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Abstract
Extracellular ATP interacts with purinergic type 2 (P2) receptors and elicits many crucial biological functions. Extracellular ATP
is sequentially hydrolyzed to ADP and AMP by the actions of defined nucleotidases, such as CD39, and AMP is converted to
adenosine, largely by CD73, an ecto-5′-nucleotidase. Extracellular adenosine interacts with P1 receptors and often opposes the
effects of P2 receptor activation. The balance between extracellular ATP and adenosine in the blood and extracellular fluid is
regulated chiefly by the activities of CD39 and CD73, which constitute the CD39-adenosinergic axis. In recent years, several
studies have shown this axis to play critical roles in transport of water/sodium, tubuloglomerular feedback, renin secretion,
ischemia reperfusion injury, renal fibrosis, hypertension, diabetic nephropathy, transplantation, inflammation, and macrophage
transformation. Important developments include global and targeted gene knockout and/or transgenic mouse models of CD39 or
CD73, biological or small molecule inhibitors, and soluble engineered ectonucleotidases to directly impact the CD39-
adenosinergic axis. This review presents a comprehensive picture of the multiple roles of CD39-adenosinergic axis in renal
physiology, pathophysiology, and therapeutics. Scientific advances and greater understanding of the role of this axis in the
kidney, in both health and illness, will direct development of innovative therapies for renal diseases.
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Prologue Ever since Dr. Geoffrey Burnstock first coined the
term in 1970s, the field of Bpurinergic signaling^ has trans-
formed into a distinct and complex system [1–6], registering
an exponential growth since early 1990s. Purinergic signaling

has implications for virtually in every mammalian system,
playing one or more critical roles in physiology and/or patho-
physiology thereby offering novel drug targets for the treatment
of a variety of diseases [7–13]. The situation is both exciting and
complex with respect to the kidney, where purinergic signaling
plays a variety of roles in health and disease, many of which
offer therapeutic potential. In recent years, excellent reviews
have been published on the physiology, pathophysiology, and
experimental therapeutics of purinergic signaling in the kidney
[14–36]. This review is not intended to update the scope of the
purinergic receptors in the kidney, but it specifically focuses on
CD39-adenosinergic axis, which functions as a dynamic path-
way that regulates the availability of ligands for P2 and P1
receptors in the extracellular milieu, and thus has profound im-
plications in renal physiology, pathophysiology, and therapeu-
tics. As the readers will soon realize, at this stage, our knowledge
of CD39-adenosinergic axis signaling remains rudimentary.

Organization of CD39-adenosinergic axis Despite its high in-
tracellular concentrations (3–5 mM), adenosine triphosphate
(ATP) cannot freely diffuse out of cells due to its negative
charge. However, ATP can be released from healthy cells by

* Bellamkonda K. Kishore
BK.Kishore@hsc.utah.edu

Simon C. Robson
srobson@bidmc.harvard.edu

Karen M. Dwyer
karen.dwyer@deakin.edu.au

1 Departments of Internal Medicine and Nutrition & Integrative
Physiology, and Center on Aging, University of Utah Health, Salt
Lake City, UT, USA

2 Nephrology Research, VA Salt Lake City Health Care System, 500
Foothill Drive (151M), Salt Lake City, UT 84148, USA

3 Division of Gastroenterology/Hepatology and Transplant Institute,
Beth Israel Deaconess Medical Center, Harvard Medical School,
Boston, MA 02215, USA

4 School of Medicine, Faculty of Health, Deakin University,
Geelong, VIC 3220, Australia

Purinergic Signalling (2018) 14:109–120
https://doi.org/10.1007/s11302-017-9596-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s11302-017-9596-x&domain=pdf
http://orcid.org/0000-0001-8232-9827
mailto:BK.Kishore@hsc.utah.edu


regulated exocytosis or through specific transport processes,
such as nucleotide transporters (NT) or pannexin (PNX) or
connexin (CNX) hemichannels or through multi-drug resis-
tance (MDR) gene products [3, 37, 38]. Intracellular ATP
can also be released in an unregulated fashion during hypoxia
or following cell death. Extracellular concentrations of ATP
even in low micromolar range (5 to 20 μM), which is an order
lower than its intracellular concentrations, can elicit a variety
of biological functions in mammalian systems by interacting
with P2Yor P2X receptor subtypes. P2X receptors (subtypes
1–7) are ATP-gated channels that open up, allowing ions
(Na+, K+, Ca2+) to either influx or efflux. P2Y receptors (sub-
types 1, 2, 4, 6, and 11–14) are G protein-coupled with down-
stream effector signaling pathways that cause an increase in
either intracellular free Ca2+ or cyclic adenosine
monophosphate (cAMP). Both P2Y and P2X receptor sub-
types are widely expressed along the mammalian nephron
and collecting duct system [20, 24, 27, 31, 39]. However, as
shown in Fig. 1, the released ATP is sequentially hydrolyzed
to ADP and AMP byCD39 or NTPDase1 (nucleoside triphos-
phate diphosphohydrolase-1), which is expressed in vascular
and tubular structures of the kidney [40–42]. ATP can also be
directly hydrolyzed to AMP by nucleotide pyrophosphatases
(NPPs), expressed in the kidney [41]. AMP is converted to
adenosine by the action of CD73 (5′-ectonucleotidase), which
is also expressed in the kidney. While ATP binds to P2Y and
P2X receptors, adenosine is a potent agonist of P1 receptors
(subtypes A1, A2A, A2B, and A3). Similar to P2Y receptors, P1
receptors are G protein-coupled, with complex downstream
signaling pathways. The activation P1 receptor subtypes result
in increased or decreased activity of adenylyl cyclase (AC),
thus altering cellular cAMP levels. This pathway leading from
ATP to the generation of adenosine, known as the CD39-
adenosinergic axis (enclosed in the gray box in Fig. 1), is
active locally, and it apparently regulates the balance between
P2 and P1 receptor activity in cells. In many organs or cells,
the activation of P1 receptors opposes the biological effects
initiated by the P2 receptors, thus acting as a feedback loop,
which is apparently regulated by the activities of CD39 and
CD73 [43–47]. While the expression of purinergic receptors
and the ectonucleotidases and their functions are documented
in many organs, how the expression and activities of the latter
are regulated is not understood at this stage. This is a major
gap in our knowledge of the operation of CD39-adenosinergic
axis. However, the availability of CD39 or CD73 gene knock-
out mice or mice overexpressing human CD39 (hCD39), and
reagents such as potato apyrase, soluble engineered
ectonucleotidases, and small molecules that interact with P1
or P2 receptors or CD39 (polyoxymetalates) have enabled us
to gain insights into the roles of CD39-adenosinergic axis in
renal physiology and pathophysiology. In the following, we
will provide an overview of the role of this axis in several
pathophysiological conditions that are relevant to the kidney

and direct the readers for review articles that provide more
details and in-depth presentation.

Extracellular cAMP-adenosine pathway Although the CD39-
adenosinergic axis represents the major pathway for the gener-
ation of extracellular adenosine, there is evidence that under
certain circumstances, extracellular cAMP can also be a source
of adenosine, which is referred to as the extracellular cAMP-
adenosine pathway (shown in the vertical box in Fig. 1).
Extracellular cAMP has two sources: the blood and tissues.
Unlike ATP, which is unstable in extracellular milieu, cAMP
is relatively stable and can be transported to distant organs
through the blood circulation, where it can be converted to
adenosine. cAMP released from organs such as the liver in
the context of high glucagon levels in the blood (e.g., diabetes
mellitus, pancreatitis, cirrhosis of liver) can reach the kidney
through blood circulation. cAMP can also be released locally
within the kidney during heightened receptor-mediated activa-
tion of adenylyl cyclase (AC). Intracellular cAMP reaches the
extracellular milieu through the same transport system used by
ATP and other nucleotides. Extracellular cAMP is converted to
AMP by the action of ecto-phosphodiesterase (ePDE) or tissue-
nonspecific alkaline phosphatase (ns-AP). The AMP thus
formed is converted to adenosine by CD73.

The above two pathways have their specific advantages and
disadvantages. Generation of adenosine locally by the activity
of the CD39-adenosinergic axis has the advantage of tissue-
specific tight local regulation. While the extracellular cAMP-
adenosine pathway works more like a hormonal system, but
without feedback regulation, the CD39-adenosinergic axis
functions as an autocrine/paracrine purinergic signaling with
tight feedback regulation [30].

Adenine (P0) receptor In recent years, another purinergic recep-
tor that selectively binds adenine base, but not adenosine (ade-
nine base + sugar), has been reported. Extracellular adenosine is
not converted to adenine, but is broken down to inosine by the
action of adenosine deaminase. Adenine is generated in the cells
during purine salvage pathway, and it can be transported out of
the cells by the same nucleotide transporters (Fig. 1). Similar to
P2Y and P1 receptors, the adenine receptor (also known as P0
receptor) is G protein-coupled that selectively binds adenine, but
not adenosine. Although not the focus of this review, we have
localized the adenine (P0) receptor in the rat kidney and showed
that adenine is a signaling molecule in the kidney [48, 49]. In
this context, it is interesting to note that blood levels of adenine
are markedly increased in patients with chronic renal failure, and
positively correlate with severity of the disease [50].

CD39-adenosinergic axis in renal physiology

Tubular transport of water and sodiumOne of the main func-
tions of the kidney is maintenance of water and sodium
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homeostasis of the body by regulating tubular transport. The
roles of the neurohypophyseal peptide hormones arginine va-
sopressin (AVP) or anti-diuretic hormone (ADH) in regulating
the water homeostasis, and the mineralocorticoid hormone
aldosterone, in regulating sodium homeostasis are well known
[51, 52]. In recent years, it has been established that extracel-
lular nucleotides, acting through P2Y2 and P2Y12 receptors,
also play significant roles in the transport of water and sodium
in the kidney, mainly by opposing the actions of one or both
hormones on the kidney [13, 16, 18, 20, 21, 23]. We used a
transgenic (TG) mouse model globally overexpressing
hCD39 including in the kidney, which had elevated tissue
and blood levels of adenosine [53] and showed that these mice
manifest defective water and sodium handling [42, 54]. Under
basal conditions, TG mice exhibited impaired urinary concen-
trating ability despite normal AVP levels and had impaired
AVP release in response to water deprivation. However, TG
mice kidneys were responsive to exogenous desmopressin
(dDAVP), a selective vasopressin V2 receptor agonist [54].
Thus, ectonucleotidases modulated purinergic signaling
impacting urinary concentration. Furthermore, high-salt diet
and aldosterone clamping experiments in TG mice conducted
by us supported the concept that nucleotides facilitate natri-
uresis by countering aldosterone effect and also revealed
aldosterone-independent down-regulation of major sodium

transporters and channel subunits by purinergic signaling
[42]. Thus, scavenging of extracellular ATP by overexpres-
sion of hCD39 resulted in some unexpected observations.

Tubuloglomerular feedback and renin secretion The renal
blood flow (RBF) and glomerular filtration rate (GFR) are
maintained independent of renal perfusion pressure (RPP)
over a defined range (80–180 mmHg). This autoregulation is
possible due to two intrarenal mechanisms, namely the myo-
genic mechanism and the tubuloglomerular feedback (TGF)
[55, 56]. TGF operates by sensing of salt concentration of the
dis tal nephron by the macula densa cells of the
juxtaglomerular apparatus (JGA), leading to signal transduc-
tion to the afferent arteriole thus regulating the GFR. Both
ATP and adenosine have been shown to play mediator roles
in TGF (Fig. 2). While ATP is the initial signaling molecule
[57, 58], adenosine released from the hydrolysis of ATP ap-
pears to be the ultimate signaling molecule for TGF [59, 60].
Accordingly, TGF responses were blunted in mice lacking
either adenosine A1 receptor [61, 62] or 5′-ectonucleotidase/
CD73 [63]. However, it appears that synchronous release of
renin from macula dense cells is dependent on ATP-mediated
propagation of intra- and intercellular Ca2+ waves through
juxtaglomerular cells [64]. Accordingly, it has been shown
that maximum TGF responses were reduced in Cd39 null

Fig. 1 Schematic representation of the components of the complex
purinergic signaling pathways mediated by extracellular nucleotides.
The horizontal gray colored box shows the components of CD39-
adenosinergic axis. The vertical box encloses the components of
extracellular cAMP-adenosine pathway. On the extreme right, the
formation of extracellular adenine and its interaction with adenine
receptor are shown. NT nucleotide transporter; PNX pannexin; CNX

connexin; cAMP cyclic AMP; CD39 nucleoside triphosphate
diphosphohydrolase 1 (NTPDase1); NPP nucleotide pyrophosphatase;
CD73 5′-ectonucleotidase; AC adenylyl cyclase; ePDE ecto-
phosphodiesterase; ns-AP tissue-nonspecific alkaline phosphatases;
AdeR adenine receptor; ADA adenosine deaminase. For further details,
refer to the text (with permission from Peti-Peterdi et al. [30])
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mice, whereas macula densa- and pressure-dependent inhibi-
tion of renin secretion remained intact as compared to wild-
type mice [66].

CD39-adenosinergic axis in acute kidney
injury

Ischemia reperfusion injury Ischemia reperfusion injury (IRI)
continues to be the major form of acute kidney injury (AKI) in
the hospital setting and is associated with significant morbid-
ity and mortality [67]. IRI occurs when there is interruption of
blood flow to the kidneys after which blood flow is re-
established. Although essential to prevent ongoing ischemic
damage, reperfusion triggers a robust inflammation and oxi-
dative stress response, resulting in organ dysfunction [68].

Although the pathophysiology of IRI is not completely under-
stood [69], several studies have documented the role of CD39-
adenosinergic axis in IRI [17, 70–74]. As shown in Fig. 3,
during IRI, ATP is released from the inflammatory, apoptotic,
or necrotic cells into the extracellular space. In IRI occurring
in the kidney, liver, bowel, heart, lung, brain, and islet cells,
CD39 is the major generator of adenosine [26], which is an
innate anti-inflammatory metabolite and tissue protectant, es-
pecially during hypoxic conditions, that serves to limit tissue
injury. Hypoxia induces the expression of both Cd39 and
Cd73, through hypoxia-inducible specificity protein 1 (Sp1)
and hypoxia-inducible factor (HIF), respectively. Cd39 is also
upregulated within the kidney following ischemic precondi-
tioning, which results in higher pericellular adenosine concen-
tration and less renal IRI [70]. Finally, adenosine itself in-
creases the expression of CD73. As shown in Fig. 3, adeno-
sine mediates its anti-inflammatory effects via A1 receptors on
proximal tubular cells (PTC), A2A receptors on T regulatory
cells (Treg), and A2B receptor on endothelial cells (EC) and
circulating neutrophils. During ischemia, HIF inhibits tran-
scription of equilibrative nucleoside transporter-1 (ENT1) en-
abling adenosine to remain in the extracellular space (Fig. 3).
HIF also increases the expression of A1 and A2B receptors.
Sphingosine kinase-1 (SK1) and sphingosine-1-phosphate re-
ceptor (S1P1R) in the PTC augment the adenosine-A1R inter-
actions. In the Treg, A2AR activation increases the protein
expression of programmed death-1 (PD-1), which suppresses
innate immune responses (Fig. 3). Consistent with these
mechanisms, IRI in Cd39 null mice in which hydrolysis of
ATP is severely diminished [17], or mice treated with POM-1
(polyoxymetalate-1) an inhibitor of Cd39 [70], is severe.

We have previously shown that transgenic mice overex-
pressing hCD39 are protected from both warm and cold IRI
of the kidneys [71] and IRI of the heart [75]. Furthermore, less
severe hepatic injury was observed in donor livers from trans-
genic mice overexpressing hCD39 transplanted into wild-type
recipients after prolonged (18 h) cold storage [76]. Similarly,
the administration of apyrase, a soluble form of CD39, which
increases tissue levels of adenosine abolished IRI in the kid-
ney [70], heart [77], liver [78, 79], and intestines [80].

In contrast to CD39, the impact of CD73 in renal IRI is
variable. Some studies have reported a protective role for
CD73 [70, 81], whereas in mild renal IRI, CD73 deficiency
or inhibition appears protective [82]. This latter observation
may be due to accumulation of AMP, although direct evidence
supporting this hypothesis is currently lacking. Interestingly,
the volatile anesthetic isoflurane induces CD73 and protects
against renal IRI [83].

Adenosine receptors are widely expressed on circulating
leukocytes, immune cells, and vascular cells, which all play
an important role in IRI. Notably, the A2B receptor has a hyp-
oxia responsive element (hypoxia-inducible factor (HIF))
within the promoter region modifying the expression of the

Fig. 2 Suggested role of CD39-adenosinergic axis in the regulation of
tubuloglomerular feedback mechanism. Numbers in circles refer to the
following sequence of events. 1, Increase in concentration-dependent
uptake of Na+, K+, and Cl− via the bumetanide-sensitive Na+-K+-2Cl−

co-transporter (NKCC2); 2 and 3, transport-dependent, intra- and/or
extracellular generation of adenosine (ADO); the extracellular
generation involves ecto-5′-nucleotidase (5′-NT); 4, extracellular ADO
activates adenosine A1 receptors triggering an increase in cytosolic
Ca2+ in extraglomerular mesangial cells (MC); 5, the intensive coupling
between extraglomerular MC, granular cells containing renin, and
smooth muscle cells of the afferent arteriole (VSMC) by gap junctions
allows propagation of the increased Ca2+ signal resulting in afferent
arteriolar vasoconstriction and inhibition of renin release. Factors such
as nitric oxide, arachidonic acid breakdown products, or angiotensin
(ANG) II modulate the described cascade. NOS 1, neuronal nitric oxide
synthase; COX-2, cyclooxygenase-2 (with permission from Vallon et al.
[65])
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receptor [84]. Indeed, the A2B receptor is upregulated within
the kidney as early as 24 h following IRI [85] and it is the
expression on the renovasculature which is essential for miti-
gating IRI [86].

Role of Treg in AKI vis-à-vis CD39-adenosinergic axis
Regulatory T cells (Treg) have an intrinsic reno-protective
function. By multiple mechanisms, Tregs suppress inflamma-
tion and prevent AKI. Through a series of experiments,
Kinsey et al. have shown that depletion of Treg exacerbates
renal IRI [87] whereas following ischemic preconditioning,
which augments pericellular adenosine concentrations [70,
88], Treg numbers are increased and renal IRI is constrained
[89, 90]. The authors went on to show the mechanism under-
pinning the observed protective effect: adenosine, generated
by CD73 on Treg, increased the expression of PD-1 through
the A2A receptor, both of which are expressed on Treg [91,
92]. With the advent of Treg therapy to control inflammation,
these data may provide a novel therapeutic approach to ame-
liorate acute kidney injury (AKI) following IRI [93].

Macrophage transformation and inflammation in AKI
Macrophages are critical mediators and regulators of inflam-
mation in various pathophysiological conditions, including
AKI [94, 95]. Macrophage phenotype also controls long-
term AKI outcomes—kidney regeneration versus progression
to chronic kidney disease (CKD) characterized by fibrosis (see
below) [93, 96]. Recent studies revealed that CD39 and CD73
aid in macrophage transformation. M1 macrophages (classi-
cally activated macrophages) develop early after renal injury
and propagate inflammation by elaborating pro-inflammatory
factors. M2 macrophages (alternatively activated macro-
phages), which appear later, produce anti-inflammatory

factors and support renal repair. As shown in Fig. 4, the
CD39-adenosinergic axis influences the balance between the
M1 and M2 macrophages and thereby inflammation and re-
pair processes in the kidney following injury [26].

Renal fibrosis Fibrosis is a characteristic feature of all forms of
chronic kidney disease, culminating in renal failure [97].
Despite significant advances in deciphering the pathophysio-
logical mechanisms of renal fibrosis, mostly derived from
animal models [98], there are very few options to prevent or
slow the progression of fibrosis in clinical settings. Fibrosis is
preceded by inflammation, and although short-term activation
of A2A and A2B adenosine receptors decreases inflammation,
chronic exposure to adenosine promotes inflammation and
fibrosis through A2B receptor [85, 99, 100]. T cells precede
the influx of macrophages and can independently promote
renal fibrosis. Signaling through A2A receptors inhibits T cell
proliferation (Fig. 5). Accordingly, fibrosis is exacerbated in
A2A receptor knockout mice [26, 85, 99, 100]. Conversely,
chronic signaling through A2B receptor, predominantly
expressed on fibroblasts, promotes renal fibrosis [101].
Furthermore, increased signaling through A2B also appears
to play a role in the development of tubulointerstitial fibrosis
in angiotensin II-treated mice [102]. Indeed, in kidney biop-
sies from patients with CKD, elevated levels of CD73 and A2B

receptor mRNA expression have been demonstrated as com-
pared to patients without CKD [102]. Intriguingly, impaired
ability to generate adenosine in CD73 knockout mice results
in renal fibrosis by 6 months of age [103].

Adenosine signaling plays a complex role in the develop-
ment of renal fibrosis following IRI. A2B adenosine receptor
activation offers protection acutely, but may contribute to the
progression of fibrosis following an episode of ischemia. The

Fig. 3 CD39-adenosinergic axis
in the pathophysiology of
ischemia-reperfusion injury.
ADO adenosine; Sp1 hypoxia-
inducible specificity protein 1;
HIF hypoxia-inducible factor;
PTC proximal tubule cells; Treg T
regulatory cells; EC endothelial
cells; ENT1 equilibrative
nucleoside transporter; SK1
sphingosine kinase-1; S1P1R
sphingosine-1-phosphate
receptor; PD-1 programmed-
death 1. For further details, refer
to the text (modified from Roberts
et al. [26] and reproduced with
permission)
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A2B receptor is upregulated 24 h following renal IRI which
persists for 4 weeks following IRI [85, 99]. Intriguingly,
whereas the administration of apyrase or the overexpression
of hCD39 confers similar acute protection, the effect on
chronic IRI is contrasting. Mice treated with a single dose of
apyrase do not develop chronic kidney disease and the upreg-
ulation of A2B receptor is blunted. In contrast, hCD39-TG
mice develop chronic kidney disease following IRI despite
acute protection coincident with increased renal adenosine
content [100]. Notably, the whole animal overexpression of
human CD39 does not attenuate the development of renal
fibrosis in unilateral ureteral obstruction (UUO) model [104]
presumably an effect of the underpinning mechanism of fibro-
sis in this model.

CD39-adenosinergic axis in renal transplantation Renal trans-
plantation remains the optimal form of renal replacement ther-
apy for patients with end stage renal disease. Despite excep-
tional short-term survival, long-term survival is limited by the
development of chronic allograft dysfunction which in the

kidney manifests with interstitial fibrosis and tubular atrophy
[105]. Recently, novel approaches have been proposed to im-
prove allograft outcomes [106]. IRI (see above) is an obliga-
tory insult in transplantation, which may lead to delayed graft
function which is a risk for acute rejection and long-term graft
loss. Intracellular ATP is released in the donor kidney at the
time of harvesting due to ischemia and again at the time of
vascular anastomosis following reperfusion. Unique to trans-
plantation is a period of cold ischemia occurring between the
time of procurement and engraftment. We have shown the
expression of CD39 on endothelial cells, monocytes, dendritic
cells, Langerhans cells, NK (natural killer) cells, and natural
killer T cells [107]. Organs that overexpress CD39 have im-
proved graft function in both kidney [71] and liver [76] mouse
transplant models encompassing extended cold preservation.
Moreover, several studies during the past two decades indicat-
ed that the activity of CD39 influences severity of inflamma-
tion and autoimmune response [108–113].

Treg are essential to transplantation tolerance and their
therapeutic efficacy is well documented in animal models.

Fig. 5 Adenosine signaling via A2A and A2B receptors reduces
inflammation, resulting in reduced fibrosis. Left: renal injury promotes
macrophage and T-effector cell infiltration that are associated with
increased inflammation and fibrosis. Right: adenosine signaling via

A2AR and A2BR reduces infiltration of T-effector and M1 macrophages
and promotes generation of Treg and M2 macrophages, which are
associated with reduced inflammation and less fibrosis. For further
details, refer to the text (with permission from Roberts et al. [99])

Fig. 4 Role of CD39-
adenosinergic axis in macrophage
transformation. Adenosine
inhibits the expression of pro-
inflammatory cytokines by M1
macrophages via A2AR signaling
and promotes a shift to the anti-
inflammatory M2 phenotype via
A2BR signaling. For further
details, refer to the text (with
permission from Roberts et al.
[99])
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CD39 has been identified as a marker of both murine [114,
115] and human Treg [116]. Furthermore, in mice, the gener-
ation of adenosine by the concerted actions of CD39 and
CD73 is integral to their function and the transfer of Treg from
CD39 deficient mice resulted in more rapid rejection of skin
grafts [114]. Using the markers of CD4, CD25, and CD39,
human Treg can be monitored in patients with end stage renal
failure and following renal transplantation with a reduction in
Treg number noted during acute transplant rejection [116,
117]. Ex vivo Treg expansion and delivery into renal

transplant recipients as a therapy are currently undergoing
rigorous study [118]. Figure 6 summarizes our current knowl-
edge about the purinergic protective mechanisms in solid or-
gan transplantation.

CD39-adenosinergic axis in hypertension and diabetic ne-
phropathy Hypertension and diabetic nephropathy continue
to be the major causes of chronic kidney disease (CKD), lead-
ing to end-stage renal disease (ESRD) that requires mainte-
nance hemodialysis or renal transplantation. The hydrolysis of

Fig. 6 Protective mechanisms in
solid organ transplantation.
Extracellular adenosine is
generated from the enzymatic
hydrolysis of nucleotides by
CD39 and CD73 expressed on
endothelial cells (EC) and B cells.
Adenosine signals via A2AR on
circulating cells including
regulatory T cells (Treg) and via
A2BR expressed both on the
vasculature and inflammatory
cells. Experimental strategies
which improve graft outcome for
each solid organ transplant are
listed in boxes (with permission
from Roberts et al. [125])

Fig. 7 Experimental models of
hypertension and diabetes reveal
increased adenosine generation
and A2B receptor expression.
A2BR activation on fibroblasts
and mesangial cells promotes
extracellular matrix deposition
driving the development of renal
fibrosis. Vasoconstriction
mediated by endothelin-1
promotes hypoxia which is
perpetuated by renal fibrosis.
Chronic hypoxia further drives
adenosine generation and A2BR
activity, creating a vicious cycle
of chronic hypoxia and renal
fibrosis (with permission from
Roberts et al. [99])
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adenine nucleotides has been reported to be enhanced in plate-
lets of patients with diabetes and hypertension and was asso-
ciated with increased expression of CD39. Increasing glucose
concentration apparently had a direct effect on ATP hydrolysis
[119, 120]. Functional CD39 polymorphism influences the
susceptibility to type 2 diabetes mellitus (T2DM) and diabetic
nephropathy in African-Americans [121]. Hyperglycemia in-
duced formation of extracellular adenosine in glomeruli and
podocytes, apparently due to increased expression of CD73
[122, 123]. Hyperglycemia upregulated expression of HIF-1α
[124], which in turn impacted and increased A2B receptor
expression in mesangial cells and podocytes [84, 123]. This
observation, coupled with increased expression of TGF-β and
vascular endothelial growth factor (VEGF) in glomeruli, re-
sulted in the development of glomerulosclerosis. These alter-
ations were reduced by the pharmacological inhibition of A2B

receptor (Fig. 7) [99, 125].

Therapeutic implications

The CD39-adenosinergic axis is a potential platform with
multiple anchors for the development of novel therapeutic
modalities for the treatment or management of renal condi-
tions described above. One potential strategy involves modu-
lation or tilting the axis more toward formation of adenosine
relative to the extracellular ATP/ADP concentrations, so that
the activity of adenosine or P1 receptors is higher with bene-
ficial effects. This can be achieved by the administration of
enzymes that hydrolyze ATP to ADP and AMP, such as sol-
uble engineered ectonucleotidases. Initial studies using a com-
mercially available (APT102) engineered human nucleoside
triphosphate diphosphhydrolase-3 (CD39L3) in a canine
model of arterial thrombosis were very encouraging [126].
Conversely, various inhibitors of ectonucleotidases patented
during the past few years [127], and the availability of thera-
peutic antibodies that selectively inhibit CD73 [128], widened
the scope for modulating the CD39-adenosinergic axis in ex-
perimental therapeutics.

The other strategy is to modulate the activity of adenosine
or P1 receptor subtypes. In this context, the field of adenosine
receptors as drug targets is further advanced with the avail-
ability of agonists and/or antagonists for various subtypes [12,
129, 130]. Comparatively, the availability of selective agonists
or antagonists of P2 receptors is limited.

Summary points

& The CD39-adenosinergic axis is central to the regulation
of purinergic signaling in the kidney

& The regulated generation of adenosine by CD39 and
CD73 has major impacts on renal physiology with respect

to water/salt excretion, tubuloglomerular feedback/renin
secretion with blood pressure control.

& Alterations in the balance of extracellular nucleotides to
nucleosides in disease states have major effects on inflam-
mation and impact outcomes of ischemic reperfusion and
metabolic stress.

& Differential expression of CD39 and CD73 by the vascular,
T regulatory cells, and other immunity cells modulates in-
flammatory and immune reactions in experimental models
of renal inflammation, fibrosis, and transplantation.

& Strategies for developing therapeutic modalities that can
treat or manage kidney diseases by modulating the CD39-
adenosinergic axis are available, and they need to be tested
in animal models of various kidney diseases.
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