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ABSTRACT The theoretical ability of epigenetic variation to influence the heritable variation of complex
traits is gaining traction in the study of adaptation. This theory posits that epigenetic marks can control
adaptive phenotypes but the relative potential of epigenetic variation in comparison to genetic variation in
these traits is not presently understood. To compare the potential of epigenetic and genetic variation in
adaptive traits, we analyzed the influence of DNA methylation variation on the accumulation of chemical
defense compounds glucosinolates from the order Brassicales. Several decades of work on glucosinolates
has generated extensive knowledge about their synthesis, regulation, genetic variation and contribution to
fitness establishing this pathway as a model pathway for complex adaptive traits. Using high-throughput
phenotyping with a randomized block design of ddm1 derived Arabidopsis thaliana epigenetic Recombi-
nant Inbred Lines, we measured the correlation between DNA methylation variation and mean glucosino-
late variation and within line stochastic variation. Using this information, we identified epigenetic
Quantitative Trait Loci that contained specific Differentially Methylated Regions associated with glucosino-
late traits. This showed that variation in DNA methylation correlates both with levels and variance of
glucosinolates and flowering time with trait-specific loci. By conducting a meta-analysis comparing the
results to different genetically variable populations, we conclude that the influence of DNA methylation
variation on these adaptive traits is much lower than the corresponding impact of standing genetic varia-
tion. As such, selective pressure on these traits should mainly affect standing genetic variation to lead to
adaptation.
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Genetic polymorphisms in the form of de novomutations and standing
variation are key sources of variation in complex traits that can enable
adaptation during selection. This is the foundation of the modern
synthesis that linked Darwin’s theories of evolution to Mendelian

Genetics (Huxley 1942). In plants, this modern synthesis is well sup-
ported by numerous studies showing the adaptive role of genetic var-
iation controlling a range of traits including flowering time, defense
metabolism and disease resistance (Wilson et al., 2001; Kliebenstein
et al., 2001b; Bäurle andDean 2006; Salomé et al., 2011).More recently,
epigenetic marks have been found to influence a number of develop-
mental traits like flowering time and morphological traits such as root
length, leaf area and internode length (Roux et al., 2011; Cortijo et al.,
2014; Jia et al., 2015; Kooke et al., 2015; Rosa et al., 2016). Further, some
of these marks are potentially inherited across generations although the
fraction of thesemarks that are inherited as pure epi-alleles (i.e., with no
associated causal genetic variation) is under intense debate (Richards
2006). These observations have led to the proposal for an “extended
evolutionary synthesis” wherein heritable variation in these epigenetic
marks could potentiate adaptation (Jablonka and Raz 2009;Weigel and
Colot 2012; Laland et al., 2014; Burggren 2016). There is a large number
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of studies that investigated the potential influence of epigenomic var-
iation on a variety of traits in numerous organisms (Feinberg and
Irizarry 2010; Roux et al., 2011; Schmitz and Ecker 2012; Klironomos
et al., 2013; Olsson et al., 2014; Kawakatsu et al., 2016). This includes
some studies that directly compared genetic and epigenetic variation,
but this is a relatively small set of typically genomic studies not in-
herently focused on specific traits known to be under selection in a wild
species (Schmitz and Ecker 2012; Olsson et al., 2014; Kawakatsu et al.,
2016). Thus, there is a need for studies that empirically compare the
relative heritability and amount of variance created by standing genetic
variation vs. epigenetic variation for traits known to be under field
selection.

One tool that has been developed to measure how epigenetic
variation may influence complex traits of potential adaptive benefit is
epigenetic Recombinant Inbred Lines (epiRILs) (Johannes et al., 2009).
InArabidopsis thaliana, an epiRIL population was generated by a cross
between Col-0 WT and a Col-0 ddm1mutant. DDM1 encodes an ATP
chromatin remodeler and its mutant shows a 30 to 70% decrease in
different types of DNA methylation, CG, CHG and CHH (Johannes
et al., 2009; Zemach et al., 2013). The progeny of this cross were back-
crossed to Col-0 WT and subsequently went through several genera-
tions of selfing to develop a population of 122 lines. This generated a
population where the lines contain specific and stably inherited Differ-
entially Methylated Regions (DMRs). Thus, the epiRIL population is
isogenic and the lines have distinct epigenetic marks. This allows
associating phenotypic differences to DMRs within this population
(Lippman et al., 2004). Moreover, since DMRs are stably inherited
through generations, they can be used as markers to search for epige-
netic quantitative trait loci (epiQTLs). Thereby, one can both quantify
and identify specific epigenomic regions correlating with trait variation.

To compare the contribution of epigenetic and genetic variation to
phenotypic variation inanadaptive trait,wemeasured the accumulation
of glucosinolate defense compounds in the epiRIL population. Gluco-
sinolates are predominantly produced within the order Brassicales that
includes many important crops such as oilseed rape and cabbage.
Glucosinolates are well studied and thus, the biosynthetic pathway is
often used as a model adaptive pathway based on the elaborate knowl-
edge of enzymes and regulatory elements involved (Prasad et al., 2012;
Züst et al., 2012; Brachi et al., 2015; Kerwin et al., 2015). At least
40 glucosinolates exist in A. thaliana (Sønderby et al. 2010b) with
the two major glucosinolate groups being indolic glucosinolates and
aliphatic glucosinolates, the latter can be further divided into short
chain (SC) and long chain (LC). Glucosinolate metabolism is regulated
in response to many environmental factors including herbivores and
pathogens and also abiotic factors such as light and water availability
(Kliebenstein et al., 2005; Mewis et al., 2005; Gigolashvili et al., 2009;
Huseby et al., 2013; Mewis et al., 2012; Züst et al., 2012). Glucosinolate
responses to attack involve complex interactions between different sig-
naling pathways (Kliebenstein et al., 2002a; Mewis et al., 2005; Dam
et al., 2008; Frerigmann and Gigolashvili 2014; Burow et al., 2015).
Glucosinolates provide an adaptive benefit in the field as they aid the
plant’s response and adaptation to environmental changes and thus
genetics and epigenetics may have been selected for in different envi-
ronments (Prasad et al., 2012; Züst et al., 2012; Brachi et al., 2015;
Kerwin et al., 2015; Kerwin et al., 2017).

While there is extensive information about the molecular, quanti-
tative and evolutionary genetics of glucosinolates, there is little known
about thepotential for epigenetic variation to influence thispathway.We
measured whether variation in DNA methylation within the epiRIL
population correlates with the accumulation of different glucosinolates
while simultaneously measuring adaptive flowering time trait to

enable a comparison. Using a replicated randomized block design in
multiple independent experiments,wequantifiedhowvariation inDNA
methylation associates with the mean and the trait stability, within line
variation, of these traits. This showed that epigenetic variation signif-
icantly correlates with glucosinolate accumulation and this variation
differed based on the biosynthetic origins of the glucosinolates. In-
terestingly, there was no overlap in the epigenetic loci found to correlate
with glucosinolates and the major known genes controlling natural
variation in glucosinolates. Using a meta-analysis to compare the
epigenetic variation in this population to literature measuring genetic
variation in this trait, we showed that the influence of the epigenetic
variation was dramatically lower than standing genetic variation. This
was true across numerous Arabidopsis populations of different origins
using both heritability and variance comparisons. Thus, selection on
standing genetic variation will provide a stronger and faster response to
selection than the detected epigenetic variation in the epiRILs.

MATERIALS AND METHODS

Germplasm
122 A. thaliana epigenetic Recombinant Inbred Lines (epiRILs)
generated in the Col-0 background and 4 Col-0 WT lines were pur-
chased from the Versailles Arabidopsis Stock Center, Institut Jean-
Pierre Bourgin. Website: http://publiclines.versailles.inra.fr/epirils/
index (Johannes et al., 2009).

Experimental design
Growing of epiRILs was carried out in two independent experimental
rounds. In each round, plantswere grown in a randomizedblockdesign.
This yielded a total of 768plants per experiment and1536plants in total,
leading to 12 randomized replicates of each epiRIL and 18 randomized
replicates of each Col-0 WT lineage. Plants were cold-stratified for
4-6 days and subsequently grown in a light chamber for 21-22 days set
to 80-120 mE/ (m2�s), 16 h light, 21�, 70% relative humidity. Flowering
time was scored as day upon emergence of an inflorescence stem of
at least 1 cm height.

Glucosinolate extraction
Sigma-Aldrich Millipore 96 well filter plates, cat.no. MSHVN45 were
charged with 45 mg DEAE Sephadex A25 and 300 ml of water per well
and equilibrated at room temperature for minimum 2 hr. The water
was removed using a vacuummanifold (Millipore). At day 21-23 day of
growing, rosette tissue was harvested, weighted and freeze-dried before
the tissue was homogenized with two stainless steel balls by shaking
for 2 min at a frequency 1/30 Hz on a Mixer Mill 303 (Retsch, Haan,
Germany). Glucosinolates were extracted in 300 ml 85% MeOH (v/v)
containing 5 nmol p-OH-benzyl glucosinolate (extracted from seeds of
Sinapis alba, SeedCom A/S, Vissenbjerg, Denmark as previously de-
scribed (Thies 1979; Zrybko et al., 1997) as an internal standard. Sam-
ples were centrifuged, the supernatants were applied to the filter plates
and absorbed on the ion exchanger by vacuum filtration for 2-4 s.
Sephadex material was washed with 2x 100 ml 70% methanol (v/v)
and 2x 100 ml water and briefly centrifuged before addition of 20 ml of
sulfatase solution (1.25 mg/ml, sulfatase type 1H, Sigma-Aldrich) per
sample. After incubation at room temperature over-night, desulfo-glu-
cosinolates were eluted with 100 ml water (Kliebenstein et al., 2001b).

Glucosinolate analysis by UHPLC/TQ-MS
1 mL of a 1:10 dilution of glucosinolates were analyzed as desulfo-glucosi-
nolates by UHPLC/TQ-MS on an Advance-UHPLC/EVOQElite-TQ-MS
instrument (Bruker) equipped with a C-18 reversed phase column (Kinetex
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1.7 u XB-C18, 10 cm · 2.1 mm, 1.7 mm particle size, Phenomenex) by
using a 0.05% formic acid in water (v/v) (solvent A)-0.05% formic acid in
acetonitrile (v/v) (solvent B) gradient at a flow rate of 0.4 ml/min at 40�.
The gradient applied was as follows: 2% B (0.5min), 2–30% (0.7min), 30–
100% (0.8 min), 100% B (0.5 min), 100–2% B (0.1 min), and 2% B
(1.4 min). Compounds were ionized by ESI with a spray voltage of
+3500 V, heated probe temperature 400�, cone temperature 250�.
Desulfo-glucosinolates were monitored based on the following MRM
transitions: 3-methylthiopropyl (3mtp), (+)328. 166 [5V]; 3-methylsulfinyl
(3msp), (+)344. 182 [10V]; 4-methylthiobutyl (4mtb), (+)342. 132 [15V];
4-methylsulfinylbutyl (4msb), (+)358 . 196 [5V]; 5-methylsulfinylpentyl
(5msp), (+)372 . 210 [5V]; 7-methylthioheptyl (7mth), (+)384 . 222 [5V];
7-methylsulfinylheptyl (7msh), (+)400 . 238 [7V]; 8-methylthiooctyl (8mto),
(+)398 . 236 [5V]; 8-methylsulfinyloctyl (8mso), (+)414 . 252 [5V];
p-hydroxybenzyl (pOHB), (+)346 . 184 [10V] (internal standard).
N- and 4-methoxy-indol-3-ylmethyl glucosinolate were distinguished
based on retention times in comparison to those of known standards.
Absolute quantification of the individual glucosinolates was based on
response factors relative to pOHB calculated using standard curves in
control extracts.

Genetically varying populations
To compare the epiRIL variation in glucosinolateswith that found in other
genetic populations, we obtained foliar glucosinolate measurements from
previous Arabidopsis populations that were measured at the same time
under similar growth conditions using the sameprotocols. Thisminimizes
the potential for technical or biological variation to dramatically influence
the comparison. This included data from four previously published
biparental RIL populations, Bay-0 x Sha-0 (Wentzell et al., 2007),
Kas x Tsu (Joseph et al. 2013), Ler x Cvi (Kliebenstein et al., 2001a)
and Ler x Col-0 (Kliebenstein et al., 2002a; Kliebenstein et al.,
2002b). We also utilized two previously published datasets from
collection of Arabidopsis accessions that was used for genome wide
association mapping (Chan et al., 2010; Chan et al., 2011). Other
populations measured for glucosinolates were not utilized because
they either measured different tissues, did not measure absolute or
relative glucosinolates preventing an ability to compare or did not
provide the population mean data (Pfalz et al., 2007).

Statistics data visualization
All statistics were done using R version 3.3.2 (R Core Team 2016) and R
studio version 0.99.491 (RStudio Team 2015). The package “car” (Fox
and Weisberg 2011) and doBy was to conduct ANOVA type II to test
for heritability and obtain means for the different phenotypes.

To test forheritabilityandobtainmeans for thedifferentphenotypes,
we utilizedANOVA and type II sums-of-squares based F tests using the
package “car” (Fox and Weisberg 2011) and “doBy” (Højsgaard and
Halekoh 2016). The model used was Phenotype = EpiRIL+Experimen-
tal_round+Tray:Experimental_round +EpiRIL:Experimental_round:
Tray.

The within genotype coefficient of variation for the phenotypes was
calculated separately within each of the two planting rounds, and was
calculated by dividing the standard deviation for the phenotype across
the individuals for each lines individuals by the mean of these same
individuals. We then tested for heritability using the following model;
Phenotype CV = epiRIL+Experimental_round.

Data visualization
Figures 1 to 4 and Figure S6 were generated in R version 3.3.2 (R Core
Team 2016) and R studio version 0.99.491 (RStudio Team 2015) using

the package ggplot2 (Wickham 2009). EpiQTL plots were generated
from Windows QTL Cartographer Version 2.5 (Wang et al., 2012).

Composite Interval epi-QTL mapping and statistical
analysis of main-effect epi-markers
EpiMarkers were obtained for the 122 epiRILs from http://publiclines.
versailles.inra.fr/epirils/index (Colome-Tatche et al., 2012). Windows
QTLCartographer Version 2.5 (Wang et al., 2012) was used to conduct
Composite Interval Mapping (CIM) (Jansen and Stam 1994; Zeng
1994). To assess significance, we conducted 1000 permutations and
called significant peaks above the permutation estimated significance
threshold for each trait (Churchill and Doerge 1994; Doerge and
Churchill 1996). To test main effect epiMarkers and potential interac-
tions with environment, we chose the epiMarker nearest each epiQTL
peak and used this in a model tested by ANOVA in R version 3.3.2
(RCore Team 2016) using the package “car” (Fox&Weisberg, 2011 and
“doBy” (Højsgaard and Halekoh 2016). Individual models were run for
means and CVs on groups of SC glucosinolates, LC glucosinolates,
indolic glucosinolates and flowering time. The models tested all main
effect epiMarkers linked to epiQTLs for the class of phenotypes and the
interaction of each marker with the experimental round.

Data availability
File S1 contains phenotyping data for each epiRIL, i.e., mean and CV
for glucosinolate traits and flowering time.

RESULTS

Experimental design
To test forpotential epigenetic regulationof glucosinolateaccumulation,
wemeasured glucosinolate content in the ddm1 derived isogenic epiRIL
population (Johannes et al., 2009). We measured glucosinolate accu-
mulation in each line using multiple independent randomized repli-
cates in two independent experiments. This increased the precision of
the measurement on each line’s mean and produced a direct measure-
ment of glucosinolate variation across replicates within each line as a
distinct trait using the coefficient of variation (CV). We also measured
flowering time in all individuals to enable a comparison with another
adaptive trait previously measured in the same set of epiRILs and a
collection of different genetic populations (Johannes et al., 2009; Atwell
et al., 2010; Chiang et al., 2009; Cortijo et al., 2014; Kooke et al., 2015).

Figure 1 Distribution of mean LC glucosinolates among the epiRILs
showing the outlier epiRIL 573. A histogram of the mean LC glucosi-
nolate content among the 122 epiRILs is shown in green. The orange
bars represent the corresponding histogram for the four WT lines.
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Glucosinolate content and flowering time were measured on all 12 in-
dividual replicates of eachof the 122 epiRILs and18 individual replicates of
four independent WT lines (Johannes et al., 2009). All of the lines were
grown in two experiments with 6 biological replicates per epiRIL per
experiment and 9 biological replicates per WT line per experiment. This
generated a total of 1536 plants to be analyzed for all of the phenotypes.
For statistical analysis, glucosinolates were divided into specific biosyn-
thetic groups of SC and LC aliphatic and indolic glucosinolates because
these trait groups have previously been shown to have independent ge-
netic, biosynthetic and regulatory control (Sønderby et al., 2010a) (a list of
all glucosinolates measured in each group is shown in Table S1).

“Search for Outliers” Analysis of Glucosinolate and
Flowering Time in EpiRILs
We first surveyed the phenotypic distributions for extreme outliers
(.5 SD outliers) (Haughn et al., 1991; Kliebenstein et al., 2007) to
test for the possibility of large effect Mendelian mutations as these
may have arisen from an increased rate of transposable element
transposition in the epiRILs caused by lower levels of DNA-meth-
ylation (Miura et al., 2001; Kato et al., 2004; Johannes et al., 2009).
The only phenotype that showed this level of outlier was the accu-
mulation of LC glucosinolates where there was one epiRIL (573)
with an extreme phenotype and thus potentially carrying a Mende-
lian mutation (Figure 1).

To test if epiRIL 573 had a potential Mendelian mutation, we back-
crossed it to Col-0WT and the F1 progeny was selfed to generate an F2
population. The F1 population displayed theWT phenotype and the F2
population showed a 3:1 segregation suggesting that the outlier LC
glucosinolate phenotype in epiRIL 573 was caused by a single recessive
Mendelian locus (217 plants with WT phenotype and 53 plants with
epiRIL573 phenotype in F2). Because this phenotypic outlier is a
unique rare outlier and potentially genetic in nature, epiRIL 573 was
removed from further analysis of both glucosinolates and flowering
time as a rare outlier would conflate genetic and epigenetic variance
estimates in the quantitative analysis. No similar rare outliers were
observed in any other phenotypes across the epiRIL population, and
thus the final epiRIL population consisted of 121 epiRILs compared to
4 WT lines (Figure 2).

Variation in DNA Methylation Significantly Correlates
With Mean Glucosinolate Accumulation
Phenotypic variation in epiRILs is assumed to mainly associate with
heritable variation in DMRs (Johannes et al., 2009). As such, any her-
itability of phenotypic variation within this population is likely due to
epigenetic variation. For all tested groups of glucosinolates, variation in
DMRs significantly correlates with glucosinolate variation (Table 1).
Linear modeling was utilized to estimate the potential epigenetic her-
itability (epiheritability) within this population for all measured groups
of glucosinolates (Table 1). Glucosinolate variation attributable to epi-
heritability ranged between 10% and 13% and was thus significantly
lower than that found in populations looking at natural genetic heri-
tability of glucosinolates. In these populations, both RILs and GWAS
collections, the genetic heritability ranged from �30–70% for indolic
glucosinolates and �40–80% for aliphatic glucosinolates (Kliebenstein
et al., 2001a; Wentzell et al., 2007; Chan et al., 2010; Chan et al., 2011;
Joseph et al. 2013). Glucosinolate epiheritability was also lower than
epiheritability for flowering time in our experiments, 32% (Table 1).
This estimate of flowering time epiheritability is similar to other exper-
iments with the exact same population suggesting that there are no
major environmental or technical issues affecting our epiheritability
estimates (Johannes et al., 2009; Cortijo et al., 2014; Kooke et al.,

2015). Thus, epiheritability of glucosinolate accumulation is lower than
that found for flowering time and the genetic heritability found in
different genetic populations.

Using the linear model, we obtained the means for each trait in each
line for further analysis. The phenotypic distribution of glucosinolate
content varied between aliphatic (SC and LC) and indolic glucosinolates.
SC and LC glucosinolates showed Gaussian distributions in the epiRIL
population (Figure 2A, B) whereas indolic glucosinolates had a bimodal
distribution (Figure 2C). SC glucosinolate phenotypes were centered
around the WT lines and ranged from 113 to 341 nmol/g. LC glucosi-
nolate content also centered around theWT lines and varied from 37 to
98 nmol/g. Indolic glucosinolate content bi-modally varied from
69 nmol/g to 187 nmol/g with two peaks at 85 nmol/g and at
115 nmol/g (Figure 2C). The four independentWT lines were dispersed
across this distribution and did not correlate with the two epiRIL peaks.
Flowering time varied across the epiRILs from 26 days to 41 days and
had a Gaussian distribution (Figure 3A). In contrast to aliphatic gluco-
sinolates, the distribution of flowering times among epiRILs did not
center around the WT sample lines, but instead showed a high skew
toward earlier flowering time with only a few epiRILs flowering later
thanWT. This suggests that variation in DMRs within this background
can equally decrease and increase glucosinolate content but shows a bias
toward earlier flowering time. As such, there is a bias in the directionality
of how ddm1-mediated methylation changes associates with the gluco-
sinolate and flowering time phenotypes.

Correlation Between DNA Methylation variation and
Within Line Variation in Glucosinolate Accumulation
We also tested how DMR variation correlates with phenotypic stability
within a line using the within line coefficient of variation (CV). When
looking at linemean only, we are blind to the dispersion of the replicates
of a line,whichcouldpotentiallyplay an important role inadaption(Hall
et al., 2007; Ordas et al. 2008). The experimental design allowed us to
obtain independent measures of the within line CV per epiRIL and
directly test if DMR variation correlates with this dispersion. While
epiheritability of within line CV was not statistically significant for
SC and indolic glucosinolates or flowering time, there was a suggestive
difference for LC glucosinolates (Table 2). Interestingly, the estimated
epiheritability of within line CV was higher than that found for the
mean. For glucosinolates it ranged between 36% and 51% and flowering
time showed 41% heritability for trait CV. This estimate of within line
CV epiheritability is very similar to that found for genetic heritability of
within line CV in Arabidopsis for the phenotype (Joseph et al. 2014).
The lower statistical significance for the within line CV epiheritability
in comparison to the mean is likely because there were only two in-
dependent measurements, one per experiment, for this trait in com-
parison to 12 independent measurements for the mean (Table 1).

Using the mean for the within line CV for all the epiRILs showed
that the trait distributions for all glucosinolate groups appeared similar
(Figure 2D, E, F). All were Gaussian distributed, ranged between 0,2
and 1 and had a peak around 0,5. WT lines were in the peak of epiRILs
for SC- and LC glucosinolates and appeared slightly skewed toward
higher CV for indolic glucosinolates. Thus, while the trait distributions
for the mean accumulation of the different glucosinolates differed in
epiRILs, the within line CV was very similar across all of the glucosi-
nolates (Figure 2A-E). Within line CV for flowering time was overall
lower than for glucosinolates (Figure 3B). CV values ranged between
0,03 and 0,4 and showed a more dispersed distribution than aliphatic
glucosinolates (SC and LC glucosinolates). Thus, within line CV for
different traits appears to be associated with DMRs within this popu-
lation. Moreover, also for CV, flowering time and glucosinolates are
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distinct traits from each other and the ddm1 epi-QTL are not pleio-
tropically altering the entire plant.

Comparing Genetic and Epigenetic Influence on
Glucosinolate Population Variation
Previous publications using the same experimental design to measure
genetic variation in glucosinolates allowed for a direct comparison with
theDMR variation (Kliebenstein et al., 2001a; Kliebenstein et al., 2002b;

Wentzell et al., 2007; Chan et al., 2010; Chan et al., 2011; Joseph et al.
2013). In combination with the previous comparison of heritability to
epiheritability, this can give insight to whether the epigenetic influence
on phenotypic variation was similar or different from genetic influence.
To facilitate this meta-comparison, we calculated the population CV
(an estimate of the range of phenotypic variance) for each trait across
the epiRIL and genetic populations using the mean trait values. Using
the population CV, we compared the epiRIL population trait variation

Figure 2 Distribution of mean and within line (CV) glucosinolate (GLS) traits among the epiRILs. Green bars show the distribution of the mean
traits among the epiRILs, blue bars show the histogram of the within line variation among the epiRILs as measured by CV. Orange bars represent
the distribution of the corresponding four WT lines for the specific trait shown. A) LSmean SC glucosinolate content, B) LSmean LC glucosinolate
content, C) LSmean Indolic glucosinolate content, D) Within line CV for SC glucosinolates, E) Within line CV for LC glucosinolates, F) Within line
CV for Indolic glucosinolates.
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to the trait variation in four RIL populations based on crosses of
Bay x Sha, Kas X Tsu, Ler x Cvi and Ler x Col (Kliebenstein et al.,
2001a; Kliebenstein et al., 2002a; Kliebenstein et al., 2002b; Wentzell
et al., 2007; Joseph et al. 2013). In addition to the RIL populations, we
compared the epiRIL population to two studies on A. thaliana acces-
sions (Chan et al., 2010; Chan et al., 2011) (for details on populations,
see materials and methods). For all groups of glucosinolates, the epi-
RILs had the lowest population CV (around 20%), which was below the
99 percentile confidence interval calculated for genetic variation using
the different RIL and accession populations (Figure 4). This shows that
the DMR variation caused by the ddm1 mutation within the epiRIL
variation associates only with a small fraction of the variation possible
from natural genetic variation.

Besides being lower than the other populations, the epiRIL popu-
lationwas also the only population showing the same level of population
CV for all glucosinolate groups. The genetically differing populations
had varying population CVs for the different glucosinolate biosynthetic
groups with overall lower indolic glucosinolate population CV. Simi-
larly, the flowering time population CV in the epiRIL population was
dramatically lower than that found in a collection of accessions, 7%
epigenetic population CV and 62% for accessions (Atwell et al., 2010).
This points to the potential epigenetic contribution to phenotypic

variation caused by the DMR variation being much lower than that
found for genetic variation for both glucosinolates and flowering time.

Mapping EpiQTLs for Glucosinolate Levels
To identify DMRs linked to the observed variation of glucosinolate
accumulation,wemapped epigenetic quantitative trait loci (epiQTLs) in
the epiRIL population.We used the available map of 126 DMRs for the
121 epiRILs to locate epiQTLs (Colome-Tatche et al., 2012) and per-
formed composite interval mapping (CIM) per experiment and across
experiments with 1000 permutations to test for significance. All indi-
vidual glucosinolates and the pooled data for each biosynthetic group
were used to map epiQTLs. As shown for SC glucosinolates, epiQTLs
were found for 3MTP, 3MSP, 4MSB and 5MSP glucosinolate accumu-
lation (Figure 5A, B, D, E). Some epiQTLs had broad affects across a set
of metabolites such as one epiQTL on chromosome 5 that showed up
for 3MSP, 4MSB and 5MSP glucosinolates (Figure 5B, D, E). In con-
trast, other epiQTLs were specific for a single glucosinolate as in the
case of epiQTLs on chromosome 2 and 3 that only showed up for 3MSP
(Figure 5B). After locating epiQTLs, we used a linear modeling ap-
proach involving all identified epiQTLs to identify the marker with
the lowest P-value for each epiQTL. We included the total list of can-
didate epiQTLs identified for all individual SC glucosinolates and
pooled SC glucosinolates within the linear model. This enabled the
identification of significant loci not identified using the CIM approach,
such as identified 3MSP epiQTL on chromosome 3 centered onmarker
399 (Figure 5B); with the modeling approach, this locus was also found
to alter the accumulation of 4MSB, 5MSP and pooled SC glucosinolates
suggesting that it is a locus altering the accumulation of all sulfinyl SC
glucosinolates (Figure 5B, D, E, F). In contrast, an epiQTL on chromo-
some 5 centered on marker 823 influenced variation of all SC glucosi-
nolates, both methylsulfinyl and methylthiol. In summary, markers
were found that linked to all SC glucosinolates, while others were
specific for either one SC glucosinolate or subgroups of SC glucosino-
lates as in the case of methylsulfinyls. LC glucosinolates showed similar
patterns, as marker 1 was specific to methylthiols, whereas marker
373 influenced all individual glucosinolates (Figure S1). Indolic glucosino-
lates showed a slight different pattern when looking at the individual
glucosinolates in the biosynthetic group (Figure S2). Most markers were
specific to one indolic glucosinolate, whereas marker 859 was significant
for all except NMOI3M. NMOI3M did show an epiQTL in this region,

Figure 3 Within line distribution of flowering time mean and CV. Green bars show the distribution of the mean flowering time among the
epiRILs, blue bars show the histogram of the within line variation in flowering time among the epiRILs as measured by CV. Orange bars
represent the distribution of the corresponding four WT lines for the specific trait shown. A) Mean Flowering time, B) Within line CV for
Flowering time.

n Table 1 Epiheritability of mean glucosinolate content and
flowering time in the EpiRILs. The Table shows the significant
impact of variation between the epiRILs and experimental terms
(experiment and tray) as well as interactions on measured traits
using a linear model. The top of the Table shows the significance
as determined from ANOVA for each term and trait epiheritability
(epiRIL variance divided by total variance) is shown on the bottom
row

SC LC Indolic FT

EpiRILs 0,003 0,016 ,0,001 ,0,001
Experiment 0,002 NS ,0,001 ,0,001
Tray ,0,001 ,0,001 ,0,001 ,0,001
ID:Experiment NS 0,001 ,0,001 ,0,001
ID:Tray NS NS NS ,0,001
H2 0,105 0,095 0,131 0,319
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but this epiQTL was rejected in the subsequent modeling. Thus, we iden-
tified epiQTLs that associated either with an array of glucosinolate accu-
mulation or specific subsets. This blend of specific and general epiQTLs
is similar to observations found for QTL analysis of natural genetic vari-
ation (Kliebenstein et al., 2001a; Wentzell et al., 2007; Joseph et al. 2014).

To calculate the effect size of these found epiQTLs, we estimated the
additiveeffectas thepercentagedifference inphenotypicmeansofplants
when the methylation status of the epiQTL was as the ddm1 parent
compared to same marker originating from WT (Figure 6). For SC
glucosinolates, marker 399 and 854 correlated with increased glucosi-
nolate accumulation when originating from ddm1 compared to WT,
while marker 373 and 823 correlated with decreased glucosinolate
accumulation when originating from ddm1 (Figure 6A). Marker 373
also correlated with decreased LC glucosinolate accumulation albeit
with a larger effect for LC glucosinolates (Figure 6A, B). Markers found
for indolic glucosinolate means also correlated with both increases and
decreases in additive effect (Figure 6C), as the twomarkers, 58 and 859,
had a respective a 10,4% decrease and 11,5% increase of the ddm1
derived allele compared to WT (Figure 6C). Thus, the ddm1 derived
epialleles associated with a mixture of positive and negative effects
on aliphatic glucosinolate accumulation further showing that DDM1-
controlled methylation variation can correlate with both increase and
decrease in glucosinolate accumulation.

Flowering time epiQTLs
As a control to compare the epiRIL population with previous publica-
tions, we mapped epiQTLs associated with flowering time as described
above (Figure 7). This analysis identified two epiQTLs for flowering
time that centered onmarker 686 on chromosome 4 andmarker 823 on
chromosome 5 which are the same makers as previously identified to
correlate with flowering time (Figure 7A) (Cortijo et al., 2014, Kooke
et al., 2015). The additive effect on flowering time was a 3,1% decrease
for the ddm1 derived allele at marker 686 and 5,8% decrease for the
ddm1 derived allele at marker 823. Compared to previous studies
(Cortijo et al., 2014; Kooke et al., 2015), both markers showed less
correlation with the phenotype in our experiment. The fact that we
identified the same flowering time loci as previously found suggests that
this population is behaving as in previous studies allowing us to infer
that any differences between glucosinolates and flowering time effects
in this population are not the result of differences between laboratories
and experimental designs. Further, this shows again that DDM1-me-
diated methylation variation correlates with earlier flowering in this
population.

EpiQTLs Identified for Within Line Trait Variance
The replicated experimental design allowed for the direct measurement
of variation between replicates of the same epigenotype as a phenotype

that can be mapped to assess if variation in epigenetic marks asso-
ciates with the stochastic variation or robustness of specific lines. Using
phenotypic CV within each line as the measure of variation between
replicates, we found epiQTLs that link towithin line dispersion for all of
the measured traits except SC glucosinolates (Figure 6D, F, Figure S3,
Figure S4, Figure S5). For LC glucosinolates, we identified marker
126 on chromosome 1 and marker 392 on chromosome 3 (Figure
6E). Both of these loci have additive effects whereby the ddm1 derived
allele links to lower within line variance. Critically, neither of these LC
glucosinolate CV markers correlated with the average accumulation of
LC glucosinolates within the epiRIL population suggesting that as with
genetic QTL, epiQTLs can be specific for either mean glucosinolate
accumulation or within line variation showing that these are as affected
as separate traits by DDM1-mediated epigenetic marks (Figure 6B, E).
In contrast to LC glucosinolate CV, the only identified CV epiQTL for
indolic glucosinolates, marker 52 on chromosome 1 was in a region
also correlating with indolic glucosinolate mean accumulation
(Figure 6C, F). For indolic glucosinolate means however, it was the
neighboring marker 58 explaining most of the epiQTL. The two
markers are situated �200 kbp away from each other indicating that
they may be different loci.

Similar to LC glucosinolate CV, two epiQTLs were identified for
flowering timeCVand these didnot link tomeanflowering time (Figure
7A, B). These epiQTLs for flowering time CV have not been previously
identified (Kooke et al., 2015). Taken together, it is possible to find
epiQTLs that associate both within line (CV) and between line varia-
tion of glucosinolate accumulation and flowering time. Further, this
indicates that DDM1-mediated DNA methylation can influence phe-
notypic stability within individual lines.

EpiQTLs are Largely in Genomic Regions Unknown for
Glucosinolate Phenotypes
To test if any of the identified epiQTLs may co-locate with known
glucosinolate genes, we compared the position of significant epiQTLs
with a large collection of known glucosinolate biosynthetic and major
regulatory genes (Figure 8). The vast majority of epiQTLs had no over-
lap with known glucosinolate genes suggesting that they are linked
previously unknown causal loci (Figure 8, see marker 52, 58, 126,

Figure 4 Meta-analysis of population level variation between epiRILs
and genetic populations. The variation within the population (pop-
ulation CV) for mean glucosinolate traits is shown for epiRILs or genetic
RILs or genetic association mapping populations are shown. The SC,
LC and indolic traits are shown on the x-axis. Error bars for each
glucosinolate mark the 99th percentile confidence interval for the ge-
netically variable populations (RILs and accessions).

n Table 2 Epiheritability of within line variation as measured by
CV for glucosinolate content and flowering time. The Table shows
the significant impact of variation between the epiRILs and
experiments on measured traits using a linear model. The top of
the Table shows the significance as determined from ANOVA for
each term and trait epiheritability (epiRIL variance divided by total
variance) is shown on the bottom row

SC LC Indolic FT

EpiRILs NS 0,064 NS NS
Experiment ,0,001 ,0,001 ,0,001 ,0,001
H2 0,474 0,507 0,360 0,406
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392, 823 and 854). Three markers, 373, 399 and 859, were in proximity
to glucosinolate loci but the marker closest to the glucosinolate gene
was not having the highest LOD score, suggesting DNAmethylation of
other genetic regions correlating with the phenotype. Marker 1 was the
only marker that appeared to link to a known glucosinolate gene as it is
located between the CYP79F1/2 and FMO GS-OX5 enzymatic genes.
Marker 1 is located.1.2Mbp away from theCYP79 locus, which is too
far to indicate a link between the two. However, it is approximately
200 kbp away from FMO GS-OX5. FMO GS-OX5 is involved in LC
glucosinolate synthesis and marker 1 was identified for LC glucosino-
lates. Together, this might indicate that the methylation status of FMO
GS-OX5 is linked to the LC glucosinolate variation observed in epiRILs.

To test whether marker 1 associates with this gene, we plotted the
additive effect of marker 1 on the ratio between methylthio glucosino-
lates (7MTH and 8MTO) and total LC glucosinolates which represents
a direct approximation of this enzymes function (Figure S6) (Li et al.,
2008). This did not point to a correlation between GS-OX5 andmarker
1 as the difference in tested ratio levels did not show a significant
difference when marker 1 originated from ddm1 compared to WT.
Thus, the epiQTLs found are large epigenomic blocks and thus can
span many genes. This makes it impossible to precisely define what is
correlating to the traits without doing a fine-scale mapping. We can
however, conclude that the identified epiQTLs do not appear to link to
known glucosinolate genes suggesting that the ddm1 derived epiQTLs

Figure 5 EpiQTL mapping of SC glucosinolate means. Plots show composite interval mapping results and significance estimated from
1000 permutations. The x-axis shows the genome by chromosome and the y-axis shows the LOD score. The significance thresholds are plotted for
each trait and significant QTL are re marked with red arrows. The light gray line shows the QTL map using the means from experiment 1, dark gray
shows experiment 2, and black lines represent the pooled data from experiment 1 and 2. Marker names show the position of significant makers
after using a linear model to assess loci. EpiQTLs not assigned a marker were rejected in the subsequent ANOVA. Glucosinolate abbreviations are
shown in Table S1. Analyzed SC glucosinolates are A) 3MTP, B) 3MSP, C) 4MTB, D) 4MSB, E) 5MSP, F) Pooled SC glucosinolates.
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Figure 6 EpiQTL mapping of glucosinolate mean and CV. Plots show composite interval mapping results and significance estimated from
1000 permutations. The x-axis shows the genome by chromosome and y-axis shows the LOD score. The significance thresholds are plotted for
each trait and significant QTL are re marked with red arrows. The light gray line shows the QTL map using the means from experiment 1, dark gray
shows experiment 2, and black lines represent the pooled data from experiment 1 and 2. Marker names show the position of significant makers
after using a linear model to assess loci. EpiQTLs not assigned a marker were rejected in the subsequent ANOVA. An asterisk after a marker shows
that the marker was not significant in both experiments. Beneath plots are shown the additive effect of markers, i.e., the percentage phenotypic
change when the marker is ddm1 within the epiRIL lines compared to WT. A) Mean SC glucosinolate content, B) Mean LC glucosinolate content,
C) Mean Indolic glucosinolate content, D) Within line CV for SC glucosinolates, E) Within line CV for LC glucosinolates, F) Within line CV for Indolic
glucosinolates.
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are linked to a different suite of genes. This is in contrast to QTL for
natural genetic variation of glucosinolates wherein a large number of
the loci are due to causal polymorphisms in the biosynthetic enzymes
and key regulatory genes (Kliebenstein et al., 2001a; Wentzell et al.,
2007).

DISCUSSION
Recent work has implied that epigenetic marks may play a role in the
inheritance and evolution of adaptive traits (Roux et al., 2011; Cortijo
et al., 2014; Jia et al., 2015; Kooke et al., 2015; Rosa et al., 2016). In this
study, we utilized an epiRIL population that varies in DDM1 ediated

DNAmethylation to test for the potential to influence the heritability of
a set of adaptive traits in Arabidopsis thaliana; glucosinolate defense
compounds and flowering time (Johannes et al., 2009). We show that
both glucosinolates and flowering time display significant epiheritabil-
ity, meaning that that DMRs associate with the heritable variation of
these adaptive traits (Table 1, Table 2). Moreover, there were specific
epiQTLs that were unique for each adaptive trait showing that the
epiheritability can alter specific subsets of adaptive traits and that they
are not globally pleiotropic. Similar to genetic variation, it was possible
to find epigenomic regions correlating with the variation of both mean
variation between lines and stochastic variation within lines (CV) and
some of these regions were specific for controlling the within line
variance (Figure 6). As such, epigenetic variation has the potential to
influence the inheritance of these adaptive traits.

Existing literature that measured the standing genetic variation
affecting these same adaptive traits in Arabidopsis thaliana using the
same experimental design and conditions provided the ability to di-
rectly compare genetic variation and DDM1-mediated epigenetic var-
iation (Kliebenstein et al., 2001a; Kliebenstein et al., 2002b; Wentzell
et al., 2007; Chan et al., 2010; Chan et al., 2011; Joseph et al. 2013).
Genetic heritability in both RIL populations and accession collections
was dramatically higher than that found in the epiRIL population.
Further, the epiRIL population had a significantly lower range of phe-
notypic variation than the genetic populations (Figure 4); the epigenetic
variation in the epiRIL population was ranging between 1,2 to 4 fold
lower than the standing genetic variation for the same trait. Thus, if the
epiRIL population provides an accurate representation of the potential
for epigenetics to influence adaptive trait variation, the standing genetic
variation provides a vastly larger pool of phenotypic diversity that is
also of higher heritability. As such, selection on this standing genetic
variation will provide both a stronger and faster response to selection
than the epigenetic variation in the epiRILs. Proving this hypothesis
however requires future studies in other epiRIL populations that vary
either for different individual epigenetic marks or for a blend of epige-
netic marks simultaneously. The large level of standing genetic varia-
tion for these traits argues that parsing out the more subtle epigenetic
influences in existing genetic populations will be complicated.

Phenotypic Variation in EpiRILs and Potential
Mechanistic Insight
The distribution of aliphatic glucosinolates in the epiRILs (Figure 2A, B)
showed a Gaussian distribution centered around the WT values. This

Figure 7 EpiQTL mapping of
flowering time mean and CV.
Plots show composite interval
mapping results and signifi-
cance estimated from 1000 per-
mutations. The x-axis shows the
genome by chromosome and
y-axis shows the LOD score.
The significance thresholds are
plotted for each trait and sig-
nificant QTL are re marked with
red arrows. The light gray line
shows the QTL map using the
means from experiment 1, dark

gray shows experiment 2, and black lines represent the pooled data from experiment 1 and 2. Marker names show the position of significant
makers after using a linear model to assess loci. An asterisk after a marker shows that the marker was not significant in both experiments. Beneath
plots are shown the additive effect of markers, i.e., the percentage phenotypic change when the marker is ddm1 within the epiRIL lines compared
to WT. EpiQTLs not assigned a marker were rejected in the subsequent ANOVA. A) Mean Flowering time, B) Within line CV for Flowering time.

Figure 8 Genomic position of significant epiQTL markers and glucosino-
late genes. The markers associated with significant epiQTL are shown to the
left of each chromsome. Letters denote glucosinolate genes: A, AT1G12140
FMO GS-OX5. B, AT1G16410 CYP79F1 and AT1G16400 CYP79F2. C,
AT1G18590 SOT17. D, AT1G24100 UGT74B1. E, AT1G62540 FMO
GS-OX2 and AT1G62560 FMO GS-OS3 and AT1G62570 FMO GS-OX4.
F, AT1G65860 FMO GS-OX1. G, AT1G74100 SOT16 and AT1G74090
SOT18. H, AT2G20610 SUR1. I, AT2G31790UGT74C1. J, AT3G19710BCAT4.
K, AT3G49680 BCAT3. L, AT4G03060 AOP2 and AT4G03050 AOP3. M,
AT4G13770 CYP83A1. N: AT4G30530 GGP1. O, AT4G39950 CYP79B2 and
AT2G22330 CYP79B3. P, AT5G07690 MYB29 and AT5G07700 MYB76.
Q, AT5G23010 MAM1 and AT5G23020 MAM3. R, AT5G61420 MYB28.
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shows that DMRs link to both positive and negative changes in the
accumulation of aliphatic glucosinolates. In contrast, flowering time
distributions of epiRILs showed a skew toward earlier flowering com-
pared toWTs (Figure 3A). This might be the overall reduction in DNA
methylation levels in the epiRIL that correlates with this earlier onset of
flowering time. This suggests that there is a fundamental difference in
how DDM1 methylation is linking to these adaptive traits. The obser-
vation that DMR variation in epiRILs only associates with earlier
flowering times suggests that this methylation may contribute to the
irreversible switch like behavior of flowering, which cannot reverse
when having started the process of flowering. Previous studies also
showed that epiRILs flowered earlier than the parental Col-0 controls
grown along whenmaking the epiRILs (Johannes et al., 2009, Table S3).
However, the ddm1 mutant parent has been shown to flower either
earlier or later than WT parent making the direction of the flowering
phenotype based on ddm1-caused hypo-methylation unclear (Soppe
et al., 2000; Johannes et al., 2009; Roux et al., 2011). In contrast, glu-
cosinolates are not regulated as an irreversible switch and can be re-
pressed after being induced or vice versa. Thus, DDM1-mediated
methylation links to both the activation and repression of glucosino-
lates to aid in the proper adjustment of glucosinolate levels.

Lack of Overlap in EpiQTLs With Biosynthetic Genes
An interesting observation in this study is that we did not identify
instances where the glucosinolate biosynthetic enzyme genes were
within an epiQTL region suggesting that the epiQTLs largely do not
influence the biosynthetic genes. This is somewhat in contrast to QTL
mapping studies inArabidopsis RILs,which showed that the large-effect
variants linked to glucosinolate accumulation are almost entirely in
biosynthetic loci (Kliebenstein et al., 2001a; Lambrix et al., 2001; Textor
et al., 2004; Kroymann and Mitchell-Olds 2005; Hansen et al., 2007;
Sønderby et al., 2007; Hansen et al., 2008; Sønderby et al., 2010a). In the
natural accessions, this is similarly true that the major effect polymor-
phism are in biosynthetic loci (Chan et al., 2010; Chan et al., 2011;
Brachi et al., 2015). However, there is also a vast universe of loci that
appear to have causal polymorphisms each with small effects (Chan
et al., 2010; Chan et al., 2011). As such, any enrichment of genetic
causation is only identified within the large-effect polymorphisms. In-
terestingly, these large effect loci are associated with different epigenetic
marks but this is a side-effect of the genetic inversions and duplica-
tions present in these genes (Kroymann et al., 2003; Chan et al., 2010;
Schmitz and Ecker 2012; Schmitz et al., 2013; Kawakatsu et al., 2016).
Thus, it is possible that DDM1 methylation only has the ability to
causally influence the peripheral small effect loci within this epiRIL
population. Future work studying other epigenetic marks will be re-
quired to come up with a reason for this difference.

EpiQTL Mapping of Within Vs. Between Line Variation
Dispersion (or stochastic variation) between replicates of homozygous
lines is a trait that is under genetic control and is potentially adaptive
(Queitsch et al. 2002; Ansel et al., 2008; Raj and vanOudenaarden 2008;
Sangster et al. 2008; Veening et al., 2008; Jimenez-Gomez et al., 2011;
Joseph et al., 2015; Lachowiec et al., 2016). These loci can be specific to
stochastic variation within lines or can also associate with the mean
variation between independent genotypes (Lachowiec et al., 2016).
Given the potential for epigenetics to create this stochastic within line
variation, we tested the possibility for the epiRILs to have different
within line dispersion/stochastic variation within otherwise homozy-
gous epigenotypes. Using within line CV to directly map variation
in dispersion, we identified epiQTLs that associated with variation in
within line CV for all of the traits from glucosinolate accumulation to

flowering time. Previous efforts to identify epiQTLs that linked to
within line CV for flowering times did not find these loci (Kooke et al.
2015). The most likely explanation for this difference is that in our
experiments, we had independent replication across experiments on
within line CV allowing for more power to identify these loci. Thus,
the methylation status of the specific epiQTLs specifically associate with
within line dispersion and not only the means of glucosinolates and
flowering time. Interestingly, despite the mean distributions differing
between aliphatic and indolic glucosinolates, their CV distributions were
very similar (Figure 2 D, E, F). This is in contrast to flowering time that
showed very low variation of within line CV (Figure 3B). Like genetic
QTL for within line CV, these epiQTLs were a blend of loci that specif-
ically influence within line CV and loci that shift both within line and
between line variation. Thus DDM1-mediated methylation associates
with phenotypic stability within a line similar to genetic polymorphisms.

In summary, this shows that while epigenetic mark variation cor-
relates with glucosinolate variation, it is at a point that is much lower
than the standing genetic variation. Thus, variation inDDM1-mediated
epigenetic marks is unlikely to have a predominant if any influence on
adaptation in a polymorphic population via flowering time or gluco-
sinolates. This suggests that any role of epigenetic variation in influ-
encing adaptation is most likely to be identified in isolated homozygous
populations that have little to no migration with neighboring popula-
tions. Future work is required to assess if variation in other epigenetic
marks may have more potential influence on adaptive traits.
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