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Abstract

Heme oxygenase-1 (HO-1) catalyzes the first and rate-limiting step in the metabolism of free 

heme into equimolar amounts of ferrous iron, carbon monoxide (CO), and biliverdin. Biliverdin is 

subsequently converted to bilirubin by biliverdin reductase. HO-1 has recently been identified as a 

promising therapeutic target in the treatment of vascular inflammatory disease, including 

atherosclerosis. HO-1 represses inflammation by removing the pro-inflammatory molecule heme 

and by generating CO and the bile pigments, biliverdin and bilirubin. These HO-1 reaction 

products are capable of blocking innate and adaptive immune responses by modifying the 

activation, differentiation, maturation, and/or polarization of numerous immune cells, including 

endothelial cells, monocytes/macrophages, dendritic cells, T lymphocytes, mast cells, and 

platelets. These cellular actions by CO and bile pigments result in diminished leukocyte 

recruitment and infiltration, and pro-inflammatory mediator production within atherosclerotic 

lesions. This review highlights the mechanisms by which HO-1 suppresses vascular inflammation 

in atherosclerosis, and explores possible therapeutic modalities by which HO-1 and its reaction 

products can be employed to ameliorate vascular inflammatory disease.

2. Introduction

Atherosclerosis and its cardiovascular complications are the major cause of morbidity and 

mortality in the developed world, accounting for approximately 50% of all deaths (1). 

Atherosclerosis involves the formation of arterial lesions known as plaque that are 

characterized by lipid accumulation, inflammation, cell activation and death, and fibrosis. 

Over time these lesions grow and mature and can cause blood flow-limiting stenoses. 

However, more serious clinical conditions arise following the rupture of a plaque, which 

exposes the pro-thrombotic material within the plaque to the blood resulting in abrupt 

thrombotic occlusion of the artery at the site of eruption. This can precipitate acute clinical 

events such as myocardial ischemia and stroke. While reductions in risk factors and 

improvement in the treatment of atherosclerosis have decreased the number of age-adjusted 

cardiovascular deaths, the emerging epidemic of obesity and insulin-resistance threatens to 

reverse the recent gains in life expectancy, emphasizing the need for the development of new 

therapeutic modalities that target this disease (2,3).

Although long considered a simple lipid storage disorder, atherosclerosis is now viewed as a 

chronic inflammatory process characterized by the activation of both the innate and adaptive 

arms of the immune system. Studies in the past decade have implicated endothelial cells, 

monocytes/macrophages, dendritic cells, T lymphocytes (T cells), mast cells, and platelets 
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along with a host of inflammatory mediators and pathways in the initiation, propagation, and 

eventual rupture of atherosclerotic plaques (see 4–6). The understanding of atherosclerosis 

as an inflammatory process has begun to influence clinical diagnosis and prognosis, and 

raises the potential for novel therapies that target the underlying inflammation. In this 

respect, recent studies have identified heme oxygenase-1 (HO-1) as a promising therapeutic 

target in atherosclerosis that possesses potent anti-inflammatory properties. This article will 

review potential mechanisms by which HO-1 protects against atherosclerosis, focusing on 

cellular and molecular mechanisms that contribute to the anti-inflammatory actions of this 

enzyme. In addition, it will highlight potential therapeutic strategies targeting HO-1 or its 

reaction products in the treatment and prevention of vascular inflammatory disease.

3. Anti-Inflammatory Actions of HO-1

Heme oxygenase (HO) catalyzes the first and rate-limiting step in heme metabolism. HO 

oxidatively degrades free heme to generate equimolar amounts of carbon monoxide (CO), 

ferrous iron, and biliverdin (Figure 1). This reaction consumes molecular oxygen and 

nicotinamide adenine dinucleotide phosphate (NADPH), and requires the concerted action 

of cytochrome p450 reductase (7). Subsequently, biliverdin is rapidly metabolized to 

bilirubin by biliverdin reductase while free iron is promptly sequestered by ferritin and 

recycled for heme synthesis. Two functional HO isoforms, HO-1 and HO-2, are expressed in 

mammals. These isozymes are products of distinct genes and differ markedly in their 

distribution and molecular properties (8–11). While HO-2 is constitutively expressed and is 

present in high concentration in specific organs, such as the brain and testes, HO-1 is 

ubiquitously distributed and highly inducible. However, both isoforms are inhibited by 

specific metalloporphrins, including tin and zinc protoporphyrin-IX. These molecules 

resemble heme in their porphyrin structure and reversibly compete with heme for binding to 

HO (8).

Accumulating evidence indicates that HO-1 plays an important role in protecting tissues 

from immune-mediated injury. HO-1 is induced by a wide variety of inflammatory 

mediators, including its own substrate heme, oxidative and nitrosative stress, and cytokines 

(8–11). In addition, increased HO-1 expression has been demonstrated in several 

inflammatory states such as atherosclerosis, diabetes, sepsis, ischemia-reperfusion injury, 

organ failure, and organ transplantation (see 12). In these settings, the induction of HO-1 

functions in an adaptive manner to limit the inflammatory process. In a model of pleural 

inflammation, Willis et al (13) initially reported that pharmacological induction of HO-1 

results in a marked decrease in inflammatory cell infiltration and exudates whereas 

inhibition of HO-1 by tin protoporphyrin-IX enhanced inflammatory exudates, illustrating 

that HO-1 modulates the inflammatory response. Consistent with these early findings, HO-1 

has been shown to retard the inflammatory response in numerous tissues (14–19). The 

induction of HO-1 also plays a critical role in immune processes associated with transplant 

rejection where HO-1 positively correlates with transplant survival. Soares et al (20) first 

demonstrated that cardiac transplants from mice lacking HO-1 into rats were promptly 

rejected whereas hearts from donors expressing HO-1 survived for up to 60 days. 

Subsequently the graft-protective properties of HO-1 have been extended to other tissues, 

including the liver, kidney, thyroid, aorta, and pancreatic islets (21–23).
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A beneficial role for HO-1 in inflammation is also supported by findings in HO-1-deficient 

mice. These animals exhibit chronic inflammation characterized by enlarged lymph nodes, 

increased blood leukocyte count and serum IgM levels, and accumulation of 

polymorphonuclear leukocytes and monocytes/macrophages in the spleen as well as non-

lymphoid tissues (24–26). In addition, splenocytes obtained from HO-1-deficient animals 

secrete disproportionately high levels of pro-inflammatory cytokines on stimulation (26). 

Moreover, mice lacking HO-1 demonstrate vasculitis characterized by the adherence of 

monocytes to the vessel wall. Significantly, the only diagnosed human with HO-1-deficiency 

died at a young age due to an inflammatory syndrome associated with a cellular 

vulnerability to oxidative stress (27,28). An anti-inflammatory role for HO-1 is also 

provided by clinical studies demonstrating that serum concentrations of the heme metabolite 

bilirubin are inversely correlated to systemic inflammation as assessed by the circulating 

level of the inflammatory marker, high-sensitivity C-reactive protein (hsCRP) (29,30).

Multiple mechanisms contribute to the anti-inflammatory action of HO-1. In particular, the 

ability of HO-1 to catabolize heme may play an important role since free heme has several 

pro-inflammatory activities. Heme stimulates leukocyte activation and migration, adhesion 

molecule expression, and the induction of inflammatory cytokines and acute phase proteins 

(31–33). In addition, heme promotes an increase in vascular permeability and the infiltration 

of leukocytes into various tissues (34). Significantly, the inflammatory responses mediated 

by heme are counteracted by HO-1 both in vitro and in vivo (33,34). Aside from negating 

the pro-inflammatory actions of free heme, HO-1 generates CO and the bile pigments 

biliverdin and bilirubin, which exert potent anti-inflammatory effects by regulating the 

synthesis of inflammatory mediators and the differentiation, activation, and function of 

immune cells (see 35–37).

4. Role of Inflammation in Atherosclerosis

Atherosclerosis is a chronic inflammatory disease that involves multiple cell types, 

mediators, and pathways (see 4–6). Inflammation mediates all stages of atherosclerosis from 

initiation, to progression, and eventual plaque rupture. Accumulation and oxidative 

modification of lipoproteins such as low density lipoprotein (LDL) within the arterial intima 

represents the initial event in atherogenesis. Oxidized LDL (oxLDL) and other biologically 

active lipids stimulate endothelial and smooth muscle cell activation and the expression of 

adhesion molecules most notably vascular cell adhesive molecule-1 (VCAM-1) and 

intercellular adhesion molecule-1 (ICAM-1) (4). In addition, activated vascular cells 

generate a host of chemokines, including CC-chemokine ligand 2 (CCL2), CCL5, CCL10, 

CCL11, CXC-chemokine ligand 9 (CXCL9), CXCL10, CXCL11, and CXCL16, that guide 

the recruitment of monoctyes, T cells, and mast cells to the vessel wall. The combined 

expression of adhesion molecules and chemokines promotes the recruitment, adherence, and 

transmigration of immune cells into the subendothelial space. Furthermore, the production 

of macrophage colony-stimulating factor (M-CSF) by activated vascular cells induces the 

differentiation of monocytes into macrophages. Macrophages avidly internalize local 

particles of oxidized LDL via scavenger receptors to form foam cells, which are a salient 

feature of atherosclerotic plaques.

Durante Page 3

Front Biosci (Landmark Ed). Author manuscript; available in PMC 2018 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The vascular inflammatory response is further inflamed by the up-regulation and activation 

of Toll-like receptors (TLRs) on macrophages and endothelial cells by oxLDL and other 

ligands, which leads to the activation of nuclear factor-kappa B (NFκB) and the transcription 

of pro-inflammatory mediators such as tumor necrosis factor-α (TNFα), interleukin (IL)-6, 

inducible nitric oxide synthase (iNOS), and matrix metalloproteinases (MMPs). In addition, 

T cells present in the lesion undergo activation after interacting with antigen presenting 

cells, such as macrophages and dendritic cells, both of which process and present local 

antigens, including oxLDL, heat shock protein 60, and possibly local microorganisms. A T 

helper 1 (TH1) cell-dominant response ensues due to the local production of IL-12, IL-15, 

and IL-18 by macrophages and smooth muscle cells, leading to the production of tumor 

necrosis factor-α (TNFα), interferon-γ (IFNγ), and CD40 ligand (CD40L). All three 

products directly accelerate lesion formation by stimulating the expression of pro-

inflammatory cytokines, adhesion molecules, proteolytic enzymes, and pro-thrombotic 

mediators. In addition, they inhibit vascular cell proliferation and collagen production by 

vascular smooth muscle cells. Alternatively, the production of the anti-inflammatory 

cytokines IL-10 and transforming growth factor-β (TGF-β) by vascular cells, macrophages, 

regulatory T cells (TReg), and platelets dampens the atherogenic response by attenuating 

plaque inflammation and fragility.

5. Protective Role of HO-1 against Inflammation in Atherosclerosis

Substantial evidence indicates that HO-1 plays a beneficial role in atherosclerosis. HO-1 is 

expressed in the endothelium, macrophage, foam cells, and medial smooth muscle cells of 

atherosclerotic lesions in both humans and experimental animals (38,39). HO-1 expression 

is detected throughout the development of lesions from early fatty streaks to advanced 

complex atherosclerotic lesions and correlates with plaque burden and phenotype (40,41). 

Elevated HO-1 expression is observed in human vulnerable atherosclerotic plaques that 

contain large amounts of lipids and macrophages, and high levels of pro-inflammatory 

cytokines and chemokines, including IL-6 and CCL2. HO-1 is localized predominately in 

the intimal base of vulnerable lesions and co-localizes extensively with residing 

macrophages (41). Interestingly, HO-1 expression is more common in atherosclerotic 

plaques obtained from asymptomatic compared to symptomatic patients, suggesting a 

probable role for HO-1 in plaque stability (42). Significantly, the only known human case of 

HO-1-deficiency exhibited marked endothelial cell injury and early atherosclerotic changes 

in the vasculature, as reflected by the presence of fatty streaks and plaque (27,28). 

Furthermore, studies assessing polymorphisms in the promoter region of the human HO-1 

gene support a favorable role for HO-1 in atherosclerosis. Specifically, promoters that 

contain a long (GT)n microsatellite polymorphism that is linked to impaired expression is 

associated with susceptibility to coronary artery disease in certain patient populations (43–

45).

Further support for the protective role of HO-1 in atherosclerosis is derived from animal 

studies. Inhibition of HO activity by metalloporphyrins enhances lesion formation in 

Watanabe heritable hyperlipidemic rabbits and LDL-receptor-knockout mice fed a high fat 

diet (46,47). In a similar fashion, deletion of HO-1 in apolipoprotein E (apoE)-null mice fed 

a western diet results in larger and more advanced lesions, independent of any change in 
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circulating cholesterol levels (48). Alternatively, the administration of the HO-1 inducer, 

hemin, diminishes lesion size in LDL-receptor deficient mice (47). In addition, systemic 

delivery of an HO-1 adenovirus results in a significant decrease in lesion area at the aortic 

root and arch in both young and old apoE-depleted mice relative to control littermates 

receiving an empty adenoviral vector (49). Similarly, adenoviral-mediated gene transfer of 

HO-1 ameliorates graft arteriosclerosis following rat cardiac and aortic transplantation (50–

52). More recent work using a vulnerable plaque model found that HO-1 may also regulate 

plaque phenotype (40). Molecular or pharmacological induction of HO-1 retards vulnerable 

plaque formation in apoE-knockout mice leading to lesions with a reduced lipid 

concentration and necrotic core, and increased smooth muscle cell content and fibrous cap 

thickness. In contrast, inhibition of HO-1 activity by zinc protoporphyrin-IX engenders an 

opposite effect promoting plaque destabilization. Collectively, clinical and experimental 

studies suggest that HO-1 affords protection against the development of coronary artery 

disease by reducing plaque size and vulnerability.

Since the oxidation of LDL by reactive oxygen plays a critical role in triggering the 

inflammatory response in atherosclerosis, the ability of HO-1 to scavenge reactive oxygen 

species may be particularly relevant. Consistent with an antioxidant role in atherosclerosis, 

the induction of HO-1 reduces plasma hydroperoxide concentrations in LDL-receptor 

knockout mice and hyperlipidemic rabbits while HO inhibition elevates circulating and 

tissue hydroperoxide levels (46,47). The bile pigments biliverdin and bilirubin are likely 

involved in the antioxidant action of HO-1, since these pigments are highly efficient 

scavengers of numerous oxidants and, importantly, are able to prevent the oxidation of LDL 

(53,54). Moreover, bilirubin oxidation products are detected in atherosclerotic lesions (39). 

However, other actions of HO-1 may also mediate its antioxidant effect in atherosclerosis. In 

particular, HO-1 reduces the levels of pro-oxidant iron in atherosclerotic lesions of apoE-

knockout mice (49). Although the exact mechanism whereby HO-1 diminishes iron overload 

has not been elucidated, HO-1-mediated increases in iron efflux from cells may be 

implicated (55). Furthermore, the increase in ferritin expression that accompanies HO-1 

induction may sequester free iron and limit its pro-oxidant/pro-inflammatory capacity. 

Finally, CO may further enhance the antioxidant actions of HO-1 by inducing the expression 

of antioxidant genes while blocking the activity of pro-oxidant enzymes (56,57).

HO-1 may also impede early lesion formation by blocking immune cell recruitment and 

infiltration into atherosclerotic lesions. HO-1 inhibits the expression of adhesion molecules 

and chemokines associated with the activation of endothelial cells. Overexpression of HO-1 

using either pharmacological or genetic approaches blocks cytokine-mediated increases in 

VCAM-1 and E-selectin expression, and CCL2 secretion by cultured human endothelial 

cells (58–60). The induction of HO-1 has also been shown to attenuate the expression of E- 

and P-selectin in several vascular beds (61). These anti-inflammatory actions of HO-1 are 

mimicked by the exogenous administration of bilirubin or by the chelation of iron, and 

involve the inhibition of the transcription factor NF-κB, which is strictly required for the 

expression of adhesion molecules and other inflammatory mediators (58,60,62). By blocking 

the vascular expression of adhesion receptors, bilirubin is able to reduce the rolling, 

adhesion, and infiltration of monocytes into the vessel wall (47,58,59,61). Significantly, the 

induction of HO-1 in monocytes suppresses their chemotactic activity by decreasing the 
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expression of chemokine receptors (63). This anti-inflammatory effect of HO-1 involves 

both CO and bilirubin since the combined application of both heme metabolites is required 

to mimic the action of HO-1. Interestingly, recent work demonstrates that circulating 

monocytes display heterogeneity, which commits to specific functions in atherogenesis. In 

particular, an inflammatory pro-atherogenic subset of monocytes that possesses a distinct 

repertoire of surface receptors that allows for efficient trafficking to sites of acute 

inflammation is elevated in hypercholesterolemia (6). Whether HO-1 can influence the 

expansion of this monocyte subset is currently not known but this would provide an 

additional mechanism by which this enzyme regulates monocyte infiltration. Nevertheless, 

the ability of HO-1 to co-ordinately inhibit adhesion molecule, chemokine, and chemokine 

receptor expression provides a potent mechanism by which HO-1 is able to dampen 

inflammatory cell recruitment into vascular lesions. In support of this assertion, bone 

marrow transplantation experiments performed in lethally irradiated LDL-receptor-null mice 

reveals that animals reconstituted with bone marrow from HO-1-deficient mice display 

atherosclerotic lesions with greater macrophage content compared to animals reconstituted 

with bone marrow from wild-type mice (64).

HO-1 may also inhibit atherosclerosis by directly regulating macrophage function. 

Peritoneal macrophages derived from HO-1-knockout or HO-1 heterozygous mice exhibit 

distinct properties compared to macrophages isolated from wild-type littermates (64). Both 

decreased and absent HO-1 expression results in increased lipid uptake and foam cell 

formation in macrophages exposed to oxLDL. The rise in lipid uptake by macrophages with 

compromised HO-1 expression correlates with increased reactive oxygen species generation 

and is attributable, in part, to increased expression of scavenger receptor A. These in vitro 
findings are consistent with in vivo data demonstrating that ablation of HO-1 increases lipid 

accumulation in atherosclerotic lesions of apoE-deficient mice (48). Deletion of HO-1 also 

results in the greater release of IL-6 and CCL2 from activated macrophages while 

overexpression of HO-1 decreases the synthesis of several pro-inflammatory cytokines, 

including IL-6, CCL2, and TNFα (64–66). The suppression of pro-inflammatory cytokine 

production by HO-1 is duplicated by the exogenous administration of CO and requires the 

activation of p38 mitogen-activated protein kinase (66). More recently, CO has been 

reported to attenuate macrophage TLR signaling by promoting the interaction between 

caveolin-1 and TLR4 and repressing the association of TLR4 with MyD88 and the 

subsequent downstream activation of NF-κB (67). Furthermore, CO may block macrophage 

differentiation by inhibiting the expression of GM-CSF (68). A recent study also found that 

HO-1 contributes to an alternative (M2) macrophage activation profile, which promotes the 

resolution of inflammation (69). Thus, HO-1 may down-regulate vascular inflammation by 

modulating macrophage activation, differentiation, and polarization.

Significantly, CO stimulates the synthesis of IL-10 by activated macrophages and in mice 

exposed to lipopolysaccharide (66). The induction of IL-10 production occurs in a NO- and 

soluble guanylate cyclase-independent manner but is dependent on mitogen-activated protein 

kinase kinase 3 since CO fails to elicit increases in circulating levels of IL-10 in endotoxin-

treated mice deficient in this kinase. Interestingly, biliverdin is also able to up-regulate IL-10 

production by macrophages. In this case, the generation of IL-10 by biliverdin is driven 

through the binding of the bile pigment to biliverdin reductase expressed on the cell surface 
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and the subsequent activation of phosphatidylinositol-3-kinase/Akt signaling pathway (70). 

The ability of CO and biliverdin to stimulate the formation of IL-10 may further contribute 

to the anti-inflammatory action of HO-1 since this cytokine inhibits the production of pro-

inflammatory cytokines, suppresses leukocyte adhesion and migration, promotes TReg cell 

development, and inhibits antigen-specific responses (71). Intriguingly, HO-1 may be a 

downstream effector of IL-10. IL-10 stimulates HO-1 gene expression in a murine 

macrophage cell line and IL-10-mediated protection against inflammation during septic 

shock and transplant arteriosclerosis is dependent on the induction of HO-1 (72,73). These 

studies suggest the presence of a positive feedback loop between HO-1 and IL-10 that may 

serve to amplify their anti-inflammatory actions.

HO-1 may also protect against atherosclerosis by promoting vascular cell survival. 

Apoptosis of endothelial cells plays a fundamental role in the progression of atherosclerosis. 

Atherogenic stimuli such as oxLDL, inflammatory cytokines, and reactive oxygen species 

are potent inducers of endothelial cell apoptosis, and apoptotic endothelial cells have been 

observed in atherosclerotic plaques (74). Gene transfer of HO-1 inhibits endothelial 

apoptosis in response to many atherogenic factors and provides endothelial protection in 

animal models of transplant arteriosclerosis (23,75). The cytoprotection afforded by HO-1 is 

principally mediated by CO, which regulates a multitude of steps in the apoptotic cascade 

(75,76). However, the bile pigments are also capable of blocking endothelial cell death (77). 

Interestingly, we previously reported that pharmacological induction of HO-1 also prevents 

the apoptosis of vascular smooth muscle cells through the release of CO (78,79). Since 

vascular smooth muscle cell apoptosis is a pivotal process in plaque rupture (80), the 

capacity of HO-1 to retard smooth muscle cell death in the vulnerable shoulder area of 

plaques may provide a vital mechanism by which HO-1 preserves plaque stability.

Accumulating evidence suggests that HO-1 may attenuate the inflammatory response in 

atherosclerosis by affecting the function of antigen presenting cells. Dendritic cells are 

specialized antigen-presenting cells that populate atherosclerotic plaque and regional 

draining lymph nodes. These cells bridge the innate and adaptive immune responses and 

present antigens and co-stimulatory molecules to T cells to trigger the cellular immune 

response. In the presence of inflammation, immature dendritic cells undergo maturation, a 

process involving up-regulation of surface major histocompatibility complex class II 

(MHCII) and co-stimulatory molecules, secretion of pro- and anti-inflammatory molecules, 

and acquire the ability to stimulate the differentiation of naïve T cells into effector cells. 

Interestingly, immature dendritic cells constitutively express HO-1 and this expression is 

strongly down-regulated in response to inflammatory mediators, suggesting a biological role 

for HO-1 in dendritic cell maturation (81). However, this coupling between HO-1 expression 

and dendritic maturation depends on the culture conditions used to propagate dendritic cells 

and is not seen in all dendritic cell subpopulations or for all cell surface proteins (82,83). 

Several studies have reported that the induction of HO-1 inhibits dendritic cell activation and 

immunogenicity, and this response is mimicked by the pharmacological delivery of CO or 

biliverdin/bilirubin (81,84–86). More recently, the genetic loss or small interference RNA-

mediated silencing of HO-1 in dendritic cells was shown to up-regulate MHCII expression 

via a MHCII trans-activator-driven mechanism and direct the primary T-cell response 

preferentially toward a CD4+ T rather than CD8+ T cell reaction in an in vitro mixed 
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lymphocyte response assay (87). These findings suggests that alterations in dendritic cell 

regulation in the absence of HO-1 may contribute to the increase in CD4+ T/CD8+ T cell 

ratio detected in aging HO-1-knockout animals (25). In a murine model of transplant 

arteriosclerosis, adoptive transfer of HO-1-deficient dendritic cells before allograft 

transplantation is associated with pronounced intragraft CD4+ T cell infiltration and 

accelerated transplant arteriosclerosis. Similarly, inhibition of HO-1 activity by zinc 

protoporphyrin-IX in allograft recipients aggravates transplant arteriosclerosis and this is 

associated with significant CD4+ T cell infiltration in the allograft. Thus, HO-1 plays a 

central role in regulating dendritic cell function and subsequent T-cell priming in transplant 

arteriosclerosis.

Several studies indicate that HO-1 may directly affect T cell function. Overexpression of 

HO-1 or delivery of CO blocks the entry of T cells into the cell cycle and their proliferation. 

This anti-proliferative effect is independent of the soluble guanylate cyclase/cyclic GMP 

pathway but is mediated by the suppression of IL-2 production (88,89). Similarly, the 

exogenous administration bilirubin inhibits T cell proliferation (86). The cytostatic action of 

bilirubin is mediated via multiple mechanisms, including inhibition of co-stimulator 

activities, suppression of immune transcription factor activation, and down-regulation of 

IL-2 synthesis (86,90). Alternatively, HO-1 has been shown to attenuate T cell responses by 

promoting activation-induced death of alloreactive T cells, possibly through the release of 

CO (91,92). Since free heme can stimulate T cell proliferation (93), the ability of HO-1 to 

degrade heme may also contribute to its ability to block T cell activation.

Significantly, HO-1 may also impair plaque progression by favoring a Th2 cell response. In 

liver transplantation studies, high levels of HO-1 expression within grafts correlate with a 

shift in the Th1 and Th2 cytokine balance toward a Th2 cytokine profile consisting 

predominantly of IL-4 and IL-10 secretion (94). A similar cytokine profile change is noted 

in liver allograft recipients receiving the CO pro-drug methylene chloride (95), suggesting 

that CO may be responsible for promoting the Th2 response. The association of HO-1 

activity with a Th2 cytokine production pattern has been observed in other inflammatory 

conditions and may also contribute to plaque stability by limiting the synthesis of plaque 

destabilizing cytokines such as IFNγ (15). Additionally, HO-1 may curb vascular 

inflammation by modulating TReg cell function. TReg cells dampen immune responses by 

suppressing the activation of Th1 and Th2 effector cells. They can achieve this indirectly by 

affecting antigen presenting cell function or directly through T cell interactions. 

Interestingly, human and mouse TReg cells express HO-1 constitutively and pharmacologic 

inhibition of HO-1 abolishes their suppressive activity on CD4+ T cells (96). However, TReg 

cells isolated from HO-1-deficient mice retain normal suppressive capacity both in vitro and 

in vivo (97), calling into question a direct physiological role for HO-1 in modulating TReg 

function. In this respect, a recent in vitro study found that TReg cell activity is dependent on 

the expression of HO-1 in antigen presenting cells (98). Together, these studies indicate that 

HO-1 exerts multiple actions on T cells that can potentially impact on the progression and 

stability of atherosclerotic plaques.

HO-1 may also evoke a salutary effect on vascular inflammation by stabilizing mast cells. 

Although low in abundance relative to other immune cells, mast cells are found in 
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atherosclerotic plaques where they provoke inflammation (99,100). Activation of mast cells 

result in the release of histamine and other autacoids that increase vascular permeability and 

alter vascular tone. In addition, mast cells stimulate the release of pro-inflammatory 

cytokines (TNFα, IL-6, and IFNγ) and proteinases that can activate MMPs. The 

degranulation of mast cells also releases heparin that can bind growth-regulatory proteins 

and contribute to foam cell formation. Interestingly, the induction of HO-1 in mast cells 

blocks their degranulation and their ability to generate inflammatory cytokines (101,102). In 

addition, HO-1 down-regulates mast cell-dependent leukocyte adhesion on venular 

endothelium (101). The bile pigments biliverdin and bilirubin mimic the suppressive actions 

of HO-1 on both mast cell degranulation and leukocyte adhesion, whereas CO is ineffective. 

Thus, the ability of HO-1 to inhibit mast cell activation through the formation of bile 

pigments may also contribute to the anti-inflammatory actions of this enzyme in 

atherosclerosis.

Finally, HO-1 may diminish vascular inflammation by inhibiting platelet function. Beyond 

their role in hemostasis, platelets exert important inflammatory responses (103). The 

adhesion and activation of platelets on the vessel wall results in the release pro-inflammatory 

molecules such as IL-1β, CD40L, and CCL5 that alters the adhesive and chemotactic 

properties of endothelial cells, supporting the infiltration of monocytes into atherosclerotic 

lesions. In addition, exposure of P-selectin on the surface of activated platelets permits the 

binding of platelets to monocytes via P-selectin glycoprotein receptor 1 (PSGL-1) thereby 

increasing monocyte adhesion to endothelium. Activated platelets also liberate platelet 

factor-4 that promotes the differentiation of monocytes to macrophages. The release of 

growth factors and MMPs via the degranulation of platelet α-granulates may also influence 

the composition of the vascular lesions by affecting the content of smooth muscle cells and 

extracellular matrix, respectively.

Interestingly, several studies have demonstrated that exogenous administration of CO 

inhibits platelet aggregation (104,105). Moreover, we previously reported that the 

endogenous production of CO by HO-1 activity in vascular cells is sufficient to block 

platelet aggregation (106). The inhibitory effect of CO on platelet aggregation is likely 

mediated by the activation of soluble guanylate cyclase (105,106); however, a soluble 

guanylate cyclase-independent mechanism has also been proposed (107). The induction of 

HO-1 or the application of CO or bilirubin has also been shown to mitigate the adhesion of 

platelets to the venular endothelium of endotoxin-treated animals (108). Thus, by blocking 

platelet adhesion and activation, HO-1 may counteract the pro-inflammatory actions of 

platelets in atherosclerotic lesions. Moreover, the ability of HO-1 to block platelet function 

may also limit thrombosis following plaque rupture. The induction of HO-1 ameliorates 

micro and macrovascular thrombus formation following endothelial injury (109,110). In 

addition, loss of HO-1 accelerates arterial thrombus formation following photochemical 

injury and augments thrombus size in a murine model of deep vein thrombosis (111,112). 

HO-1-deficiency in mice also results in thrombosis and early mortality following allogeneic 

aortic transplantation (113). However, adoptive transfer of wild-type platelets prolongs 

survival of HO-1-deficient aortic graft recipients. Furthermore, the systemic administration 

of CO rescues the pro-thrombotic phenotype and significantly improves survival in HO-1-
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deficient animals. Together, these data suggest that HO-1 and its reaction products reduce 

platelet-mediated vascular inflammation and the risk of atherothrombosis.

In summary, HO-1 and its reaction products exert potent anti-inflammatory actions on 

immune cells that regulate the process of atherogenesis (Figure 2). HO-1 inhibits the 

recruitment and infiltration of immune cells into the vasculature by suppressing adhesion 

receptor expression and chemokine production by vascular cells. HO-1 also blocks the 

release of proteases, nitric oxide, and pro-inflammatory cytokines from monocytes and the 

activation and differentiation of macrophages into foam cells by blocking the expression of 

scavenger receptors and TLRs while inhibiting MMPs activity and stimulating the synthesis 

of the anti-inflammatory cytokine, IL-10. In addition, HO-1 may indirectly affect T cell 

function by blocking surface expression of MHCII and the maturation of dendritic cells, and 

by promoting the activity of TReg cells. Moreover, HO-1 may drive T cell differentiation 

toward a CD4+ T phenotype and a Th2-dominant reaction that limits the production of pro-

atherogenic cytokines. Finally, HO-1 also prevents the release of inflammatory mediators 

from mast cells and platelets by inhibiting their activation and degranulation.

6. Therapeutic Approaches Targeting HO-1 in Vascular Inflammation

The multiple anti-inflammatory actions of HO-1 that operate on cells found in 

atherosclerotic plaques makes HO-1 a highly attractive therapeutic target in treating 

atherosclerosis and other vascular inflammatory disorders. Several strategies can be 

employed to deliver HO-1. One promising approach involves the use of pharmacological 

inducers. Heme and it synthetic analogues are potent inducers of HO-1 expression that 

provides additional substrate to the enzyme for optimal CO and biliverdin production 

(8,114). These compounds have been shown to protect against the development of vascular 

disease in diverse animal models, including atherosclerosis (8–11,47). In addition, hemin is 

already approved by the United States Food and Drug Administration (US FDA) for the 

treatment of porphyria (115,116) and a small clinical study has documented the efficacy of 

hemin in stimulating HO-1 expression in healthy volunteers (117). However, possible pro-

oxidant and pro-inflammatory actions associated with free heme may limit the use of heme 

compounds (31–34). A potential less toxic approach to up-regulating HO-1 gene expression 

may involve the use dietary supplements. A large number of dietary antioxidants have been 

demonstrated to induce HO-1 in vascular cells and leukocytes, including quercetin, 

circumin, α-lipoic acid, catechins, carnosol, sulphoraphane, and resveratrol (118). In 

addition, amino acids such as glutamine, methionine, and alanine are known to increase 

HO-1 expression, and may mediate their anti-inflammatory action through the induction of 

HO-1 (119–121). However, clinical studies are needed to establish the efficacy and safety of 

any nutritional approach that induces HO-1 expression.

Interestingly, the vanguard drugs used to treat atherosclerosis stimulate HO-1 expression. 

Statins are widely prescribed 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors 

that reduce various atherosclerotic complications (120). Although lowering of circulating 

LDL cholesterol levels accounts for much of the clinical benefit, statins exert other anti-

atherogenic effects that are independent of LDL reduction (121). Recent evidence suggests 

that HO-1 may contribute to the beneficial, non-lipid lowering action of statins. Several 

Durante Page 10

Front Biosci (Landmark Ed). Author manuscript; available in PMC 2018 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



statins (rosuvastatin, simvastatin, lovastatin, and atorvastatin) are able to stimulate the 

expression of HO-1 in cultured vascular cells (122–124). Furthermore, the induction of 

HO-1 mediates the anti-inflammatory and anti-proliferative effect of statins in vascular 

smooth muscle cells (124). Oral administration of stains in mice results in a statin- and 

tissue-specific elevation in HO-1 expression (125). A significant statin-mediated increase in 

HO-1 expression is also noted in murine aortic endothelium, with a lesser induction detected 

in atheroprone regions of the vessel wall (126). However, the induction of HO-1 in cultured 

endothelial cells is inconsistent and is usually observed at concentrations that exceed the 

concentrations found in patient’s plasma during statin therapy, raising the question of 

therapeutic relevance (127). Of note, a recent study found that laminar shear stress 

potentiates the induction of HO-1 by statins in cultured endothelial cells (126), suggesting 

that endothelial cells may be more responsive to statins in their native in vivo environment 

than in culture. Similarly, probucol, a rarely used cholesterol-lowering agent that retards 

atherosclerosis in humans and animals (128,129), stimulates HO-1 gene expression in 

vascular cells (130). Moreover, the induction of HO-1 contributes to the anti-inflammatory 

and growth-regulatory properties of this compound drug (131).

Drugs used to treat the acute and chronic complications of atherosclerosis also elevate HO-1 

expression. Aspirin stimulates HO-1 expression in endothelial cells and this may play a role 

in the drug’s antioxidant and anti-thrombotic profile (134). In addition, HO-1 may contribute 

to the effectiveness of drug-eluting stents in preserving blood flow in regions of 

atherostenosis following percutaneous interventions. Strikingly, both rapamycin and 

paclitaxel, which are released by stents, are potent inducers of HO-1 in vascular smooth 

muscle cells, and HO-1 contributes to the anti-proliferative action of these compounds (135–

137).

While the above studies validate the use of a pharmacological approach in delivering HO-1, 

some challenges remain. In particular, the induction and duration of HO-1 expression must 

be carefully calibrated since prolonged, high level HO-1 expression has the potential of 

adversely affecting cell viability via the generation of toxic levels of free iron and biliverdin 

(138,139). Apart from toxicity, the presence of polymorphisms in the promoter that limits 

the induction of HO-1 may reduce the efficacy of pharmacological inducers in certain 

patient groups (140). Consequently, the genotyping of patients may be required prior to 

pharmacological intervention. Alternatively, increasing HO-1 gene expression via viral-

mediated gene transfer circumvents this problem and allows for a more selective approach in 

targeting this gene to all patient populations. In this respect, HO-1 gene transfer approaches 

in animals have proven highly effective in attenuating atherosclerosis and intimal thickening 

following arterial injury (49,141,142). Moreover, the recent deployment of inducible and 

cell-specific vectors may allow for selective and temporal patterns of HO-1 gene expression 

(143). However, further improvements in safety and efficacy are required before human 

HO-1 gene therapy becomes a viable option.

Alternatively, the products of the HO-1 reaction may be directly employed to treat 

atherosclerosis and its complications. Preclinical studies demonstrate that CO is effective in 

preventing vascular disease. Inhalation of low concentrations of CO affords protection in 

animal models of transplant arteriosclerosis, intimal hyperplasia, pulmonary hypertension, 
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and ischemia-reperfusion injury (144–147). Based on such positive findings, the US FDA 

granted orphan drug status for inhaled CO for use in ameliorating the incidence and severity 

of delayed graft function in patients undergoing solid organ transplantation (148). Presently, 

several clinical trials are exploring the feasibility of using acute, episodic CO inhalation 

regimens for the treatment of lung inflammation, obstructive pulmonary disease, and kidney 

transplantation. Preliminary studies found that the inhalation of low doses of CO for one or 

two hours is safe and potentially beneficial to patients (149,150).

The use of CO-saturated solutions provides another means for administering CO. We 

previously reported on the utility of this approach by demonstrating that local application of 

a saturated solution of CO blocks neointima formation following rat carotid artery balloon 

injury (151). The recent development of CO-releasing molecules (CORMs) that liberate CO 

under physiologic conditions offers a promising approach that may allow for a more 

controlled and targeted delivery of this gas (152,153). Another potential advantage of these 

compounds is their ability to elevate local levels of CO without significantly increasing 

blood carboxyhemoglobin levels, which is often observed with CO inhalation therapy (152). 

Significantly, CORMs inhibit in-stent stenosis in a rat model (154); however, the ability of 

these molecules to inhibit atherosclerosis in animals remains to be established.

The administration of biliverdin or bilirubin may provide an alternative approach in treating 

atherosclerotic disease. The delivery of bile pigments inhibits vascular inflammation 

following organ transplantation and reduces the degree of neointima formation following 

arterial injury in rodents (90,155,156). Interestingly, the salutary effect observed with the 

administration of bile pigments in animals occurs with mild increases in circulating bilirubin 

levels. This corresponds to clinical studies demonstrating that only modest elevations in 

serum bilirubin reduce inflammation and the attendant risk of coronary and peripheral artery 

disease (29,30,157,158). Since the anti-atherogenic effect of HO-1 may involve the 

synergistic interaction between its reaction products, combined therapy with CO and 

biliverdin may be advantageous over the application of a single HO-1 product.

7. Perspectives

A growing body of evidence indicates that HO-1 protects against atherosclerosis by 

inhibiting the inflammatory processes that contribute to plaque development, progression, 

and rupture. Aside from metabolizing pro-inflammatory free heme, HO-1 generates CO and 

the bile pigments biliverdin and bilirubin which exert potent anti-inflammatory effects by 

modulating the synthesis of inflammatory modulators as well as the activation, 

differentiation, function of cells found within atherosclerotic lesions. Several strategies can 

be used to target HO-1 in atherosclerosis. Pharmacological induction of HO-1 has proven 

effective in animal models of atherosclerosis and represents an attractive and highly feasible 

approach. Many inducers of HO-1 have been identified and several are used clinically. In 

fact, the current drugs used to treat atherosclerosis and its clinical complications elicit their 

beneficial actions, in part, through the induction of HO-1. However, pharmacological 

approaches may be compromised in certain segments of the population that possess 

promoter polymorphisms that limit the inducibility of HO-1. In this situation, HO-1 gene 

therapy or the direct administration of HO-1 reaction products may be more effective. In this 
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respect, inhalation of CO has been demonstrated to prevent inflammation and transplant 

arteriosclerosis in several animal models, and initial clinical studies indicate that CO 

inhalation may be a viable option. The use of CO-releasing molecules provides an additional 

and perhaps safer alternative in delivering CO to patients. Finally, given experimental and 

epidemiological studies demonstrating the beneficial actions of bile pigments on coronary 

artery disease, the administration of bile pigments either alone or in combination with CO 

may provide another therapeutic modality to treat atherosclerosis. Future clinical studies are 

needed to establish the efficacy and safety of any of the above approaches targeting HO-1 or 

its reaction products in the treatment of vascular inflammatory disease.
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Figure 1. 
The heme oxygenase (HO)-mediated metabolism of heme. HO catalyzes the degradation of 

heme into equimolar amounts of ferrous heme (Fe2+), carbon monoxide (CO), and 

biliverdin. This oxidative reaction is blocked by various metalloporphyrins, including tin and 

zinc protoporphyrin-IX. Biliverdin is subsequently metabolized to bilirubin by biliverdin 

reductase. M, P, and V represent methyl, propionyl, and vinyl groups, respectively; NADPH, 

nicotinamide adenine dinucleotide phosphate.
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Figure 2. 
Potential mechanisms by which HO-1 inhibits vascular inflammation in atherosclerosis. 

HO-1 and its reaction products exert potent anti-inflammatory effects on numerous cell 

types that may inhibit the process of atherogenesis. HO-1 inhibits the recruitment and 

infiltration of immune cells into the vasculature by suppressing adhesion receptor expression 

and chemokine production by vascular endothelial cells (ECs) and smooth muscle cells 

(SMCs). HO-1 also blocks the release of proteases, nitric oxide and pro-inflammatory 

cytokines from monocytes and the activation and differentiation of macrophages into foam 

cells by blocking the expression of scavenger receptors and toll-like receptors (TLRs) while 

inhibiting matrix metalloproteinase (MMPs) activity and stimulating the synthesis of the 

anti-inflammatory cytokine, interleukin-10 (IL-10). In addition, HO-1 may indirectly affect 

T lymphocyte (T cell) function by blocking surface expression of major histocompatibility 

complex class II (MHCII) and the maturation of dendritic cells, and by promoting the 

activity of T regulatory cells (TReg). Moreover, HO-1 may drive T cell differentiation toward 

a CD4+ T cell and a T helper T 2 (Th2) reaction that limits the production of pro-atherogenic 

cytokines. Finally, HO-1 also prevents the release of inflammatory mediators from mast 

cells (histamine, proteases, and pro-inflammatory cytokines) and platelets [interleukin-1β 
(IL-1β), CD40 ligand (CD40L), chemokines, and MMPs] by inhibiting their activation and 

degranulation.
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