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Abstract

Objectives—We aimed to investigate if lesion-specific ischemia by invasive fractional flow 

reserve (FFR) can be predicted by an integrated machine learning (ML) ischemia risk score from 

quantitative plaque measures from coronary Computed Tomography Angiography (CTA).
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Methods—In a multicenter trial of 254 patients, CTA and invasive coronary angiography were 

performed, with FFR in 484 vessels. CTA datasets were analyzed by semi-automated software to 

quantify stenosis and non-calcified (NCP), low-density NCP (LD-NCP, <30 HU), calcified and 

total plaque volumes, contrast density difference (CDD, maximum difference in luminal 

attenuation per unit area), and plaque length. ML integration included automated feature selection 

and model building from quantitative CTA with a boosted ensemble algorithm, and ten-fold 

stratified cross-validation.

Results—Eighty patients had ischemia by FFR (FFR≤0.80) in 100 vessels. Information gain for 

predicting ischemia was highest for CDD (0.172), followed by LD-NCP (0.125), NCP (0.097), and 

total plaque volumes (0.092). ML exhibited higher area-under-the-curve (0.84) than individual 

CTA measures, including stenosis (0.76), LD-NCP volume (0.77), total plaque volume (0.74), and 

pre-test likelihood of coronary artery disease (CAD) (0.63); p<0.006.

Conclusions—Integrated ML ischemia risk score improved the prediction of lesion-specific 

ischemia by invasive FFR, over stenosis, plaque measures and pre-test likelihood of CAD.

Keywords

Computed Tomography Angiography; atherosclerotic plaque; coronary stenosis; machine learning; 
ischemia

Introduction

Coronary Computed Tomography Angiography (CTA) is a noninvasive diagnostic test which 

allows direct noninvasive assessment of the coronary arteries[1–5]. In addition to luminal 

stenosis, CTA also permits noninvasive assessment of atherosclerotic plaque features as well 

as quantitative measurement of plaque burden [6–10].

Revascularization strategies guided by lesion-specific ischemia, assessed by invasive 

Fractional Flow Reserve (FFR), have been shown to improve patient outcomes[11; 12]. 

Selected plaque features from CTA, such as low-density non-calcified plaque (NCP) and 

total plaque burden, have been shown to noninvasively improve detection of lesion-specific 

ischemia[13; 14]. It is not known, however, whether several correlated quantitative plaque 

measures from CTA can be effectively combined to predict lesion-specific ischemia.

Machine learning is a field of computer science that uses computer algorithms to identify 

patterns in large datasets with a multitude of variables without making any prior 

assumptions. Accordingly, machine learning techniques have emerged as highly effective 

methods for prediction and intelligent decision-making in many areas of everyday living [15; 

16]. Recently machine learning applied to medical imaging has shown to improve diagnostic 

accuracy [17; 18] and prognostic outcomes [19; 20]. The aim of this study was to investigate 

if lesion-specific ischemia by FFR can be effectively predicted by machine learning 

integration of quantitative plaque metrics measured from CTA.
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Methods

Patients

This was a post hoc sub-study comprising all 254 patients from the prospective, multicenter 

NXT trial (NCT01757678), which has been previously described in detail [21]. This trial 

included patients suspected of stable coronary artery disease who underwent coronary CTA 

≤ 60 days prior to clinically indicated, non-emergent invasive coronary angiography with 

fractional flow measurements. Exclusion criteria included prior stent implantation or 

coronary bypass surgery, contraindications to beta-blockers, nitrates or adenosine, suspicion 

of acute coronary syndrome, significant arrhythmia, and body mass index >35 kg/m2 [21]. 

As described by Norgaard et al [21], the overall image quality in these 254 patients were 

good-to-excellent. All patients were included for quantitative plaque analysis. Age, gender 

and angina typicality for each patient were used to determine pre-test likelihood of coronary 

artery disease [22]. Institutional review committees approved the study protocol and all 

patients provided informed written consent.

Invasive coronary angiography and fractional flow reserve measurements

Angiography and FFR were performed according to standard practice [21]. The FFR 

pressure-wire was positioned a minimum distance of 20 mm distal to vessel stenosis; 

hyperaemia was induced by intravenous adenosine. Lesion-specific ischemia was defined by 

FFR ≤ 0.80.

Coronary computed tomography acquisition

Coronary CTA was performed using single or dual-source CT scanners with at least 64 

detector rows in accordance with societal guidelines[23]. Oral and/or intravenous beta-

blockade was administered targeting a heart rate < 60 beats/min and sublingual nitrates were 

administered in all patients [21]. Both prospective and retrospective gating were used for 

scan acquisitions. Data acquisition was performed with 100-kV tube voltage in patients 

weighing ≤ 70 kg and 120-kV otherwise. The mean DLP was (214.3 ± 157.1) mGy.cm for 

prospective and (1021.4 ± 500.0) mGy.cm for retrospective acquisitions.

Plaque analysis from coronary CT Angiography

Plaque analysis in coronary segments with distal lumen diameter ≥ 2 mm was performed 

retrospectively with semi-automated software (AutoPlaque research software, Cedars-Sinai 

Medical Center, Los Angeles, CA, USA), by one of two experienced readers (both Level 3 

certified in cardiac CT, with 5 years or longer experience) blinded to patient characteristics, 

coronary CTA readings, and FFR[24; 25]. For each patient, the Segmental Involvement 

Score was defined as the total number of coronary segments with any coronary plaque. 

Scan-specific attenuation thresholds were computed for non-calcified and calcified plaque 

and lumen as previously described [24; 25]. Low-density non-calcified plaque was defined 

as non-calcified plaque below a preset low-density threshold (30 HU) [26]. The plaque 

volumes and burden (defined as plaque volume x 100%/vessel volume) for each plaque 

component was calculated. Quantitative percent stenosis was calculated by dividing the 

narrowest lumen diameter by the mean of two normal non-diseased reference points. 
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Aggregate plaque volume was computed as (total plaque volume x 100%/vessel volume). 

Remodeling index was determined as the ratio of maximum vessel area to that at the 

proximal normal reference point[7]. Plaque length (in mm) was the length of the diseased 

vessel segments. Contrast density difference over the lesion was computed as follows: the 

luminal contrast density, defined as mean luminal attenuation per unit area was computed 

automatically over 1 mm cross-sections of the arterial segment. The contrast density 

difference was defined as the maximum percent difference in contrast densities, relative to 

the proximal reference cross-section (with no disease)[27]. For each artery, maximum 

diameter stenosis, continuous remodeling index and contrast density difference values were 

reported along with plaque measurements. The CTA images were evaluated by one expert 

reader with and without plaque overlay, using transverse and MPR views [25; 28]. If needed, 

minor edits were made using the automated vessel wall correction options [24; 25]. There 

was good interobserver reproducibility of plaque characteristics between the 2 expert readers 

in this study as assessed by Bland-Altman analysis in a consecutive selection of 10% of 

patients, as reported previously by Gaur et al [14] [Supplementary material, Figure S1]. 

Figure 1 shows an example of plaque analysis.

Machine learning integration of plaque features

Quantitative CTA plaque measures, along with age, gender and number of risk factors, were 

imported to the Waikato Environment for Knowledge Analysis (WEKA) environment where 

all the steps for machine learning analysis were performed[29]. Figure 2 shows an overview 

of the methods for machine learning integration. Machine learning integration involved 

automated feature selection by information gain ranking, model building with a boosted 

ensemble algorithm, and ten-fold stratified cross-validation for the entire method [19]. These 

methods have been effectively used in our other studies with cardiac imaging data [19; 30].

Feature selection—Feature selection was performed on all patient and quantitative CTA 

measures using a method known as ‘information gain attribute ranking’[31] [19], using 

stratified ten-fold cross-validation. Continuous variables were discretized by minimum 

description length method using information entropy minimization, as described in Fayyad 

and Irani 1993, with default options in the Weka environment. The number of bins were 

automatically determined by the minimum distance length, as the minimum number of bins 

to uniquely specify the variable [32]. Information gain is defined as a measure of the 

effectiveness of a covariate in classifying an outcome. It is measured as the amount by which 

the entropy of the outcome decreases, which reflects the additional information provided by 

the covariate. The resulting information gain ranged as continuous values from 0 to 1. Only 

attributes resulting in information gain >0.001 were subsequently used in machine learning.

Machine learning integration—Prediction of lesion-specific ischemia was performed by 

an ensemble classification approach (“boosting”), employing the iterative, additive 

LogitBoost algorithm using decision stumps (single-node decision trees) for each feature-

selected parameter[29; 33]. This method, an example of supervised ensemble learning [34] 

has already been shown to be efficient in predicting revascularization following ischemia 

testing [30] and for prediction of all-cause mortality following coronary CTA in a 

multicenter international registry [19]. The principle behind machine learning ensemble 
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boosting is that a set of weak base classifiers can be combined to create a single strong 

classifier by iteratively and automatically adjusting their appropriate weighting according to 

misclassifications. A series of base classifier predictions and an updated weighting 

distribution are produced with each iteration. These predictions are then combined by 

weighted majority voting to derive an overall classifier or risk score ranging from 0 to 1.

Cross-validation—The entire machine learning process (feature selection and 

LogitBoost) was conducted using stratified ten-fold cross-validation, which is currently the 

preferred technique in data mining[19; 35], for robust performance. Briefly, the dataset was 

first randomly divided into 10 equally sized subsamples, each with the same number of 

events. In ten-fold cross validation, training was done in 9/10th of the data and tested on the 

remaining unseen 1/10th of the data. Machine learning was thus consistently evaluated on 

previously unseen data; the evaluation was not performed on the same data as model 

building. Ten-fold cross validation has been shown to have smaller bias for discriminant 

analysis than traditional split-sample approach (test and validation)[35]. In our 

implementation of the 10-fold cross-validation, the arteries were also always grouped at the 

patient level, thus in each-fold of the cross-validation the data in the validation and the 

training sets strictly belonged to different patients. Such cross-validation is standard in 

machine learning [19] and is done to obtain a more accurate, unbiased estimate of the 

diagnostic performance of the model, and further, to mirror test of the application in 

everyday clinical practice, where the method is tested in new patients only.

The machine learning ischemia risk score is computed directly by concatenating the 

probability estimates obtained in these 10-folds from unseen data and corresponded to the 

whole cohort. This ischemia risk score (with continuous values from 0 to 1) was saved, and 

further statistical analyses were performed using Analyse-it software (Analyse-it, Leeds, 

UK). Using the same data folds, comparison of Receiver Operator Characteristic (ROC) area 

under the curve (AUC) was used to compare the predictive performance of machine 

learning, logistic regression, plaque measures and pre-test likelihood of coronary artery 

disease, based on the method of DeLong et al [36]. For the ischemia risk score, the accuracy 

was determined at a threshold at which Youden’s J-statistic (J = sensitivity + specificity − 1) 

was the highest.

Statistical Analysis

Statistical analyses were performed with STATA software (version 11 StataCorp LP) and 

Analyse-it software (Analyse-it, Leeds, UK). For all continuous variables, the Shapiro-Wilk 

test was first used to assess normality. All continuous variables were described as mean ± 

standard deviation, or median and interquartile range (IQR). Wilcoxon rank-sum test or two-

sample t-tests were used to compare groups regarding continuous variables, while Pearson 

Chi-square or Fisher exact test were used to compare groups regarding categorical variables. 

All tests were two-sided. We also evaluated the Integrated Discrimination Improvement 

(IDI) index, which complements AUC and evaluates the improvement in model 

discrimination over a set of existing predictors. IDI was used since established risk 

categories are not available for the integrated ischemia risk score or quantitative plaque 

features [37]. IDI analyses were performed with a SAS 9.2 software module. We also 

Dey et al. Page 5

Eur Radiol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compared the machine learning ischemia risk score with conventional statistical logistic 

regression performed using a Stata version 11 module, using the same data, 10-fold cross-

validation and the same data folds. A p-value of <0.05 was considered statistically 

significant.

Results

Median patient age was 64 years (range 31–84 years) and 64% was male, with mean body 

mass index 26±3 kg/m2. The heart rate during CTA was 63±10 beats/min (range 37–110 

beats/min). The demographic and clinical risk factors of the patient population are listed in 

Table 1. Eighty out of 254 patients (31%) had lesion-specific ischemia, in a total of 100 

vessels. Except a higher prevalence of male gender (p<0.001), we identified no difference in 

any patient characteristics in the impaired versus normal FFR group. In total, 2758 coronary 

artery segments were analyzed in 254 patients. Figure 1 shows a case example from our 

study for a patient with impaired FFR, in the right coronary artery.

Information gain ranking

Figure 2 shows an overview of the machine learning integration methods. Figure 3 shows the 

results of information gain ranking with 10-fold cross-validation. Among quantitative CTA 

measures, CDD exhibited the highest information gain (0.172). Among quantitative plaque 

measures, LD-NCP volume had the highest information gain (0.125), followed by NCP 

volume (0.097) and plaque length (0.092); information gain for CP volume and CP burden 

were <0.001. In terms of information gain, the contribution of total plaque length and total 

plaque volume was similar (0.094 and 0.092). Table 2 shows the quantitative plaque 

measures in ischemic and non-ischemic vessels. Ischemic vessels were marked by greater 

stenosis, CDD, plaque volumes (in particular low-density NCP and NCP plaque volumes), 

as well as greater plaque length. While CP volume reached significance in Table 2 (p=0.01), 

there was significant overlap for inter-quartile range for non-ischemic (0–25.95 mm3) and 

ischemic vessels (2.1–46.2 mm3). The AUC for CP volume for the prediction of ischemia 

was 0.58 (95% CI: 0.52–0.64), which was significantly lower than all other quantitative CTA 

plaque or stenosis measures. In multivariable logistic regression with low-density NCP 

volume, NCP volume and stenosis, CP volume was not significant (p=0.332).

Integrated ischemia risk score by machine learning

Figure 4 shows the ROC curves for plaque measures and the integrated machine learning 

score from combining quantitative CTA measures (after 10-fold cross-validation). As seen in 

Figure 4, ML had the highest area-under-the-curve (AUC): 0.84(95% CI:0.79–0.88). There 

was a significant increase in AUC for the integrated score when compared to individual 

quantitative CTA metrics, for example, LD-NCP volume [0.77 (95% CI:0.71–0.82), 

p=0.002], NCP volume [0.75 (95% CI:0.69–0.80), p=0.0001] and total plaque volume [0.74 

(95% CI:0.69–0.79), p<0.0001]. The integrated score also had higher AUC than total plaque 

burden and LD-NCP plaque burden 0.61 (95% CI:0.55–0.67), 0.69 (95% CI:0.65–0.75), 

p<0.0001, as well as plaque Segment Involvement Score [0.65 (95% CI:0.59–071), 

p<0.0001]. Notably, AUC for LD-NCP plaque volume was significantly higher than for total 

plaque volume (p=0.01). The integrated score also had significantly higher AUC than 
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quantitative stenosis or minimum luminal area [0.84 (95% CI:0.79–0.88) vs 0.76 (95% CI:

0.72–0.82) for quantitative stenosis, p=0.002 (Figure 5); and 0.73 for minimum luminal area 

(95% CI:0.68–0.78), p<0.0001]. Figure 5 shows that quantitative stenosis had significantly 

higher AUC than pre-test likelihood [0.63(95% CI:0.57-–.70)], and the machine learning 

score, in turn, had a higher AUC than quantitative stenosis (p=0.005) or pretest-likelihood 

(p<0.0001). The processing time of machine learning (automated feature selection and 

integration of quantitative coronary CTA with 10-fold cross-validation) was less than 30 

seconds on a standard windows laptop computer with a i7-46000 CPU @ 2.1 GHZ 

processor.

At a threshold of 0.24, determined by Youden’s J-statistic, the accuracy, sensitivity, and 

specificity were 80%, 73% and 80% respectively, for discrimination of lesion-specific 

ischemia. On a per patient basis, AUC for the integrated score was 0.82 (95% CI:0.76–0.88). 

We compared the ischemia risk score to conventional logistic regression using 10-fold cross-

validation and the same data folds; the ischemia risk score had significantly higher AUC 

than conventional logistic regression [0.84 (95% CI:0.79–0.88) vs 0.78(95% CI:0.72–0.83), 

p=0.02].

Discrimination improvement for ischemia—Table 3 shows the discrimination 

improvement for the integrated ischemia risk score compared to CTA plaque measures. As 

listed in Table 3, we found significant improvement in IDI over CDD (0.13) as well as 

individual CTA plaque metrics (0.16 for LD-NCP volume, 0.20 for NCP volume and 0.22 

for total plaque volume), p<0.0001 for all.

Table 4 shows the Spearman rank correlation for the quantitative plaque measures with 

continuous FFR values. CDD, quantitative stenosis, plaque volumes and plaque length 

showed significant moderate negative correlation with continuous FFR, and minimum 

luminal area showed significant positive correlation.

Discussion

In this multicenter study, our results show that objective combination of clinical data and 

quantitative CTA plaque measures by machine learning improves the prediction of 

hemodynamic significance of lesions as measured by invasive FFR. We show that the 

performance of the integrated machine learning score was superior to that of visually 

assessed CTA metrics as well as individual quantitative measures. Our results also indicate 

that prediction of lesion-specific ischemia by the ischemia risk score was significantly 

higher compared to a standard statistical logistic regression using the same data. Thus, our 

results suggest that state-of-the-art data mining approaches can potentially outperform 

conventional statistical methods. It has been shown that plaque assessment from CTA adds 

significantly to stenosis assessment for the identification of lesion-specific ischemia[38; 39]. 

To correctly identify the quantitative CTA measures which best predict lesion-specific 

ischemia, however, is a challenge, since individual quantitative plaque measures correlate 

strongly, and there is often significant interaction between indvidual metrics. The 

complexity of risk stratification is further increased since all the clinical factors affecting 

risk need to be considered. In this study, we show that machine learning integration is able to 
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overcome these challenges. Our results further show that quantitative stenosis adds 

incremental value to standard pre-test likelihood of coronary artery disease for the prediction 

of ischemia; and further, the integrated machine learning score adds to quantitative stenosis 

and individual plaque measures, and pretest likelihood.

Among individual quantitative measures, we also found that CDD, a relatively new CTA 

metric, had the highest information gain for lesion-specific ischemia and showed significant 

negative correlation with FFR. This is concordant with the previous findings of Hell et al, 

who showed improved discrimination of lesion-specific ischemia by CDD over measured 

transluminal attenuation gradient in a completely separate cohort of 59 consecutive patients 

[27]. CDD, by definition, is the normalized difference in lumen attenuation per unit area 

over a segment, and is closely related to both minimum luminal area and luminal attenuation 

gradient; a higher CDD implies a lower minimum luminal area; thus it includes the 

contribution of both quantitative measures. Among plaque measures, we found LD-NCP 

volume was the highest ranked feature, followed by NCP volume; both showed significant 

negative correlation with FFR. This finding is in line with previous studies investigating the 

relationship of adverse plaque features and FFR [38; 39].

Several other investigators have examined the relationship between quantitative plaque 

characteristics and lesion-specific ischemia [27; 38; 39]. Ko et al have also developed the 

ASLA score combining several pre-defined plaque features and the APPROACH score into 

a composite score to predict ischemia[40]. The performance of noninvasive FFR, derived 

from standard CTA based on computational fluid dynamics-based methods from CTA 

(FFRCT), have been reported to be superior to CTA anatomical interpretation in prospective 

multicenter studies [21; 41; 42]. Onsite FFRCT using a reduced-order computational fluid 

dynamics computation on a separate workstation has also been reported [43]. Recent studies 

have also investigated the performance of an onsite machine-learning based technique 

(research software from Siemens Heathineers) to identify lesion-specific ischemia by 

invasive FFR. The machine-learning method was trained on a large database of synthetically 

generated coronary models and found to be equivalent to an onsite computational fluid 

dynamics-based algorithm, with shorter execution times [44]. CT perfusion has also been 

shown to effectively predict the hemodynamic significance of coronary stenoses[45]. CT 

perfusion requires an additional stress CT scan, with attendant radiation exposure and need 

for pharmacologic stress.

Our study describes a simpler approach, which automatically ranks and then combines 

coronary plaque measures on a standard personal computer from the resting CTA scan to 

predict the functional significance of coronary stenoses, provided vessel-based plaque 

measurement is available. Our study also demonstrates the contribution of a new measure, 

CDD a normalized measure of luminal contrast kinetics from quantitative CTA to identify 

lesion-specific ischemia, in a multicenter study. In practice, such a ischemia risk score may 

help to objectively stratify patients as low or high risk following CTA, and indicate which 

patient may benefit from further noninvasive ischemia testing, noninvasive FFR, or FFR 

assessment.
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In the current study we have only been able to discuss the feasibility and performance of 

machine learning, but not its prospective practical implementation. In the near future, we 

envisage machine learning working in the background of standard plaque analysis software, 

gathering the variables automatically and allowing on-the-fly risk score computation. This 

principle is already utilized daily by several applications. For example, the personalized 

advertisements that appear in real-time whilst web-browsing are all based on the passive 

collection of variables and their seamless input into machine learning algorithms. Despite 

this study limitation, however, an integrated machine learning ischemia risk score, as we 

show in this study, can be derived automatically following plaque analysis, from standard 

rest CTA images on a standard personal computer without additional imaging, radiation 

exposure or cost. Such objective integration of coronary plaque features directly measured 

from the CTA scan of an individual patient can predict the hemodynamic significance of 

coronary stenosis from standard CTA scans – either onsite or in the cloud, increasing the 

accuracy of standard CTA for the prediction of lesion-specific ischemia.

We used automated feature selection, which distinguishes itself from traditional approaches 

by making no prior assumptions about the data. Our results further suggest that machine 

learning approach may outperform conventional statistical integration of the same data. Any 

given machine learning algorithm requires only minimal input during model-building, and 

none after that. This feature of machine learning is important, since new data can be easily 

incorporated to continuously update and optimize prediction. In the future, we would expect 

big data and machine learning algorithms to improve diagnostic accuracy and help the 

imaging physician find the right answer for the patients, whose “lives and medical histories 

shape the algorithms” [46].

There were several limitations in our study. Although 10-fold cross-validation was used for 

validation, our study lacked an external validation cohort. Plaque findings were not 

confirmed by invasive intravascular ultrasound; however, plaque measurement by coronary 

CTA has been previously shown to strongly correlate with intravascular ultrasound[25].

Conclusions

The integrated ischemia risk score based on machine learning integration of quantitative 

plaque measures from CTA improved the prediction of lesion-specific ischemia by invasive 

FFR, over stenosis, plaque measures and pre-test likelihood of coronary artery disease.
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List of abbreviations and acronyms

CTA CT Angiography

FFR Fractional Flow Reserve
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DLP Dose-length Product

HU Hounsfield Unit

CDD Contrast Density Difference

NCP Noncalcified plaque

LD-NCP Low-density noncalcified plaque

CP Calcified plaque
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Key points

• Integrated ischemia risk score improved prediction of ischemia over 

quantitative plaque measures

• Integrated ischemia risk score showed higher prediction of ischemia than 

standard approach

• Contrast density difference had the highest information gain to identify 

lesion-specific ischemia
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Figure 1. 
Example of plaque quantification for RCA lesion in one patient in our study. Arrows show 

noncalcified plaque in longitudinal and cross sectional views. Red and orange shows 

measured NCP voxels (orange overlay indicates LD-NCP component). Measured FFR was 

0.80 in this vessel.
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Figure 2. 
Overview of the machine learning integration method

Dey et al. Page 15

Eur Radiol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Figure showing the information gain for age, gender and quantitative CTA measures. 

Measures directly related to plaque volume are in light blue and the remaining measures in 

dark blue. Variables with information gain > 0.001 were used in machine learning. Contrast 

density difference was associated with the highest information gain among all the plaque 

parameters.

Dey et al. Page 16

Eur Radiol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Prediction of lesion-specific ischemia by the integrated ischemia risk score by machine 

learning (ML-combined) and quantitative plaque volumes (LD-NCP, NCP and total plaque 

volume). ML-combined had a significantly higher AUC compared to individual quantitative 

CTA plaque volumes (*p<0.003 compared to LD-NCP, NCP and total plaque volume). AUC 

for LD-NCP plaque volume was significantly higher than for total plaque volume (p=0.01)
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Figure 5. 
Prediction of lesion-specific ischemia by the integrated ischemia risk score by machine 

learning (ML-combined), quantitative stenosis and pre-test likelihood of coronary artery 

disease. Quantitative stenosis had significantly higher AUC than pre-test likelihood 

(p=0.0005). ML-combined(*) had a significantly higher AUC than quantitative stenosis 

(p=0.005) or pretest-likelihood of coronary artery disease (p<0.0001).

Dey et al. Page 18

Eur Radiol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dey et al. Page 19

Table 1

Patient Characteristics (254 patients)

Age (years) 64±10

Male (%) 162 (64)

Risk factors

Hypertension (%) 174 (69)

 Hyperlipidemia (%) 200 (79)

 Smoker (%) 46 (18)

 Diabetes (%) 58 (23)

 Family history (%) 79 (31)
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Table 2

Quantitative CTA plaque measures in ischemic and non-ischemic vessels (median and interquartile ranges)

Ischemic (FFR≤ 0.8) Non-ischemic (FFR>0.8) p-value

Diameter stenosis (%) 67.6 (55.1 – 93.9) 47.4 (31.2 – 59.0) <0.0001*

Plaque volumes (mm3)

 Low-density NCP 46.7 (28.2 – 68.4) 13.8 (3.7 – 32.7) <0.0001*

 NCP 273.3 (159.9 – 346.3) 96.8 (40.3 – 213.3) <0.0001*

 CP 10.6 (2.1 – 46.2) 6.5 (0 – 25.95) 0.01*

 Total Plaque 296.3 (173.7 – 390.1) 112.5 (47.1 – 243.6) <0.0001*

Plaque length (mm) 42.9 (24.7 – 58.4) 19.6 (8.8 – 35.5) <0.0001*

Contrast density difference (%) 33.1 (31.8 – 48.9) 14.3 (7.4 – 23.1) <0.0001*

*
significant
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Table 3

IDI for the integrated machine learning score over plaque measures

Plaque measure IDI (95% CI) p-value

Contrast density difference 0.13 (0.08–0.18) <0.0001*

Low-density non-calcified plaque volume 0.16 (0.10–0.21) <0.0001*

Non-calcified plaque volume 0.20 (0.14–0.25) <0.0001*

Total plaque volume 0.22 (0.16–0.27) <0.0001*

*
significant
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Table 4

Spearman rank correlations for quantitative plaque measures with FFR

Quantitative plaque measures Correlation with FFR p-value

Low-density non-calcified plaque volume −0.50 <0.0001*

Non-calcified plaque volume −0.44 <0.0001*

Total plaque volume −0.44 <0.0001*

Quantitative stenosis −0.48 <0.0001*

Minimum luminal area 0.38 <0.0001*

Contrast density difference −0.51 <0.0001*

Plaque length −0.44 <0.0001*

*
significant
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