 , (26)

may be used. Besides the trivial solution h(ξ, τ) = h0 where h0 is a constant, (26) has a 

solution of the form h(ξ, τ) = exp(Ωτ + Kξ), where Ω = σ + iω′ and K = p + ik. In the 

Goldstein et al. Page 10

Phys Rev Fluids. Author manuscript; available in PMC 2018 May 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



present case, the only solutions of interest are those with a positive temporal growth rate σ > 

0 because any other solution will decay to h(ξ, τ) = h0. Moreover, we expect the solution 

corresponding to the maximum growth rate to be the one that will control the evolution of 

the shape h(ξ, τ). Hence, to find the extremal values of K and Ω we replace h(ξ, τ) into (26) 

and then, from the characteristic equation, calculate the derivative of Ω respect of K:

Ω = − cK − 2K2 − K4 and d Ω
dK = − c − 4K − 4K3 . (27)

After separating real and imaginary parts they become:

σ = − cp − 2 p2 − k2 − [ p2 − k2 2 − 4p2k2], (28a)

ω′ = − cq − 4pk − 4p3k + 4pk3, (28b)

0 = − c − 4p − 4p3 + 12pk2 and (28c)

∂ω′
∂ p = − 4k − 12p2k − 4k3, (28d)

where we have already set the real part of the derivative of Ω equal to zero and note that the 

complex part of the derivative is identical to calculating ∂ω′/∂p. In general, ∂ω′/∂p is also 

set to zero to find the boundary between convective and absolute instability [36, 37]. Here 

this second constraint has been relaxed so that it is possible to find the curve ω′(k) along 

which the system is most unstable. In fact, rewriting equation (28c) as −12pk2 = −c − 4p 
− 4p3 and replacing this expression into (28b) yields ∂ω′/∂p = −8k3. Equating the two 

expressions for ∂ω′/∂p then gives

p2 = k2 − 1
3 . (29)

Replacing (29) back into equations (28c-a) gives the expressions for the velocity c, the 

angular frequency ω = −ω′ and the growth rate σ as functions of the wave number k:

c = 8 k2 − 1
3

3/2
, (30a)
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ω = 8k3 k2 − 1
3

1/2
, (30b)

σ = − 4k4 + 4k2 − 1
3 . (30c)

From these results it becomes clear that the only solutions which satisfy the hypothesis for 

h(x, t) are those with values k ≥ 1/ 3 because for values of k < 1/ 3 both, c and ω are 

complex. In particular, the value k = 1/ 3 corresponds to c = ω = 0. As seen in Fig. 4b the 

numerical counterpart to this boundary is k = 1/2. While this represents a discrepancy of 

approximately 15 percent between the analytic prediction and numerical results, it can be 

seen in the figure that the basic trend in the selected frequency is captured. Figure 4a shows 

the comparison between the numerical k(c) and the analytical result above, and in this case 

larger the value of c the closer the two become. Because the analytic expression (25) for the 

maximum amplitude as a function of k was obtained using the full nonlinear equation, this 

prediction shows almost perfect agreement with the numerical results (Fig. 4c).

Another value of interest is the critical k* with zero growth rate, and which can be found by 

solving the bi-quadratic equation 4k4 − 4k2 + 1
3 = 0 which has only one real root above the 

threshold for k:

k* = 1 + (2/3)
2

1/2
≃ 0.953 (31)

All solutions in the interval 1/ 3 ≤ k ≤ k * have positive growth rates with values 

σ(k * ) ≤ σ ≤ σ(1/ 2) where σ(k*) = 0 and σ(1/ 2) = 2/3; while all solutions for which k > k* 

have a negative growth rate and, hence, relax back to the solution h = h0. The critical angular 

frequency and velocity that correspond to σ(k*) = 0 are

ω(k*) = 2
3 1 + 2

3
3/2

1 + 3 2
3

1/2
≃ 5.250, (32a)

c(k*) = 4
3 6 1 + 3 2

3
3/2

≃ 3.487 . (32b)

The numerical value of the velocity for which the oscillatory solutions “disappear” is c* ≃ 
3.2, and the analytic prediction (32b) is well within the acceptable limits of agreement for 

the approximation. Moreover, the analytic prediction for the functional form of the ratio 

ω(k)/c(k) is qualitatively correct and given by
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ω
c (k) = k3

k2 − 1
3

, (33)

which as expected, tends to ω/c → k as k grows.

3 Frequency-amplitude relation—Before proceeding to numerical studies of coupled 

filaments we are in a position to see how synchronization of two nearby filaments may 

occur. First, we note that when two filaments beat in synchrony the fluid gap between them 

is nearly constant, whereas when they are out of synchrony the gap varies with position. 

That variation produces fluid forces that will deform the filaments such that their local 

amplitude and frequency will be altered. As seen in bead-spring models [11], for example, a 

stable synchronous state may occur when the frequency is a decreasing function of 

amplitude. In the case of the approximate traveling-wave states we have discussed in this 

section, the results above can be used directly to calculate ω(A), as shown in Fig. 5a,

ω(A) = 32
9A4 1 + 6A2 − 1 + A2

2
1/2

1 + 6A2 − 1 3/2 . (34)

To see how the synchronization mechanism operates within the present model, and 

anticipating the numerical results presented below, consider the configuration of two 

filaments shown in Fig. 5b, each traveling to the right, where the black arrows indicate the 

local direction of motion of the filaments at two distinct coordinates, and the blue arrows 

indicate the direction of the fluid flow induced by filament 1 (h1(x, t)) on 2. At the point xa 

the fluid flow acting on filament 2 will push it further down, whereas at point xb that flow 

will pull it upwards. The net effect is that the local wave amplitude of filament 2 will be 

decreased, and by the relationship in Fig. 5a its frequency will increase, moving it faster to 

the right and hence catching up with filament 1. Similar considerations show that the effect 

of filament 2 on 1 is to increase its amplitude, hence to decrease its frequency. Thus, the 

stable state is the in-phase synchronized one. This elastohydrodynamic mechanism is the 

continuum analog of that which operates in bead-spring models.

IV Two Coupled Filaments

A Symmetry and stability considerations

In this section we discuss the coupled dynamics of two nearby filaments using the model of 

Section III with the coupling derived in Section II. When two coupled filaments have the 

same intrinsic speeds c1 = c2 = c then they obey

∂h1
∂τ = 𝒩c(h1) + ϵ

∂h2
∂τ , (35a)
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∂h2
∂τ = 𝒩c(h2) + ϵ

∂h1
∂τ , (35b)

where, following Eq. 21, the nonlinear operator 𝒩c(h i)) is

𝒩c(h i) = − c
∂h i
∂ξ − 2

∂2h i

∂ξ2 −
∂4h i

∂ξ4 +
∂2h i

∂ξ2

3

. (36)

By direct substitution, it is straightforward to show that Eqs. 35, with the operator 36, have 

two exact solutions S1 : (ĥ1(ξ, τ), d̂+ ĥ1(ξ, τ)) (sinuous solution), and S2 : (ĥ1(ξ, τ), d̂–
ĥ1(ξ, τ)) (varicose solution), where d̂ is a dimensionless constant, provided ĥ1(ξ, τ) satisfies 

the nonlinear, autonomous equation

(1 ∓ ϵ )
∂h1
∂τ = − c

∂h1
∂ξ − 2

∂2h1
∂ξ2 −

∂4h1
∂ξ4 +

∂2h1
∂ξ2

3

, (37)

which is the rescaled PDE that governs a single isolated filament. Note that here the plus 

(minus) sign corresponds to the sinuous (varicose) configuration. The effective times τ′ = 

τ/(1 ∓ ϵ) correspond to faster motion than an isolated filament in the sinuous case and 

slower motion in the varicose arrangement. This can be understood as a result of decreased 

and increased viscous dissipation in the two cases, respectively, consistent with the results of 

the waving-sheet model.

To study the stability of these solutions a small perturbation is introduced. Because our focus 

is on the difference between the filament positions, it is sufficient to examine perturbed 

solutions of the form (ĥ1(ξ, τ), d̂± ĥ1(ξ, τ) + η(ξ, τ)) where |η(ξ, τ)/ĥ1 (ξ, τ)| ≪ 1. Then, 

the linearized equation of motion for η is

(1 ± ϵ )∂η
∂τ = − c∂η

∂ξ + ±3
∂2h1
∂ξ2

2

− 2 ∂2η
∂ξ2 − ∂4η

∂ξ4 . (38)

Note that here the upper (lower) sign corresponds to the sinuous (varicose) configuration. 

The dynamics (38) is close in form to the linearized dynamics of a single filament, with one 

crucial difference: and in the original operator the coefficient of the second spatial derivative 

was negative (namely –2) which corresponds to the “anti”-diffusion that produces the 

instability, whereas now, the base solution parametrically forces the perturbation through the 

coefficient of the second derivative. Thus, depending on the characteristics of the solution 

ĥ1, and only in the sinuous case, it is possible to find regions with a positive effective 

diffusion coefficient.
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As pointed out in the previous section, the asymptotic solution in time of (37) far away from 

the origin is a traveling wave ĥ1(ξ, τ) ≃ A∞ cos(kξ – ωτ) with A∞ = 2(2 – k2)1/2/k2, which 

yields

±3
∂2h1
∂ξ2

2

− 2
ξ, τ

= ± 2 1 − k2 (39)

as the average coefficient of the diffusive term in Eq. 38. This coefficient is positive (hence 

stabilizing) for the sinuous configuration and negative (destabilizing) for the varicose one. In 

the presence of the always stabilizing influence of the fourth derivative, this implies that the 

only linearly stable configuration is the sinuous one.

When the speeds of the filaments are slightly different, c1 = c − (Δc/2) and c2 = c + (Δc/2) 

with Δc/c ≪ 1, a similar analysis to the one described above makes it possible to find an 

approximate solution that corresponds to a quasi-sinuous configuration, and for which the 

first order solution is the same as when Δc = 0. The initial system that governs the motion is

∂h1
∂τ = 𝒩c1

(h1) + ϵ
∂h2
∂τ , (40a)

∂h2
∂τ = 𝒩c2

(h2) + ϵ
∂h1
∂τ , (40b)

and the proposed solution is S : (ĥ1 = h̄ − η, ĥ2 = h̄ + η) where η/h̄ ≪ 1. Direct substitution 

and some simple algebra yield the evolution equation for h̄,

(1 − ϵ)∂h
∂τ = 𝒩c(h) + 3 ∂2η

∂ξ2

2∂2h
∂ξ2 − Δ c

2
∂h
∂ξ . (41)

Keeping only linear terms in η this reduces to the original autonomous one for a single 

filament, but with coefficient 1 - ϵ in front of the temporal derivative. The associated 

linearized equation for η is similar to (38), but also has a forcing

(1 + ϵ)∂η
∂τ = − c∂η

∂ξ + 3 ∂2h
∂ξ2

2
− 2 ∂2η

∂ξ2 − ∂4η
∂ξ4 − Δ c

2
∂h
∂ξ (42)

Replacing into (42) the traveling wave solution (22) we obtain
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(1 + ϵ)∂η
∂τ + c∂η

∂ξ − [4(2 − k2)cos2(kξ − ωτ) − 2]∂2η
∂ξ2 − ∂4η

∂ξ4 ≃ Δ c 2 − k2

3k3 sin(kξ − ωτ) (43)

Notice that the diffusion coefficient and the forcing are out of phase. When | cos(kξ − ωτ)| 
is large, the diffusion coefficient is positive and η decreases making ĥ1 ≃ ĥ2; these are the 

regions where the forcing is very small and tends to leave the system unperturbed. In the 

regions of space and time where the cosine is very small and the diffusion coefficient takes a 

negative value, the forcing is strong and in opposition to the growth of η, and even though 

the filaments can never be in absolute synchrony, as when the two velocities are the same, 

the forcing keeps the asynchrony to a minimum.

B Numerical results

Numerical studies of the coupled dynamics (35) of two filaments with the same speed 

parameter c show robust synchronization for a broad range of initial conditions. Figure 6 

shows the evolution toward synchrony of a pair of filaments with c = 1, Λ = 10, and ϵ = 0.1, 

computed over a total time of T = 60. Panel (a-c) show the two filaments at early (2 ≤ τ ≤ 

10.7), intermediate (16.3 ≤ τ ≤ 25.6), and late (48.7 ≤ τ ≤ 57.3) times and at four equally 

spaced time intervals within each corresponding cycle. From the clearly disordered pattern 

in (a) the filaments evolve to a fully-synchronized state in (c).

A convenient quantity to characterize the degree of synchrony of two filaments is the L2 

norm of the difference of their displacements, D = ‖ĥ1(ξ, τ) – ĥ2(ξ, τ) ‖2. Figure 7 shows 

the temporal behavior of D displacements, for three different values of the coupling constant 

ϵ. While the rate of synchronization increases with ϵ, and the details of the decay of the 

norm differ, synchrony occurs in all cases. Further analysis shows that, when averaged over 

the fast oscillation, the approach to synchrony is exponential, as would be expected from the 

fact that the linearized dynamics close to synchrony is first order in time. In the physical 

regime, with ϵ ~ 0.2-0.5, we see in Fig. 7 that synchrony occurs in a matter of a few beat 

cycles. This rapid synchronization is often seen in biological systems, including 

Chlamydomonas flagella subjected to hydrodynamic perturbations [38] and during the 

photoshock response [39].

Finally, we discuss the case with slightly different values of the speed parameter c. We 

expect that the two filaments will frequency lock but display a finite phase shift. This is 

borne out in the numerical studies, as shown in Fig. 8 for c1 = 0.9 and c2 = 1.0, where the 

upper filament (2) leads the lower one (1), while the two display identical frequencies.

V Discussion

In this work we have presented two main results. First, under the assumptions of coplanarity 

and small-amplitude deformations, we have derived the leading order coupling term that 

describes the hydrodynamic interaction between two nearby slender bodies whose separation 

d lies within the asymptotic limit a ≪ d ≪ L. This is a very general result formally 

expressed simply in terms of the velocities of each filament, whatever their microscopic 
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origins. Second, we have applied this result to a model of flagellar beating that has the 

minimum necessary features to capture the essence of the system: self-sustained oscillations, 

broken left-right symmetry, bending elasticity, and waveform amplitude saturation. 

Analytical and numerical studies of the model for the case of single filaments illustrate the 

mechanisms of wavelength, frequency, and amplitude selection, while those for coupled 

pairs display the basic elastohydrodynamic mechanism of synchrony.

We emphasize that because of the extremely general form of the inter-filament coupling 

term, it can immediately be used to extend any particular model of the beating of a single 

filament to the coupled dynamics of two or more. A worthwhile extension would be the 

generalization of this result to include the presence of a no-slip wall at which filaments are 

anchored, with the goal of understanding metachronal waves. Finally, we expect the 

approach to flagellar dynamics outlined here, based on long-wavelength expansions and 

symmetry considerations, and reduced to a single autonomous PDE, will prove useful in the 

analysis of experimental waveforms and dynamics.
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Fig. 1. 
A variety of flagellar beating patterns. (a) breaststroke of the biflagellate Chlamydomonas, 

(b) ciliary beating in a metachronal wave, (c) photoshock response of Chlamydomonas.
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Fig. 2. 
Notation for the calculation. Two filaments, each of length L, are separated by a mean 

distance d. The displacements from the mean of two arbitrary points on the curves, separated 

by the vector r, are h1(x1, t) and h2(x2, t).
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Fig. 3. 
Numerical results for the AF model of a single filament. (a) Overlaid waveforms during a 

single beating period for filament length Λ = 15 and three values of c. (b) As in (a) but for 

fixed c = 1 and Λ = 10 and 30.
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Fig. 4. 
Waveform selection in the AF model. Numerical (red circles) and analytical (blue lines) 

results for long filaments: (a) selected wave vector k vs. advective parameter c, (b) selected 

frequency ω vs. k, and (c) saturated amplitude A vs. k.
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Fig. 5. 
Mechanism of synchronization. (a) Amplitude dependence of traveling-wave frequency ω. 

(b) Schematic of two nearby filaments, with black arrows indicating the direction of motion 

of points on the filaments, and blue arrows showing the direction of fluid motion induced by 

filament 1.
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Fig. 6. 
Numerical synchronization dynamics for two filaments with Λ = 10 and c = 1. Panels (a)-(c) 

show overlaid waveforms at four points within a single oscillation cycle at early (a), middle 

(b) and late (c) times.
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Fig. 7. 
Approach to synchrony. The L2 norm of the difference in waveform between two filaments 

as a function of time, for Λ = 10, c = 1, and indicated values of ϵ.
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Fig. 8. 
Synchronization with unequal advective coefficients. Overlaid waveforms when frequency 

locking has been achieved, for c1 = 0.9 and c2 = 1.0 and Λ = 10. The faster flagellum 

(upper) is phase-shifted forward with respect to the slower one.
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