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Abstract

Early adverse experiences are associated with heighted vulnerability for stress-related 

psychopathology across the lifespan. While extensive work has investigated the effects of early 

adversity on neurobiology in adulthood, developmental approaches can provide further insight on 

the neurobiological mechanisms that link early experiences and long-term mental health outcomes. 

In the current review, we discuss the role of emotion regulation circuitry implicated in stress-

related psychopathology from a developmental and transdiagnostic perspective. We highlight 

converging evidence suggesting that multiple forms of early adverse experiences impact the 

functional development of amygdala-prefrontal circuitry. Next, we discuss how adversity-induced 

alterations in amygdala-prefrontal development are associated with symptoms of emotion 

dysregulation and psychopathology. Additionally, we discuss potential mechanisms through which 

protective factors may buffer the effects of early adversity on amygdala-prefrontal development to 

confer more adaptive long-term outcomes. Finally, we consider limitations of the existing 

literature and make suggestions for future longitudinal and translational research that can better 

elucidate the mechanisms linking early adversity, neurobiology and emotional phenotypes. 

Together, these findings may provide further insight into the neuro-developmental mechanisms 

underlying the emergence of adversity-related emotional disorders and facilitate the development 

of targeted interventions that can ameliorate risk for psychopathology in youth exposed to early 

life stress.
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1 Introduction

Early life stress (ELS) is associated with higher incidence of mental health problems across 

the lifespan, accounting for 29% of health disorders worldwide (Green et al., 2010; Kessler 

et al., 2005, 2010). Multiple forms of postnatal adversities confer vulnerability for stress-

related psychopathology, including maltreatment, neglect, parental stress or 

psychopathology, trauma, family conflict, poverty-related stressors and institutionalized care 
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(Essex et al., 2011; Humphreys et al., 2015; Lansford et al., 2014, Kessler et al. 2010). 

Although these adverse exposures often occur during infancy and/or childhood, emotional 

difficulties often continue to persist throughout development, with three quarters of stress-

related mental health diagnoses made by the age of 24 (Kessler et al., 2005; Merikangas et 

al., 2010). Given the robust epidemiological evidence linking ELS with long-lasting 

emotional difficulties, it is important to identify the neurobiological mechanisms through 

which early experiences “get under the skin” to increase risk for psychopathology.

Developmental mechanisms of adaptation play an important role in understanding the long-

term links between ELS and mental health outcomes in adulthood. According to the 

Dynamic Systems Theory, development is experience-driven, emerging via interactions with 

the environment that unfold over time (Smith & Thelen, 2003). In the context of ELS, 

several developmental theories (Barker’s hypothesis, Developmental Origins Theory, 

Adaptive Recalibration model, Experiential Canalization) emphasize the role of adaptation 

in response to adversity, such that the organism develops in order to promote survival in the 

expected environment (Barker, 2007; Blair & Raver, 2012; Del Giudice, Ellis, & Shirtcliff, 

2011; Wadhwa, Buss, Entringer, & Swanson, 2010). Similarly, the Stress-Acceleration 

Hypothesis posits that neurobiological changes in response to early adverse experiences are 

adaptive in the short-term, but may have long-term trade-offs in the functional integrity of 

neuro-affective circuitry and heighten vulnerability for maladaptive mental health outcomes 

later in life (Callaghan & Tottenham, 2016).

In line with this developmental perspective, the current review will discuss how early 

adverse experiences influence neuro-affective development to confer risk for stress-related 

emotion dysregulation. We will delineate how the amygdala-prefrontal circuit, implicated in 

threat-reactivity and emotion regulation, appears to be particularly sensitive to the effects of 

stress during early life. The current paper focuses on the functional development of 

amygdala-prefrontal circuitry, as stress-induced changes in structural development have been 

reviewed elsewhere (Tottenham & Sheridan, 2009). Specifically, we will highlight 

converging evidence suggesting that multiple forms of ELS are characterized by similar 

functional phenotypes of neuro-affective circuitry across development: (1) heightened 

amygdala reactivity and (2) altered amygdala-prefrontal connectivity. Next, we will discuss 

how developmental changes in amygdala-prefrontal circuitry predict individual differences 

in symptoms of stress-related psychopathology. Finally, we will discuss potential protective 

factors that may buffer the effects of stress on neuro-affective development to confer more 

resilient long-term trajectories. Given that ELS increases risk across several, often comorbid 

psychiatric disorders (De Bellis et al., 2001; Kessler et al., 2010), this paper will focus on 

the neurobiology of emotion dysregulation from a transdiagnostic and dimensional 

perspective.

2 Target Neural Circuitry: Amygdala and Prefrontal Cortex

2.1 The Role of Amygdala-Prefrontal Circuitry in Emotion Regulation

Robust translational and clinical research has linked amygdala-prefrontal circuitry with 

symptoms of emotion dysregulation (Hariri & Holmes, 2015). In adults, regulatory 

connections between amygdala and prefrontal cortex are critically implicated in learning and 
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responding to emotional cues in the environment (Davis & Whalen, 2001; Kim, Hamlin, & 

Richardson, 2009). The amygdala is involved in detecting salient information in the 

environment to initiate physiological responses to potential threat (Davis & Whalen, 2001). 

Top-down recruitment of medial prefrontal regions regulate amygdala reactivity to facilitate 

extinction learning (Milad, Rauch, Pitman, & Quirk, 2006; Phelps & LeDoux, 2005) 

whereas dorsolateral prefrontal regions implicated in more effortful processes, like cognitive 

reappraisal, modulate amygdala reactivity during emotion regulation (Buhle et al., 2013). 

Functional alterations of amygdala reactivity and amygdala-prefrontal connectivity have 

been identified in patients with internalizing and stress-related disorders, including anxiety, 

depression and PTSD (Etkin et al., 2004; Koenigs & Grafman, 2009; Murray, Wise, & 

Drevets, 2011). In the Research Domain Criteria (RDoC) recently outlined by the National 

Institutes of Mental Health (Morris & Cuthbert, 2012), amygdala-prefrontal circuitry has 

been implicated in the psychological constructs of fear and sustained threat, highlighting its 

role in the neurobiological underpinnings of transdiagnostic dimensions of threat-reactivity 

and emotion regulation (Dillon et al., 2015).

In humans, amygdala-prefrontal circuitry undergoes protracted development, with age-

related changes observed across childhood, adolescence and young adulthood. Several 

studies have observed heightened amygdala reactivity in response to emotionally salient 

cues in younger ages (Gee, Humphreys, et al., 2013; Guyer et al., 2008; Hwang et al., 2014; 

Swartz, Carrasco, Wiggins, Thomason, & Monk, 2014; Vink et al., 2014). As amygdala 

reactivity declines with increasing age (Decety et al., 2012; Gee, Humphreys, et al., 2013; 

Guyer et al., 2008; Hwang et al., 2014; Swartz et al., 2014; Vink et al., 2014), the functional 

integrity of amygdala-mPFC circuitry continues to strengthen into young adulthood 

(Gabard-Durnam et al., 2014). Importantly, age-related changes in amygdala reactivity 

and/or connectivity with the prefrontal cortex during cognitive reappraisal tasks correspond 

to the maturation of emotion regulation abilities across development (Dougherty, 

Blankenship, Spechler, Padmala, & Pessoa, 2015; McRae et al., 2012; Silvers, Shu, 

Hubbard, Weber, & Ochsner, 2015). Pediatric disorders of anxiety, depression and PTSD are 

characterized by heightened amygdala reactivity and atypical amygdala-prefrontal 

connectivity during emotion processing tasks (Gaffrey et al., 2011; Garrett et al., 2012; 

Pagliaccio et al., 2012; Pine, Guyer, & Leibenluft, 2008; Roy et al., 2013; Wolf & Herringa, 

2016). Moreover, altered patterns of age-related changes in amygdala-prefrontal connectivity 

have been shown in a cross-sectional sample of anxious youth and young adults (Kujawa et 

al., 2016) suggesting that deviations from the normative trajectory of amygdala-prefrontal 

development are associated with symptoms of emotional dysregulation in clinical samples.

2.2 Plasticity of Amygdala-PFC Circuitry in Early Life

Converging evidence across species suggests that amygdala-prefrontal circuitry is highly 

sensitive to environmental inputs, particularly during early life (Callaghan, Sullivan, Howell, 

& Tottenham, 2014). The amygdala is heavily innervated by glucocorticoid receptors 

(Avishai-Eliner, Yi, & Baram, 1996), with the highest peak in Corticotrophin Releasing 

Hormone (CRH) receptor density during the first few postnatal weeks (Avishai-Eliner et al., 

1996). Stress exposure during early life results in increased mRNA expression of CRH in the 

amygdala in rodents (Hatalski, Guirguis, & Baram, 2012). Importantly, the functional 
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development of the amygdala is tightly linked to Hypothalamic–Pituitary-Adrenal (HPA) 

axis function, such that increases in cortisol are associated with the developmental onset of 

amygdala reactivity and fear learning in rodents (Moriceau, Wilson, Levine, & Sullivan, 

2006).

Several animal models of ELS (e.g. abusive maternal care, maternal separation, chronic 

restraint stress, and odor-shock conditioning) have shown that that early adverse 

environments have enduring effects on amygdala structure and function (Eiland, Ramroop, 

Hill, Manley, & McEwen, 2012; Malter Cohen et al., 2013; Raineki, Cortés, Belnoue, & 

Sullivan, 2012). Moreover, regulatory connections between amygdala and prefrontal cortex 

are highly susceptible to environmental influences during early life in rodent models. For 

example, chronic stress exposure during the juvenile stage causes dendritic atrophy in the 

prefrontal cortex (PFC; Eiland et al. 2012) and alters the emergence of amygdala projections 

to the PFC, resulting in long-term imbalance of amygdala-prefrontal circuit function in adult 

rats (Ishikawa, Nishimura, & Ishikawa, 2015). In light of these findings, amygdala-

prefrontal development may play an important role in the neurobiological etiology of 

emotion dysregulation in humans following ELS.

3 Effects of ELS on Amygdala-PFC Circuitry in Humans

When examining the effects of ELS on neurobiological development in humans, there are 

two important considerations that delineate the state of current research. First, aside from 

notable exceptions in which there is known timing and duration of adverse exposures (i.e. 

adoption from institutionalized care), many forms of ELS are chronic in nature, making it 

difficult to delineate the effects of stressors during specific time points across development 

(reviewed in Tottenham & Sheridan, 2009). Given cross-species evidence suggesting that 

amygdala development is most sensitive to environmental input early in life (Callaghan et 

al., 2014), the current review focuses on adverse experiences that occur during infancy 

and/or childhood. Second, recent theoretical frameworks have suggested that certain 

dimensions of adverse experiences (e.g. threat vs. deprivation) may have differential effects 

on neurobiological development (McLaughlin, Sheridan, & Lambert, 2014). Although early 

adversities are often complex exposures comprised of multiple dimensions of experience 

(e.g. abuse and neglect; Arata, Langhinrichsen-Rohling, Bowers, & O’Brien, 2007), many 

forms of ELS are considered threatening to children’s physical or emotional well-being 

(McLaughlin et al., 2014). In the current review, we focus on research examining threat-

related alterations in neuro-affective development following exposure to ELS. Specifically, 

we present converging evidence suggesting that amygdala-prefrontal circuitry, implicated in 

threat-reactivity and emotion regulation, is a common neurobiological target impacted by 

multiple forms of early adverse experiences.

3.1 Effects of ELS on Amygdala Reactivity

In adults, heightened amygdala reactivity to emotional cues has been identified across 

several domains of ELS reported retrospectively, including maltreatment (Dannlowski et al., 

2013; van Harmelen et al., 2013) emotional neglect (Bogdan, Williamson, & Hariri, 2012; 

White et al., 2012) and lower perceived social status (Gianaros et al., 2008). Recent 
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prospective longitudinal studies have corroborated these effects, showing that cumulative 

childhood stressors associated with low socioeconomic status have lasting effects on 

amygdala function in adulthood (Evans et al., 2016; Javanbakht et al., 2015). For example, 

childhood poverty has been associated with increased amygdala reactivity to negative 

relative to positive emotional cues in adulthood (Javanbakht et al., 2015). In the same 

prospective cohort, cumulative risk exposure associated with childhood poverty was directly 

related to higher amygdala reactivity to neutral facial expressions, suggesting that stress-

related increases in amygdala reactivity may not be specific to threat-related stimuli, also 

extends to neutral socio-emotional cues (Evans et al., 2015).

In accordance with studies in adult ELS samples, children and adolescents with a history of 

early adversity also show enhanced amygdala reactivity to emotional stimuli. Previously 

institutionalized (PI) youth with a history of institutional care exhibit heightened amygdala 

reactivity to threat-related facial expressions across childhood and adolescence (Gee, 

Gabard-Durnam, et al., 2013; Maheu et al., 2010; Tottenham et al., 2011). Similarly, 

increased amygdala response to negative emotional stimuli has been identified in children 

and adolescents with prior exposure to maltreatment (McCrory et al., 2013; McLaughlin, 

Peverill, Gold, Alves, & Sheridan, 2015), traumatic events (Marusak, Martin, Etkin, & 

Thomason, 2014), and family violence (McCrory et al., 2011). Moreover, greater levels of 

stressful life events have been associated with longitudinal increases in threat-related 

amygdala reactivity during adolescence, suggesting that heightened amygdala reactivity may 

represent a neural marker of previous stress exposure (Johnna R Swartz, Williamson, & 

Hariri, 2015). Importantly, McCrory et al. (2013) found that children with earlier onset of 

maltreatment exposure showed higher levels of amygdala reactivity to pre-attentively 

presented emotional stimuli, suggesting a relationship between the timing of stress exposure 

onset and degree of amygdala reactivity. However, further research is needed to delineate 

whether stress-induced increases in amygdala reactivity are primarily driven by the 

developmental timing (i.e. age of onset) or the duration (i.e. chronic versus acute) of adverse 

experiences.

3.2 Effects of ELS on Amygdala-PFC Connectivity

In addition to heightened amygdala-reactivity, ELS has also been characterized by altered 

functional connectivity of the amygdala with prefrontal regions. Although the valence (i.e. 

positive or negative) and regional specificity (i.e. dorsolateral or medial regions of PFC) of 

amygdala-prefrontal connectivity findings are task-dependent and often vary across studies, 

ELS has been consistently associated with atypical connectivity patterns relative to non-

stressed control groups. In a prospective study, young adults with a history of childhood 

maltreatment showed atypical connectivity between the amygdala and inferior frontal gyrus 

when processing threat-related emotional stimuli (Jedd et al., 2015). Childhood poverty has 

also been associated with alterations of amygdala-prefrontal connectivity in adulthood, such 

that lower family income during childhood is associated with reduced amygdala-

ventrolateral PFC (vlPFC) connectivity during cognitive reappraisal (Kim et al., 2013). 

Importantly, cumulative stress exposure mediated the effects of family income on vlPFC 

recruitment during reappraisal, suggesting that associations between childhood poverty and 

prefrontal dysregulation are driven by effects of chronic stress (Kim et al., 2013). Together, 
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these findings suggest that heightened emotional reactivity following ELS may emerge from 

impaired top-down prefrontal regulation of amygdala reactivity in response to emotional 

cues.

Given that ELS is associated with atypical amygdala-prefrontal function in adulthood, recent 

research has examined how these adversity-induced changes emerge across development. In 

a cross-sectional study from early childhood to late adolescence, PI youth showed an 

atypical trajectory of age-related changes in threat-related amygdala-mPFC connectivity 

relative to comparison youth, such that PI youth exhibited more mature (i.e. adult-like) 

connectivity at younger ages (Gee, Gabard-Durnam, et al., 2013). Youth with trauma 

exposure also show atypical amygdala-prefrontal function in response to emotional 

distractors, with weaker negative connectivity between the amygdala and perigenual ACC 

(pgACC) relative to comparison youth (Marusak et al., 2014). Moreover, the strength of 

amygdala-pgACC connectivity predicted performance on the emotional conflict task, 

suggesting that impaired regulation of emotional distractors in trauma-exposed youth may 

be related to altered circuit function (Marusak et al., 2014). Similarly, PTSD youth exhibit 

weaker amygdala-dACC connectivity and atypical age-related changes in amygdala-mPFC 

connectivity in response to threat-related stimuli (Wolf & Herringa, 2016). Importantly, the 

youth diagnosed with PTSD in this sample were exposed to a wide range of early adverse 

experiences (e.g. trauma, abuse, neglect; Wolf & Herringa, 2016), suggesting evidence of 

equifinality with regard to neuro-affective phenotypes following exposure to different forms 

of ELS (Cicchetti & Rogosch, 1996).

In addition to changes in task-elicited functional connectivity, ELS has also been associated 

with weaker resting-state amygdala-prefrontal connectivity across developmental stages, 

suggesting that early adversity has long-lasting impacts on the functional integrity of 

emotion regulation circuitry. In adults, self-reported history of childhood trauma is 

associated with weaker resting-state connectivity between amygdala and pregenual ACC 

(pgACC; Fan et al., 2014). Similarly, adolescents who experienced childhood maltreatment 

(Herringa et al., 2013) and youth with history of trauma exposure (Thomason et al., 2015) 

show weaker amygdala-subgenual anterior cingulate cortex (sgACC) connectivity at rest. In 

a younger cohort of children and young adolescents, higher levels of cumulative stress 

during childhood predicted weaker amygdala-ACC connectivity (Pagliaccio et al., 2015). 

Importantly, ELS-induced changes in amygdala connectivity may be identifiable as early as 

infancy. At 6 months of age, family stress, as defined by high levels of interparental conflict, 

is associated altered patterns of resting-state amygdala connectivity with posterior cingulate 

cortex, a regional hub of the default mode network (Graham, Pfeifer, Fisher, Carpenter, & 

Fair, 2015). Although further research is needed to delineate how early alterations in 

amygdala connectivity influence longitudinal neuro-affective development, these findings 

highlight the potential role of amygdala connectivity as a neurobiological marker for stress 

vulnerability as early as the first year of life (Graham et al., 2014).
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4 Amygdala-PFC Circuitry and Individual Differences in Psychopathology 

Following ELS

In the previous section, we presented evidence suggesting that there is some degree of 

equifinality in neurobiological development following ELS (Cicchetti & Rogosch, 1996), 

such that different types of early adverse experiences have converging effects on the 

development of emotion regulation circuitry, resulting in atypical amygdala-prefrontal 

circuit function. However, there is also evidence of multifinality, such that there is wide 

heterogeneity in long-term mental health outcomes following ELS (Cicchetti & Rogosch, 

1996). For example, similar adverse experiences (e.g. institutional care) confer risk for 

multiple types of psychopathology across individuals (De Bellis et al., 2001; Humphreys et 

al., 2015; Cicchetti & Rogosch, 1996). In the context of developmental theory (Adaptive 

Calibration, Experiential Canalization, Stress Acceleration), environmentally driven changes 

in neurobiology represent an ontogenetic response to adversity, and may confer adaptive or 

maladaptive behavioral outcomes in specific domains or contexts across development (Blair 

& Raver, 2012; Callaghan & Tottenham, 2016; Del Giudice et al., 2011; Wadhwa et al., 

2010). Given the heterogeneity in mental health outcomes associated with ELS, it is 

important to consider how individual trajectories of neuro-affective development predict risk 

or resilience following exposure to early adversity. The following discussion will review 

recent evidence linking adversity-induced changes in amygdala-prefrontal function with 

individual differences in psychopathology (i.e. anxiety, depression, PTSD).

4.1 Amygdala Reactivity and Psychopathology

Individual differences in amygdala reactivity predict dimensional measures of emotional 

functioning in both typically developing and stress-exposed youth. In typical children and 

adolescents, increased amygdala reactivity to sad facial expressions predicts level of 

concurrent internalizing symptoms (Swartz et al., 2014) and depressive symptoms 

(Pagliaccio, Luby, Luking, Belden, & Barch, 2014). Youth with trauma exposure and post-

traumatic stress symptoms have shown greater amygdala reactivity to emotional facial 

expressions relative to non-exposed youth (Garrett et al., 2012) although there are mixed 

findings (Crozier, Wang, Huettel, & De Bellis, 2014; Wolf & Herringa, 2016). A recent 

study examined the interaction of early trauma exposure and psychiatric status on amygdala 

reactivity to emotional stimuli during childhood (Suzuki et al., 2014). Amygdala response 

varied as a function of both early trauma and concurrent levels of psychopathology, such that 

children with trauma exposure and current diagnosis of Major Depressive Disorder (MDD) 

exhibited the greatest levels of amygdala reactivity (Suzuki et al., 2014). Moreover, recent 

evidence suggests that heightened amygdala reactivity predicts long-term increases in 

negative affect in both healthy and depressed preschool children (Gaffrey, Barch, & Luby, 

2016). Together, these studies suggest that amygdala reactivity may represent a neural 

marker for current and/or future levels of stress-related psychopathology during childhood 

and adolescence. However, further longitudinal studies are needed to delineate the specific 

effects of different types of stressors on amygdala reactivity phenotypes and long-term 

mental health outcomes.
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4.2 Longitudinal Studies of Amygdala-PFC Connectivity and Psychopathology

Recent longitudinal findings also suggest that atypical amygdala-prefrontal connectivity 

may represent a neurobiological risk factor for the emergence of psychopathology following 

ELS. In adolescents with a history of childhood maltreatment, the strength of resting-state 

amygdala-sgACC connectivity mediated the relationship between maltreatment exposure 

and internalizing symptoms, such that weaker amygdala-sgACC connectivity conferred 

higher levels of anxiety and depressive symptoms (Herringa et al., 2013). In a recent study 

of cumulative childhood stress, Pagliaccio et al. (2015) examined the relationship between 

resting-state amygdala-ACC connectivity and longitudinal assessments of internalizing 

psychopathology in children. Similar to Herringa et al. (2013), weaker amygdala-ACC 

connectivity mediated the effect of stressful and traumatic life events on current symptoms 

of anxiety. Moreover, amygdala-prefrontal connectivity and concurrent symptom levels were 

both significant predictors of anxiety symptoms one year later, providing longitudinal 

evidence that stress-related changes in the functional integrity of amygdala-prefrontal 

circuitry confer vulnerability for future stress-related psychopathology (Pagliaccio et al., 

2015).

Given that amygdala functional development is tightly linked to the HPA axis (Moriceau & 

Sullivan, 2006), cortisol reactivity may play an important role in the developmental cascade 

linking neuro-affective changes to long-term mental health outcomes following ELS. In a 

long-term prospective study, Burghy et al. (2012) examined the effects of cumulative 

maternal stress on cortisol levels during childhood and resting-state amygdala-prefrontal 

connectivity in late adolescence. Greater levels of maternal stress during the first year of life 

were associated with heightened baseline cortisol levels during childhood, suggesting a 

dose-dependent response in the HPA axis response to ELS (Burghy et al., 2012). Although 

maternal stress did not directly predict amygdala-ventromedial PFC (vmPFC) connectivity, 

higher childhood baseline cortisol levels were associated with altered resting-state 

amygdala-vmPFC connectivity in adolescent females. Moreover, the strength of amygdala-

vmPFC connectivity mediated the relationship between heightened cortisol and symptoms of 

depression and anxiety in adolescent females, albeit in different directions. Specifically, 

weaker amygdala-vmPFC connectivity predicted greater symptoms of anxiety, while 

stronger connectivity predicted greater symptoms of depression, suggesting that divergent 

trajectories of amygdala-prefrontal development following ELS confer risk for different 

forms of internalizing psychopathology. Overall, this study provides longitudinal evidence 

across multiple-levels of analysis that stress-related changes in HPA-axis regulation are 

associated with atypical amygdala-prefrontal connectivity and heightened vulnerability for 

internalizing psychopathology following ELS.

4.3 Cross-sectional Studies of Amygdala-PFC Connectivity and Psychopathology

Cross-sectional studies have examined the effects of ELS on age-related changes in the 

developmental trajectory of amygdala-prefrontal circuit function. PI youth with a history of 

orphanage care showed atypical age-related changes in task-elicited amygdala-mPFC 

connectivity in response to fearful faces (Gee, Gabard-Durnam, et al., 2013). In typically 

developing youth, children showed more positive amygdala-mPFC connectivity, whereas 

adolescents showed negative amygdala-mPFC connectivity. However, PI children showed 
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more mature (i.e. negative) connectivity at earlier ages relative to age-matched comparisons. 

In line with previous literature (Burghy et al., 2012), cortisol levels mediated the relationship 

between ELS and amygdala-mPFC connectivity, supporting the role of the HPA axis in 

stress-related changes in neuro-affective development (Gee, Gabard-Durnam, et al., 2013). 

Importantly, amygdala-mPFC connectivity predicted current levels of psychopathology in 

the PI group, such that more mature connectivity conferred lower levels of anxiety. In the 

context of the Stress-Acceleration model (Callaghan & Tottenham, 2016), these findings 

suggest that earlier functional maturation of this circuitry may represent an adaptive 

response to previous stress exposure that reduces vulnerability for emotion dysregulation. 

However, given the cross-sectional nature of this study, further longitudinal research is 

needed to delineate whether these early stress-induced adaptations predict risk or resilience 

in the long-term.

Atypical amygdala-prefrontal functioning has also been identified in a cross-sectional study 

of PTSD youth with a history of early adversity (Wolf & Herringa, 2016). Specifically, 

threat-related connectivity between the amygdala and dACC/dmPFC predicted severity of 

avoidant symptoms in PTSD youth. Moreover, they identified altered patterns of age-related 

connectivity phenotypes in the PTSD group, such that amygdala-vmPFC connectivity 

increased with age in typically developing youth, but decreased with age in PTSD youth 

(Wolf & Herringa, 2016). Similar to Gee et al. (2013), children with PTSD showed more 

mature amygdala-vmPFC connectivity, suggesting that stronger connectivity may represent 

a developmental adaptation to compensate for heightened emotional reactivity following 

ELS. However, adolescents with PTSD showed less mature amygdala-vmPFC connectivity 

relative to age-matched comparisons, indicating that early adaptations in response to 

adversity may result in trade-offs in the long-term function this circuitry. Although it is 

possible that exposure to traumatic events at earlier vs. later stages of development (i.e. 

childhood vs. adolescence) may differentially alter neuro-affective development, there were 

no reported effects of duration-since-exposure of adversity, nor the length of PTSD 

diagnosis on amygdala-vmPFC connectivity in this study (Wolf & Herringa, 2016). 

Although the observed age-related changes in amygdala-vmPFC connectivity were not 

directly associated with PTSD symptoms, these findings highlight the importance of 

examining developmental trajectories when considering the effects of ELS on amygdala-

prefrontal function and emotional disorders.

5 Protective Factors and Neuro-Affective Development Following ELS

Although ELS is associated with a higher incidence of stress-related psychopathology, many 

individuals exposed to early adversity do not develop clinical disorders (McGloin & Widom, 

2001). Moreover, individuals with history of ELS may show difficulties in specific domains 

of socio-emotional functioning (e.g. anxiety), but show competence in other domains (e.g. 

social skills; Masten, 2004). A broad literature on resilience has identified factors at both the 

individual level (e.g. cognitive factors), and environmental level (e.g. family, community) 

that contribute to individual differences in mental health and well-being following ELS 

(Jaffee, Caspi, Moffitt, Polo-Tomás, & Taylor, 2007; Masten, 2004). Given the evidence of 

multifinality following ELS, it is important to identify how protective factors influence 

neurobiological development to reduce risk for stress-related psychopathology (Cicchetti & 
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Blender, 2006;. McLaughlin, 2016). For the purposes of the current review, we will focus on 

protective factors of the social environment that may ameliorate the effects of ELS on neuro-

affective development via social buffering.

In behavioral studies, quality caregiving and family stability have been consistently shown to 

promote more resilient long-term outcomes following exposure to early adversity (reviewed 

in Afifi & MacMillan, 2011). For example, in the Bucharest Early Intervention Project 

(BEIP), youth with stable foster-care placements following institutional care showed lower 

levels of internalizing symptoms during early adolescence relative to those who experienced 

disruptions in foster care (Humphreys et al., 2015). Importantly, the two groups did not 

differ in the amount of time spent in institutional care or psychiatric history at age 4, 

suggesting that the observed difference in adolescent levels of psychopathology occurred as 

a function of caregiver stability, as opposed to earlier levels of trauma exposure or 

psychopathology (Humphreys et al., 2015). Similarly, longitudinal studies of childhood 

maltreatment have shown that family-level protective factors, such as caregiving stability 

(DuMont, Widom, & Czaja, 2007), perceived parental care (Collishaw et al., 2007), and 

parental warmth (Miller-Graff, Cater, Howell, & Graham-Bermann, 2016) are associated 

with reduced risk for future psychopathology. Together, these findings suggest that positive 

and stable caregiving is associated with lower levels of emotional problems following 

multiple forms of early adverse experiences.

In light of strong evidence linking caregiver support and mental health outcomes, ample 

research has focused on identifying the neurobiological mechanisms underlying these social-

buffering effects (Hennessy, Kaiser, & Sachser, 2009; Kikusui, Winslow, & Mori, 2006). 

Evidence across species has shown that caregivers regulate emotional and neurobiological 

development (reviewed in Callaghan et al., 2014). In rodent pups, maternal presence has 

transient effects on cortisol release and amygdala function, such that maternal presence 

blocks stress reactivity and fear learning during the early stage of rat pup development 

(Moriceau & Sullivan, 2006). Similar social buffering effects have been identified in 

humans; parent availability reduces cortisol response to social stress (Hostinar, Johnson, & 

Gunnar, 2014) and enhances emotion regulation abilities in children (Gee et al., 2014). 

Moreover, parental stimuli can induce transient changes in functional connectivity of 

amygdala-mPFC circuitry, and these neurobiological changes predict the degree of parental 

buffering of children’s emotion regulation abilities (Gee et al. 2014). Together, these 

findings provide a plausible neurobiological mechanism through which caregivers can 

directly influence neuro-affective functioning during development.

Despite robust evidence of social buffering effects during typical neuro-affective 

development, no evidence to date has examined these effects on emotion regulation circuitry 

in youth with history of ELS. However, recent behavioral evidence suggests that 

interventions such as high-quality foster-care may promote healthy emotional development 

in youth with a history of early institutional caregiving (Troller-Renfree, McDermott, 

Nelson, Zeanah, & Fox, 2015). In the BEIP study, children with earlier placement into high-

quality foster care showed greater attention bias to positive stimuli relative to children who 

experienced prolonged institutional rearing and typically developing children (Troller-

Renfree et al., 2015). Importantly, positive attention bias in foster care youth predicted lower 
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externalizing symptoms at age 8 and lower internalizing problems at age 12, suggesting that 

positivity-bias following early foster-care placement is associated with improved 

socioemotional functioning in the long-term (Troller-Renfree et al., 2015; Troller-renfree et 

al., 2016). However, a recent study of internationally adopted PI children and adolescents 

found that parental presence during a social stress task had no greater regulatory effect on 

cortisol reactivity relative to stranger presence, suggesting that social buffering mechanisms 

may exert differential effects on stress-related neurobiology depending on prior social 

experiences (Hostinar, Johnson, & Gunnar, 2015). Moreover, animal models have shown 

that social buffering effects are diminished following atypical caregiving experiences (i.e. 

nursery rearing; reviewed in Kikusui, Winslow, & Mori, 2006). As such, further research is 

needed to investigate potential mechanisms through which protective factors such as positive 

parenting behaviors may be able to recalibrate the developmental trajectory of neuro-

affective circuitry, and whether they exert effects over and above the effects of ELS to 

protect against future risk for stress-related psychopathology.

6 Limitations and Future Directions

While the current review focused on common phenotypes of neuro-affective circuitry 

associated with ELS, there are several directions of future research that will advance our 

understanding of how early adversity and protective factors influence neurobiological 

development and subsequent mental health outcomes following ELS. First, there is limited 

research examining the effects of timing and chronicity of stressors on neuro-affective 

functional development. Recent studies examining structural brain development have 

identified differential effects of adversity on amygdala volume depending on age of 

exposure (Pechtel, Lyons-Ruth, Anderson, & Teicher, 2014; Tottenham & Sheridan, 2009), 

and there is preliminary evidence linking the age of maltreatment exposure to degree of 

amygdala reactivity during childhood (McCrory et al., 2013). However, the complexity and 

chronicity of adverse experiences in the majority of human studies makes it challenging to 

differentiate whether stress-related effects on amygdala-prefrontal development occur as a 

function of the duration or timing of the stress exposure. Although international adoption 

studies can provide insight into the effects of ELS (e.g. institutional care) that occurs during 

a discrete developmental window, there may be limitations in its generalizability. These 

limitations highlight the important role of preclinical studies that use animal models of ELS. 

While there will always be the ethical limitations in studying stress exposure in humans, 

animal studies can experimentally manipulate age of onset, chronicity, and severity of ELS 

to allow for greater conclusions of causality. Moreover, translational research can provide 

more precise examination of the underlying neurobiological mechanisms associated with 

early adverse experiences that cannot be accessed through human neuroimaging studies.

Second, recent theoretical frameworks have emphasized importance of examining specific 

dimensions of early adverse experiences, such as threat and neglect, and how they influence 

different aspects of neurobiological development (McLaughlin et al., 2014). Although the 

current review focused specifically on threat-related alterations in amygdala-prefrontal 

circuitry, other dimensions of early experience may target different neural circuits (e.g. 

cortico-striatal circuitry) and neuro-cognitive domains (e.g. reward learning, executive 

functions; Goff & Tottenham, 2014; McLaughlin et al., 2014). Further longitudinal research 
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is needed to compare how certain dimensions of adverse experiences differentially alter 

neurobiological circuitry to confer risk for specific domains of psychopathology.

In addition to protective factors of the social environment, genetic factors play an important 

role in moderating risk for emotional psychopathology following ELS (Heim & Binder, 

2012; Uher & McGuffin, 2008). For example, genetic polymorphisms in neuroplasticity 

genes (e.g. BDNF) have been associated with ELS-related changes in neurobiological 

development and emotion regulation (Casey et al., 2009). More recent work has shown that 

cumulative risk profiles across several HPA-related genetic alleles moderate the association 

between amygdala-prefrontal connectivity and anxiety symptoms in children exposed to 

stressful life events (Pagliaccio et al., 2015). Importantly, genetic factors are often correlated 

with variability in the early environment in human studies, representing a significant 

challenge for researchers to differentiate the effects of genetics (e.g. parent 

psychopathology) from the effects of ELS (e.g. family conflict). This can include studies of 

adoption and foster-care cohorts, as children who display more emotional difficulties at a 

young age may experience greater disruptions in family placements (Scarr & Mccartney, 

1983). Despite these potential confounds, not all individuals with genetic predispositions 

(e.g. family history of psychopathology) will develop an emotional disorder, and emerging 

research suggests that environmentally-induced epigenetic modifications in gene expression 

also predict vulnerability for psychopathology (Swartz, Hariri, & Williamson, 2016). For 

example, low socioeconomic status has been associated with longitudinal increases in 

promotor methylation of the sertonin transporter gene during adolescence (Swartz, Hariri, & 

Williamson, 2016). Importantly, these epigenetic changes were associated with enhanced 

threat-related amygdala reactivity, which in turn predicted longitudinal increases in 

depressive symptoms in adolescents with a family history of depression (Swartz et al., 

2016). These findings emphasize the critical role of early experiences on the developmental 

trajectories of neuro-affective circuitry and risk for stress-related psychopathology.

7 Conclusion

In summary, emerging research has begun to identify the developmental pathways through 

which early adverse experiences alter emotion regulation circuitry to increase risk for stress-

related psychopathology. However, little is known regarding the differential effects of 

adversity on amygdala-prefrontal function during different developmental stages (i.e. 

infancy, childhood, adolescence) and different dimensions of exposure (i.e. maltreatment vs. 

neglect). Further research delineating the effects of timing and type of adversities, as well as 

their interplay with genetic and epigenetic factors, is needed to advance our understanding of 

the neuro-developmental mechanisms implicated in vulnerability for psychopathology 

following ELS. This research will be facilitated by the incorporation of translational studies 

that directly compare human studies with animal models of ELS to provide further insight 

into the mechanisms underlying the link between early experiences and neuro-affective 

development. By applying a dimensional and developmental framework to future research, 

we can also begin to elucidate how and when protective factors can buffer the effects of ELS 

on neurobiological development to mitigate long-term risk for psychopathology. Ultimately, 

such research will be informative for developing policies and targeted interventions to 

improve mental health outcomes for individuals who have experienced early adversity.
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