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Model-based and Model-free 
Machine Learning Techniques 
for Diagnostic Prediction and 
Classification of Clinical Outcomes 
in Parkinson’s Disease
Chao Gao1,2, Hanbo Sun1,3, Tuo Wang1,3, Ming Tang1,2, Nicolaas I. Bohnen4,5,6, Martijn L. T.  
M. Müller   4,5,6, Talia Herman7, Nir Giladi7,9, Alexandr Kalinin   1,6,11, Cathie Spino2,6, William 
Dauer5,6, Jeffrey M. Hausdorff7,8,10 & Ivo D. Dinov1,6,11,12

In this study, we apply a multidisciplinary approach to investigate falls in PD patients using clinical, 
demographic and neuroimaging data from two independent initiatives (University of Michigan and Tel 
Aviv Sourasky Medical Center). Using machine learning techniques, we construct predictive models to 
discriminate fallers and non-fallers. Through controlled feature selection, we identified the most salient 
predictors of patient falls including gait speed, Hoehn and Yahr stage, postural instability and gait 
difficulty-related measurements. The model-based and model-free analytical methods we employed 
included logistic regression, random forests, support vector machines, and XGboost. The reliability of 
the forecasts was assessed by internal statistical (5-fold) cross validation as well as by external out-of-
bag validation. Four specific challenges were addressed in the study: Challenge 1, develop a protocol for 
harmonizing and aggregating complex, multisource, and multi-site Parkinson’s disease data; Challenge 
2, identify salient predictive features associated with specific clinical traits, e.g., patient falls; Challenge 
3, forecast patient falls and evaluate the classification performance; and Challenge 4, predict tremor 
dominance (TD) vs. posture instability and gait difficulty (PIGD). Our findings suggest that, compared to 
other approaches, model-free machine learning based techniques provide a more reliable clinical outcome 
forecasting of falls in Parkinson’s patients, for example, with a classification accuracy of about 70–80%.

PD clinical characteristics, current state-of-the-art techniques, societal impact.  Parkinson’s 
disease (PD) is a common neurodegenerative disorder that affects over 10 million people worldwide. PD affects 
about 1% of people over 60 years of age and the prevalence increases with age. People with PD experience a 
range of motor and non-motor symptoms that include tremor, rigidity, bradykinesia, postural instability, gait 
disturbances such as freezing of gait (FoG), autonomic disturbances, affective disorders, sleep disturbances, and 
cognitive deficits1. These symptoms markedly impact and curtail health related quality of life2. Freezing of gait 
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and associated falls represent one of the most serious consequences of PD3. Falls are much more common in 
patients with PD than in age-matched controls and falls often lead to reduced functional independence, increased 
morbidity, and higher mortality4. The ability to better identify future fallers from non-fallers could inform more 
effective treatment and personalized medicine planning.

The hallmark pathology of PD is loss of dopamine in the striatum secondary to progressive degeneration of 
dopaminergic cells in the substantia nigra pars compacta, accompanied by the formation of Lewy bodies5. A 
variable combination of tremor, rigidity, and bradykinesia symptoms may present along with postural instability 
and gait difficulty (PIGD) features. Because of primary involvement of the basal ganglia in PD, it has often been 
asserted that these motor features are mainly attributable to nigrostriatal dopaminergic loss. A common dopa-
mine replacement therapy to ameliorate PD motor symptom is levodopa (L-DOPA). A recent study from Vu et al.6  
showed that L-DOPA potency was lowest for PIGD features compared to other cardinal motor features. In the 
Sydney Multicenter Study of PD, patients have been followed for about two decades. Results of this study indi-
cate that dopamine non-responsive problems dominate 15 years after initial assessments and include frequent 
falls, which occurs in 81% of the patients7. Similar findings were recently reported by López et al. after following 
de novo PD patients for 10 years8. These authors reported good responses to dopaminergic treatment in the 
first year with a progressive decline, becoming more manifest especially after 3 years. Significant PIGD motor 
disabilities arose at 10 years in 71% of patients that were mainly caused by non-dopamine-responsive features 
such as freezing of gait (FoG)8. The L-DOPA resistance of PIGD motor features has been proposed to include 
non-dopaminergic structures in widespread brain regions9. As axial motor impairments, in particular falls, do 
not respond well to dopaminergic medications there is a need to identify early predictors of falls. Such predictors 
may provide potential clues about underlying mechanism of falls that may more effectively inform future treat-
ment interventions. The main goal of this study was to identify clinical and MR imaging predictors of falls from 
two independent archives containing clinical and imaging data of PD patients.

Machine Learning methods for prediction, classification, forecasting and data-mining.  Both 
model-based and model-free techniques may be employed for prediction of specific clinical outcomes or diagnos-
tic phenotypes. The application of model-based approaches heavily depends on the a priori statistical statements, 
such as specification of relationship between variables (e.g. independence) and the model-specific assumptions 
regarding the process probability distributions (e.g., the outcome variable may be required to be binomial). 
Examples of model-based methods include generalized linear models. Logistic regression is one of the most 
commonly used model-based tools, which is applicable when the outcome variables are measured on a binary 
scale (e.g., success/failure) and follow Bernoulli distribution10. Hence, the classification process can be carried out 
based on the estimated probabilities. Investigators have to carefully examine and confirm the model assumptions 
and choose appropriate link functions. Since the statistical assumptions do not always hold in real life problems, 
especially for big incongruent data, the model-based methods may not be applicable or may generate biased 
results.

In contrast, model-free methods adapt to the intrinsic data characteristics without the use of any a priori 
models and with fewer assumptions. Given complicated information, model-free techniques are able to construct 
non-parametric representations, which may also be referred as (non-parametric) models, using machine learning 
algorithms or ensembles of multiple base learners without simplification of the problem. In the present study, sev-
eral model-free methods are utilized, e.g., Random Forest11, AdaBoost12, XGBoost13, Support Vector Machines14, 
Neural Network15, and SuperLearner16. These algorithms benefit from constant learning, or retraining, as they 
do not guarantee optimized classification/regression results. However, when trained, maintained and reinforced 
properly and effectively, model-free machine learning methods have great potential in solving real-world prob-
lems (prediction and data-mining). The morphometric biomarkers that were identified and reported here may be 
useful for clinical decision support and assist with diagnosis and monitoring of Parkinson’s disease.

There are prior reports of using model-free machine-learning techniques to diagnose Parkinson’s disease. For 
instance, Abos et al. explored connection-wise patterns of functional connectivity to discriminate PD patients 
according to their cognitive status17. They reported an accuracy of 80.0% for classifying a validation sample inde-
pendent of the training dataset. Dinesh and colleagues employed (boosted) decision trees to forecast PD. Their 
approach was based on analyzing variations in voice patterns of PD patients and unaffected subjects and reported 
average prediction accuracy of 91–95%18. Peng et al. used machine learning method for detection of morpho-
metric biomarkers in Parkinson’s disease19. Their multi-kernel support vector machine classifier performed well 
with average accuracy = 86%, specificity = 88%, and sensitivity = 88%. Another group of researchers developed 
a novel feature selection technique to predict PD based on multi-modal neuroimaging data and using support 
vector classification20. Their cross-validation results of predicting three types of patients, normal controls, subjects 
without evidence of dopaminergic denervation (SWEDDs), and PD patients reported classification accuracy 
about 89–90%. Bernad-Elazari et al. applied a machine learning approach to distinguish between subjects with 
and without PD. Their objective characterization of daily living transitions in patients with PD used a single 
body-fixed sensor, successfully distinguishing mild patients from healthy older adults with an accuracy of 86%21. 
Previously identified biomarkers, as well as the salient features determined in our study, may be useful for improv-
ing the diagnosis, prognosticating the course, and tracking the progression of the disease over time.

Study Goals.  This study aims to address four complementary challenges. To address the need for effective 
data management and reliable data accumulation, Challenge 1 involves designing a protocol for harmonizing and 
aggregating complex, multisource, and multi-site Parkinson’s disease data. We applied machine learning tech-
niques and controlled variable selection, e.g., knockoff filtering22, to address Challenge 2, identify salient predic-
tive features associated with specific clinical traits, e.g., patient falls. Challenge 3 involves forecasting patient falls 
using alternative techniques based on the selected features and evaluating the classification performance using 
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internal (statistical) and external (prospective data) validation. Finally, Challenge 4, addresses the need to forecast 
other clinically relevant traits like Parkinson’s phenotypes, e.g., tremor dominance (TD) vs. posture instability 
and gait difficulty (PIGD)23.

Predictive Analytic Strategy.  The datasets used in this study were collected independently at two sites 
– the University of Michigan Udall Center of Excellence in Parkinson’s Disease Research (Michigan data) and 
the Sourasky Medical Center, Israel (Tel-Aviv data). Both the datasets include high dimensional data consisting 
of several hundred demographic and clinical features for about a couple of hundred PD patients. This research 
is focused primarily on the prediction of patients’ falls, although alternative clinical outcomes and diagnostic 
phenotypes can be explored using the same approach. As not all of the features in the clinical record are strongly 
associated with each specific response, our goal is to identify some important critical features, build the simplest 
statistical models, and demonstrate reproducible computational classifies that produce higher prediction accu-
racy while avoiding overfitting. Figure 1 shows a high-level schematic of the study-design, including the comple-
mentary training and testing strategies.

In general, model-free statistical learning methods (e.g. Random Forest, Support Vector Machines) make 
fewer assumptions and often outperform model-based statistical techniques like logistic regression, which is often 
considered a baseline method, on large and complex biomedical data24–27. To quantify the forecasting results, we 
used established evaluation metrics such as overall accuracy, sensitivity, specificity, positive and negative pre-
dictive power, and log odds ratio. For clinical datasets with a large number of features, it is difficult to avoid 
the multi-collinearity problem, which causes problems with maximum likelihood estimation of model-based 
techniques28. As the machine learning techniques have minimal statistical assumptions, they may provide more 
flexible and reliable predictions.

This manuscript is organized as follows: The methods section describes the study design, the characteristics 
of the data and meta-data, the preprocessing, harmonization, aggregation and analysis methods, as well as the 
evaluation strategies. The results section reports the findings for each of the study designs shown in Fig. 1. Finally, 
the discussion section explains the findings, identifies potential drawbacks and suggests prospective translational 
studies.

Methods
All methods and analyses reported in the manuscript were carried out in accordance with relevant institutional, 
state and government guidelines and regulations. The experimental protocols were approved by the institutional 
review boards of the University of Michigan (HUM00022832) and Tel Aviv Sourasky Medical Center (0595–
09TLV). Informed consent was obtained from all participating volunteers prior to enrollment in the study and 
data collection.

Data sources and management.  Below we describe the two main sources of data (University of Michigan 
and Tel Aviv Sourasky Medical Center) and discuss the data management, wrangling, preprocessing, imputation, 
harmonization, aggregation, and analytics.

Michigan data.  The University of Michigan archive included data collected as part of a NIH-funded clinical and 
neuroimaging study of PD. Additional information about inclusion/exclusion criteria and data dictionary are 
provided in Supplementary Materials Section I.1.a. Briefly, the raw dataset compiled at Michigan contains study 

Figure 1.  Predictive Analytics Strategy: (Top) Identify critical features and build predictive models 
independently on the Michigan and the Tel-Aviv datasets, respectively. (Bottom) Harmonize and merge the two 
data archives and perform the same analytics on the aggregate data. The bottom-right branch of the diagram 
illustrates the process of training the models on one of the datasets and (externally) validating their accuracy on 
the other complementary dataset.
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subjects’ demographics, PET, behavioral and sensory assessments, Mattis Dementia Rating Scale, sleep question-
naires, genetics, number of falls, clinical measures and MR neuroimaging (207 variables in total). Among the 225 
study subjects, there were 148 patients with Parkinson’s disease and 77 healthy participants.

Tel-Aviv data.  The Tel-Aviv archive includes demographic, clinical, gait, balance and imaging data. The data-
set was originally gathered to study the role of white matter changes in PD and putative relationships to motor 
phenotypes29,30. The study included 110 patients with idiopathic PD recruited by referrals from specialists at the 
outpatient movement disorders unit, and from other affiliated clinics. Additional information about inclusion/
exclusion criteria and data dictionary are provided in Supplementary Materials Section I.1.b.

Michigan + TelAviv Data Aggregation.  The preprocessed Tel-Aviv and Michigan datasets are harmonized and 
merged using 133 shared variables, which include Subject ID, PD subtype (TD vs. PIGD), Tremor score, PIGD 
score, gender, age, weight, height, BMI, Geriatric Depression Scale (short form), the Timed up and go test, spe-
cific items from Part I, II and III of the Movement Disorder Society (MDS)-sponsored version of the UPDRS, 
Hoehn and Yahr scale, Montreal Cognitive Assessment (MoCA), and 56 derived neuroimaging features. Notably, 
the UPDRS Part III sub items from the two datasets were both measured under the “OFF” medication cycle, 
i.e., approximately 12 hours of antiparkinsonian medication withdrawal prior to the assessments. The aggregated 
dataset consists of 251 subjects and 133 variables.

Model-based and Model-free machine learning methods.  The Supplementary Materials Section I.2 
(Predictive Analytics) includes the mathematical descriptions of the model-based (e.g., Logistic Regression) and 
model-free (e.g., Random Forest, Adaptive and gradient boosting, Support Vector Machines, Neural networks, 
SuperLearner) techniques used for prediction and classification. The Knockoff filtering and random-forest feature 
selection methods are detailed in Supplementary Materials Section I.3 (Feature Selection).

Statistical validation strategies and evaluation metrics.  Classification.  To validate the prediction 
performance for binary classes, we usually construct a 2 × 2 contingency table (confusion matrix) as illustrated 
on Table 1:

True Positive(TP): Number of observations that correctly classified as “Fall” group.
True Negative(TN): Number of observations that correctly classified as “Non-Fall” group.
False Positive(FP): Number of observations that incorrectly classified as “Fall” group.
False Negative(FN): Number of observations that incorrectly classified as “Non-Fall” group.
Accuracy(ACC): ACC = (TF + TN)/Total number of observations.
Sensitivity (SENS) & specificity (SPEC): Sensitivity measures the proportion of “Falls” that are correctly 

classified while specificity measures the proportion of “Non-fall” that are correctly identified:

=
+

=
+

.SENS TP
TP FN

SPEC TN
TN FP

,
(1)

Positive Predictive Value (PPV) & Negative Predictive Value (NPV): Positive Predicted Value measures the 
proportion of true “Fall” observations among predicted “Fall” observations. Similarly, Negative Predicted Value 
measures the proportion of true “Non-fall” observations among predicted “Non-fall” observations:

=
+

=
+

.PPV TP
TP FP

NPV TN
TN FN

,
(2)

ROC Curve & Area Under the Curve (AUC): The Receiver Operating Characteristic (ROC) curve explicates the 
relation between true positive rate (i.e., sensitivity) and false positive rate (i.e. 100%-specificity) for various 
cut-offs of a continuous diagnostic test31. The performance of the test may be summarized by the aggregate area 
under the ROC curve (AUC); ≤ ≤AUC0 1 and higher AUC indicates better performance. In this study, 5-fold 
cross validation is applied, the AUC is calculated for each repeated iteration, and the average AUC is reported as 
an overall quantitative estimate of classification performance, which can be used to compare alternative 
classifiers32.

Statistical tests.  A number of critical features from Michigan/Tel-Aviv/Combined datasets were identified 
during feature selection. As observed in density plots, data of clinical measurements were not normally distrib-
uted within sub-patient groups, hence two-sample t-test cannot be used. When comparing two independent 

Reference

Fall Non-fall

Prediction
Fall TP FP

Non-fall FN TN

Table 1.  The confusion matrix provides a mechanism to assess the accuracy of binary diagnostic classification.
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samples (fall and non-fall patient group), non-parametric tests are implemented as they have the advantage of 
making no assumption about data distribution.

Mann-Whitney-Wilcoxon (MWW) test.  Frequently treated as the non-parametric equivalent of the two-sample 
t-test, the MWW test is used to determine whether two independent samples from populations having the same 
distributions with the same median without assuming normal distributions33. The calculation is based on the 
order of the observation in samples. In this study, we used R-based wilcox.test() to carry out two-sided hypothesis 
testing procedure:

H0: The distributions of two samples do not differ by a location shift.
H1: The distribution of one population is shifted to the left or right of the other.

MWW test statistic: = − +U W n n( 1)
2

2 2 , where W  is the rank sum statistic of one group and n2 is the number 
of observations in the other group whose ranks were not summed. The U statistic is reported and labeled as W34.

Kolmogorov–Smirnov (KS) test.  Named after Andrey Kolmogorov and Nikolai Smirnov, it is one of the most 
useful and general non-parametric method that determines whether two independent samples differ significantly 
in both location and shape of the one-dimensional probability distributions. KS test35 quantifies the distance 
between the empirical distribution functions of two sample:

H0: The samples are drawn from the same distribution.
H1: The samples are not drawn from the same distribution.

The empirical distribution function: = ∑ = −∞F x I X( ) ( )n n i
n

x i
1

1 [ , ] , where n is the number of observations. Then, 
the KS test statistic is:

= −D sup F x F x( ) ( ) ,
(3)n m

x
n m, 1, 2,

where F x( )n1,  and F x( )m2,  are the empirical distribution functions of the first and second sample.

Results
Overall Summaries.  Table 2 shows the basic summary statistics for the three datasets and Fig. 2 illustrates 
correlation heatmaps of some core data features. There are some differences between the paired correlations 
between features and across data archives. For instance, gait-speed is strongly negatively correlated with tremor 
score, PIGD score, BMI, Hoehn and Yahr scale (H&Y), and GDS-SF (Geriatric Depression Scale - short form), 
whereas PIGD (MDS_PIGD) is strongly-positively correlated with TUG (Timed Up and Go test), GDS-SF, BMI, 
and Hoehn and Yahr scale. We also found that gait speed is negatively correlated with postural stability (pos_
stab). The presence of more severe postural instability and gait difficulties is not robustly correlated with the 
non-motor experiences of daily living in the patient. The non-motor experiences of daily living reflect impair-
ments of cognition, mood, sleep and autonomic functions. Although axial impairments are generally associated 
with cognitive impairments in PD, the lack of significant associations with overall non-motor experiences of 
daily living may be due to the heterogeneous (cognitive and non-cognitive) nature of this MDS UPDRS subscale.

EDA Plots for Michigan and Tel-Aviv Data.  Figure 3 demonstrates exploratory data analytics (EDA) includ-
ing univariate and multivariate distributions contrasting the Michigan and Tel-Aviv populations, also see 
Supplementary Figures S.3 and S.4.

Missing Data Plots.  Figure 4 illustrates the missing data patterns for both, the Michigan and the Tel-Aviv 
datasets. This lower dimensional projection suggests that the two cohorts are quite entangled, which may present 
a challenge in classification of falls/no-fall.

Challenge 1. Harmonizing and aggregating complex multi-source and multisite Parkinson’s disease data.  Data 
Aggregation: Since the data were acquired in independent studies at two separate institutions, not all the features 
collected were homologous. Even common features contained in both archives had some with substantially dif-
ferent distributions, according to Kolmogorov–Smirnov test, Fig. 5.

Figure 5 shows the Kolmogorov–Smirnov tests carried out on all the numeric features (126 in total) that were 
common in both, Michigan and Tel-Aviv, datasets. Some extremely small p-values were slightly transformed, 

Cohort Original Size(n) Effective Size(m) #Features*
Michigan 225(48) 148**(45) 179

Tel-Aviv 105(41) 103(41) 165

Aggregated 330(89) 251(86) 129

Table 2.  A summary table, with selected feature pair correlations, separately for each of the three datasets used 
in the study. The values in parentheses represent the numbers of patients that had falls. *Number of features 
after preprocessing. **77 healthy controls were excluded.
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i.e., replaced by the minimum of the other non-zero p-values, to ensure that the logarithmic y-axis scale is cor-
rectly plotted.

False Discovery Rate (FDR) was used to control the false-positive rate at the level of 0.01. Thus, among the set 
of rejected null hypotheses, the expected proportion of false discoveries is limited to 1%. Assuming the tests are 

Figure 2.  Pair correlations of some features, separately for each of the three datasets used in the study. 
(A) Michigan data boxplots illustrating significant differences in MDS_TREM (p = 0.5465), MDS_PIGD 
(p < 0.001), H and Y scale (p < 0.001), gaitSpeed_Off (p < 0.001) between PD patients with and without a 
history of falls, based on MWW test. (No = 0, Yes = 1). (B) Tel-Aviv data boxplots illustrating significant 
differences in Tremor_score (p = 0.01094), PIGD_score (p < 0.001), H and Y scale (p < 0.001) and FOG_Q 
(p < 0.001) between PD patients with and without a history of falls, based on MWW test. (No = 0, Yes = 1).

Figure 3.  Exploratory data analytics illustrating some of the relations between falling and several clinical 
measures for the Michigan dataset (A) and the Tel-Aviv dataset (B), separately.
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Figure 4.  Missing patterns of Michigan (top) and Tel-Aviv (bottom) datasets. Approximately 30% of the 
Michigan study subjects have complete information, e.g., many cases have unrecorded genetic biomarkers. Data 
completeness is higher in Tel-Aviv data, missingness only occurred in about 19% of the participants.

Figure 5.  Results of KS tests on 126 features comparing the distributions in Michigan and Tel-Aviv data. The 
red horizontal line represents the cutoff of −log(α), where α (desired FDR) = 0.01.
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independent, the FDR control is achieved by calculating q-values (Benjamini/Hochberg FDR adjusted p-value36 
for each test and rejecting those with q-value <0.01. The red line in Fig. 5 represents the −log(0.01) cutoff value.

Table 3 shows the level of similarity between Michigan and Tel-Aviv datasets in two different types of variables 
(clinical/demographic and neuroimaging).

Figure 6 includes examples of feature distributions in these two datasets showing some similarity and some 
differences.

As the study subjects in both Michigan and Tel-Aviv datasets represent Parkinson’s disease patients, an aggre-
gate dataset was generated to increase the number of training and testing cases and examine the performance of 
the predictive analytics on the complete data. We used normalization (centering and scaling) of the data elements 
prior to their aggregation.

Figure 7 shows batch effects on the aggregate dataset using two alternative standardization techniques – nor-
malize two data sets separately prior to aggregation vs. aggregate and normalize the combined data. To illustrate 
the similarities and differences between the pair of standardization techniques we show 2D projections of the 
data in each paradigm (top and bottom) using both multidimensional scaling (MDS)37 (left) and t-distributed 
Stochastic Neighbor Embedding (tSNE)32,38 (right).

Batch effects do not represent underlying biological variability. Rather, they reflect technical sources of data 
variation due to handling of the samples. To untangle batch technical variation from intrinsic biomedical process 
variability we need to carefully select the data harmonization, normalization and aggregation strategies to avoid 
unintended bias. In this case, we chose to normalize each of the two datasets separately prior to their aggregation 
into the combined Michigan+TelAviv dataset.

Challenge 2: Identification of salient predictors associated with patients’ falls.  In this part, we aim to identify 
for the strongest predictors for patients’ falls for each of the three datasets, Michigan, Tel-Aviv, and the aggre-
gated Michigan+TelAviv. We carry out feature selection using two different methods: random forest (RF)11,39 and 
Knockoff filtering (KO)40. For each dataset, both feature selection techniques identify the top 20 selected varia-
bles. MWW test and KS test are used to compare the distributions of these features between patient subgroups 
(Falls vs. No-falls). We aim to identify commonly selected features by both techniques that also show significant 
differences on the MWW and KS tests.

Michigan dataset.  We consider common variables selected by both LASSO41 and Knockoff (FDR = 0.35) as 
the “potentially falls-associated features”. In addition, candidate features that are significantly different on both MWW 
and KS tests across two cohorts (“fall” and “non-fall”) are considered “falls-associated features”. Regularized (LASSO) 
linear modeling rejects all genetic features, the only set of multi-level categorical features in Michigan dataset. This fact 
facilitates our implementation of Knockoff filtering, which is not directly applicable for multi-level categorical varia-
bles. Excluding all genetic variables, we apply Random Forest (RF) and Knockoff (KO) variable selections on all other 
numeric or binary features. The feature selection results are shown on Table 4 with a corresponding variable impor-
tance plots on Fig. 8. The common features selected by both methods, RF and KO, are annotated (*). The 
Supplementary Materials include the technical details of the two alternative feature selection strategies. RF feature 
section is based on fitting a number of decision trees where each node represents a single feature condition split the 
dataset into two branches according to an impurity measure (e.g., Gini impurity, information gain, entropy). The 
feature ranking reported in Table 4 reflect the frequencies that each of these top variables decreases the weighted 
impurity measure in multiple decision trees. KO feature selection relies on pairing each feature with a decoy variable, 
which resembles its characteristics but carries no signal, and optimizes an objective function that jointly estimates 
model coefficients and variable selection, by minimizing a the sum of the model fidelity and a regularization penalty 
components. The discrepancy between a real feature (Xj) and its decoy (knockoff) counterpart (∼X j) is measured by a 
statistic like = × −

∼ ∼Wj max Xj X j sgn Xj X j( , ) ( ), which effectively measures how much more important Xj is relative 
to ∼X j. The strength of the importance of Xj relative to ∼X j is measured by the statistic magnitude, Wj . There is a strong 
evidence of the importance of the commonly selected features (*) by RF and KO, see Table 4 and Fig. 8.

Table 5 shows the results comparing the distributions between fallers and no-fallers in the Michigan data, 
using the top six common features identified by RF and KO controlled feature selection.

Figure 9 depicts the density plots of the top six selected clinical features that have significantly different distri-
butions between falls and no-fall subpopulations in the Michigan dataset.

Tel-Aviv data.  Table 6 illustrates the top features selected by RF and KO methods solely on the Tel-Aviv 
dataset. Again, commonly selected features by both strategies are labeled (*). Figure 10 presents the Tel-Aviv RF 
and KO feature selection results. Table 7 contains the MWW and KS test results comparing the distributions of 
fallers and no-fallers. Figure 11 shows the density plots of the top 10 selected clinical features separately for falls 
and no-fall groups.

Feature Category
Features of significant 
incongruence

Clinical/Demographic 24 out of 70 (34%)

Neuroimaging 54 out of 56 (96%)

Table 3.  Some of the clinical/demographic variables and many of the neuroimaging features exhibit significantly 
different distributions between the two datasets.
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Figure 6.  Similarities and differences between feature distributions in the Michigan and Tel-Aviv datasets.

Figure 7.  Visualization of batch effects of the aggregated data using different data aggregation strategies 
(normalize the two data sets separately vs. normalize the combined data) using two alternative dimensionality 
reduction methods - MDS (left) and tSNE (right).
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Aggregated (Michigan+TelAviv).  Similar results, corresponding to the separate Michigan and Tel-Aviv 
results shown above, are included below for the aggregate Michigan+TelAviv dataset, Tables 8 and 9, Figs 12 and 13.

Challenge 3. Classification of patients’ falls.  Below, we report the prediction results for the model-based logistic 
regression, used as a reference method, and machine learning classification using the normalized datasets. The 
results are reported separately for the Michigan only, Tel-Aviv only, and the aggregate Michigan+TelAviv datasets.

Random Forests Knockoff

Features Frequency Features Frequency

MDS_PIGD* 0.888 hx_smoke 0.764

gaitSpeed_Off* 0.860 high_bp 0.751

R_middle_temporal_gyrus 0.662 walk* 0.718

R_inferior_temporal_gyrus 0.618 MDS_PIGD* 0.672

Caudate_DA 0.554 SLEEP_APNEA 0.602

Striatum_DA 0.534 head_inj 0.598

MOT_EDL* 0.516 SLEEP_RBD 0.552

time_upgo 0.494 out_bed 0.515

L_middle_temporal_gyrus 0.436 gaitSpeed_Off* 0.502

NON_MOTOR_EDL* 0.418 HY 0.477

UPSIT40 0.410 NON_MOTOR_EDL* 0.440

Putamen_DA 0.408 hal_psy 0.415

R_middle_orbitofrontal_gyrus 0.364 Chair 0.415

walk* 0.354 pos_stab* 0.407

R_fusiform_gyrus 0.336 Caudate_DA 0.403

BMI 0.324 MOT_EDL* 0.398

L_inferior_temporal_gyrus 0.322 gait 0.374

MDRS_PERSEV 0.320 gender 0.361

L_insular_cortex 0.318 turn 0.361

pos_stab* 0.318 depression 0.324

Table 4.  Feature selection for the Michigan data using RF (left) and KO (right). Six common features (*) are 
selected by both methods: MDS_PIGD, gaitSpeed_Off, MOT_EDL, NON_MOTOR_EDL, walk, pos_stab.

Figure 8.  Results of feature selection for the Michigan dataset using random forest (top) and knockoff filtering 
(bottom). The barplots present the exact number of times the top listed features are selected.
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Selected Features

Mann-Whitney-Wilcoxon Test Kolmogorov-Smirnov Tests

W p-value D p-value

MDS_PIGD 1011.5 3.933e-08 0.42934 1.935e-05

gaitSpeed_Off 3412 5.082e-06 0.37691 0.0002733

MOT_EDL 1253 8.713e-06 0.41575 3.974e-05

NON_MOTOR_EDL 1486.5 0.0005182 0.27681 0.01647

walk 1195 1.643e-07 0.41855 3.432e-05

pos_stab 1253 1.255e-06 0.37411 0.0003118

Table 5.  MWW test and KS tests of group differences performed on the commonly selected features.

Figure 9.  Density plots showing the top six clinical features with significantly different distributions between 
falls and no-fall cohorts within the Michigan study.

Random Forests Knockoff

Features Frequency Features Frequency

gaitSpeed_Off* 0.924 gender 0.917

ABC* 0.874 X2.11* 0.753

BMI* 0.824 ABC* 0.488

PIGD_score* 0.644 gaitSpeed_Off* 0.452

TUG_OFF 0.614 partII_sum* 0.425

cerebellum* 0.596 H_and_Y_OFF* 0.421

X2.11 0.568 cerebellum* 0.386

partII_sum* 0.522 PIGD_score* 0.359

brainstem 0.406 FOG_Q* 0.351

L_inferior_occipital_gyrus 0.402 X1.8 0.351

L_supramargiNAl_gyrus 0.402 BMI* 0.347

Attention* 0.392 X3.10gait_off 0.339

DGI* 0.378 DGI* 0.296

L_hippocampus 0.344 Attention* 0.296

L_fusiform_gyrus 0.342 R_fusiform_gyrus* 0.238

Tremor_score* 0.336 X2.13 0.226

FOG_Q* 0.328 X3.17d 0.211

R_fusiform_gyrus* 0.328 X4.3 0.187

R_parahippocampal_gyrus 0.318 Tremor_score* 0.176

H_and_Y_OFF* 0.308 X3.13 0.172

Table 6.  13 features (*) are selected by both methods (RF and KO): gaitSpeed_Off, ABC, BMI, PIGD_score, 
cerebellum, X2.11, partII_sum, Attention, DGI, Tremor_score, FOG_Q, R_fusiform_gyrus, H_and_Y_OFF.
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Michigan data.  Table 10 shows the binary classification of fall/no-fall (5-fold CV) using all features. The 
columns represent seven complementary performance estimating measures: accuracy (acc), sensitivity (sens), 
specificity (spec), positive and negative predictive values (ppv and npv), and area under the receiver operating 
curve (auc).

Table 11 shows the binary classification of fall/no-fall (5-fold CV) using only the top 6 selected features (MDS_
PIGD, gaitSpeed_Off, MOT_EDL, NON_MOTOR_EDL, walk, pos_stab).

Tel Aviv data.  Table 12 illustrates the results of the binary classification of fall/no-fall (5-fold CV) using all 
features.

Table 13 shows the binary classification of fall/no-fall (5-fold CV) using top 10 selected features (gaitSpeed_
Off, ABC, BMI, PIGD_score, X2.11, partII_sum, Attention, DGI, FOG_Q, H_and_Y_OFF).

Improving Classification Sensitivity: We attempted to further improve the classification sensitivity, which is 
important in this clinical setting. As Random Forest outperforms the other methods, we focused our performance 
tuning on RF classification. By optimizing the RF parameters, using grant weights, setting cut off points for two 

Figure 10.  Results of feature selection for the Tel-Aviv dataset using random forest (top) and knockoff (bottom) 
methods. The bar plots present the exact number of times the top features are selected.

Selected Features

Mann-Whitney-
Wilcoxon Test

Kolmogorov-
Smirnov Tests

W p-value D p-value

gaitSpeed_Off 1957 3.861e-06 0.44217 0.0001288

ABC 1977 1.927e-06 0.48308 1.988e-05

BMI 841 0.003808 0.38277 0.001447

PIGD_score 627 1.132e-05 0.47325 3.162e-05

cerebellum* 1692 0.004611 0.25374 0.06936

X2.11 490 3.008e-08 0.48151 2.143e-05

partII_sum 669.5 5.007e-05 0.37648 0.001831

Attention 1710 0.003133 0.29662 0.026

DGI 1862 4.841e-05 0.33478 0.007917

Tremor_score* 1648.5 0.01094 0.27262 0.05103

FOG_Q 802 0.0001001 0.3509 0.004586

R_fusiform_gyrus* 1665 0.008022 0.25452 0.06705

H_and_Y_OFF 752.5 0.0002507 0.34186 0.006249

Table 7.  MWW test and KS test are performed on selected features in the Tel-Aviv data. Cerebellum, Tremor_
score and R_fusiform_gyrus are excluded because their p-values > 0.05, for the KS test.
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classes and the number of features used for each decision tree branch split, we obtained a classification model 
with higher sensitivity and LOR. Although, there is more room to further improvement of the sensitivity, it is also 
important to keep specificity within a reasonable range. Table 14 shows the best RF results on the Tel-Aviv data. 
Note that improving the classifier sensitivity trades off with (compromising) it’s sensitivity.

Fall prediction with a subset of important features: We applied a logit model for a low dimensional case-study. 
Our results show 74% prediction accuracy using four variables, Table 15. Prior work by Paul, et al.42 reported 
accuracy about 80% using three variables, including “fall in the previous year” as an additional predictor, which 
may be very strongly associated with the clinical outcome of interest—whether a patient is expected to fall or not.

Table 16 and Fig. 14 show the areas under the ROC curve of the Random Forest classification using several 
different study-designs. The results suggest that four features provide sufficient predictive power to forecast fall 
sin PD patients (area under the ROC curve is approximately 0.8).

Truncated classification of multiple-falls vs. no-falls (5-fold CV): A natural consideration is that some patients 
with prior falls might be attributed to unrelated accidents. Therefore, we tried to accurately identify patients 

Figure 11.  Density plots showing that the top 10 selected clinical features have significantly different 
distributions between falls and no-fall patient groups.

Random Forests Knockoff

Features Frequency Features Frequency

gaitSpeed_Off* 0.992 X2.11* 0.822

PIGD_score* 0.992 PIGD_score* 0.784

partII_sum* 0.878 Gender 0.742

TUG_OFF 0.856 X3.10gait_off* 0.621

BMI* 0.806 H_and_Y_OFF* 0.579

X2.11* 0.788 partII_sum* 0.566

R_middle_temporal_gyrus 0.632 gaitSpeed_Off* 0.544

H_and_Y_OFF* 0.586 X2.12 0.394

R_inferior_temporal_gyrus 0.558 X1.8 0.355

R_middle_orbitofrontal_gyrus 0.406 BMI* 0.346

partI_sum 0.404 X2.8 0.333

L_middle_temporal_gyrus 0.392 MoCA 0.256

L_gyrus_rectus 0.384 X2.9 0.246

X3.10gait_off* 0.376 X3.17d 0.240

L_middle_occipital_gyrus 0.354 X1.9 0.211

R_fusiform_gyrus 0.354 X3.12pull_test_off 0.202

L_lateral_orbitofrontal_gyrus 0.352 X1.10 0.195

L_middle_orbitofrontal_gyrus 0.326 X2.13 0.192

R_angular_gyrus 0.290 L_middle_frontal_gyrus 0.157

L_superior_occipital_gyrus 0.282 X2.10 0.154

Table 8.  Top seven features (*) are selected by both methods (RF and KO): gaitSpeed_Off, PIGD_score, partII_
sum, BMI, X2.11, H_and_Y_OFF, X3.10gait_off.
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with multiple falls. Further, for patients who had a history of falls, including one or more falls, the observations 
who had presence of fall by accident could mask the key demographic/clinical predictors, associated with falls. 
Table 17 shows the proportion of participants with two or more falls vs. no falls and Table 18 shows the classifica-
tion results using all features.

Finally, Table 19 shows the classification using only the commonly selected features.
The best results were obtained using adaptive boosting (Adaboost)12 and SVM with Gaussian kernel43.

Aggregate Michigan + TelAviv Data.  Table 20 shows the binary falls/non-fall classification of the mixed/
aggregated data using all features (5-fold CV).

Table 21 illustrates the results of the mixed/aggregated data (5-fold CV) classification using only the seven 
commonly selected features: gaitSpeed_Off, PIGD_score, partII_sum, BMI, X2.11, H_and_Y_OFF, X3.10gait_off.

Train on Michigan and Test on Tel-Aviv Data: Table 22 shows the falls/no-fall classification (training on 
Michigan and testing on Tel-Aviv data) results using the selected features.

Train on Tel-Aviv and Test on Michigan Data.  Table 23 shows the opposite falls/no-fall classification (training on 
Tel-Aviv and testing on Michigan data) results using only the commonly selected features.

Challenge 4. Morbidity phenotype (TD/PIGD) Classification.  Next, ignoring the UPDRS subitems, 
we performed predictive analytics of tremor dominant (TD) vs. posture instability and gait disorder (PIGD) clas-
sification using only the demographic and clinical information (neuroimaging features were excluded).

Selected 
Features

Mann-Whitney-
Wilcoxon Test

Kolmogorov-Smirnov 
Tests

W p-value D p-value

gaitSpeed_Off 10442 8.745e-10 0.37139 3.373e-07

PIGD_score 3249 1.172e-12 0.44412 4.128e-10

partII_sum 3762 9.742e-10 0.36956 3.933e-07

BMI 5283.5 0.0009081 0.28083 0.0002681

X2.11 3258 9.779e-14 0.40514 1.741e-08

H_and_Y_OFF 3918 1.102e-09 0.34292 3.363e-06

X3.10gait_off 4189 3.258e-09 0.35814 1.006e-06

Table 9.  MWW test and KS test results for top selected features. Weight is excluded as its p-value > 0.05 in the 
MWW test.

Figure 12.  Results of feature selection for the aggregated dataset. The bar plot presents the exact number of 
times that the top features are selected by random forests (top) and knockoff (bottom).
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Figure 13.  Density plots showing 7 selected clinical features with significantly different distributions between 
falls and no-fall groups.

Method acc sens spec ppv npv lor auc

Logistic Regression 0.439 0.400 0.456 0.243 0.635 −0.581 0.630

Random Forests 0.764 0.356 0.942 0.727 0.770 2.188 0.727

AdaBoost 0.703 0.333 0.864 0.517 0.748 1.156 0.695

XGBoost 0.730 0.333 0.903 0.600 0.756 1.537 0.710

SVM 0.743 0.200 0.981 0.818 0.737 2.536 0.750

Neural Network 0.655 0.444 0.748 0.435 0.755 0.863

Super Learner 0.723 0.289 0.913 0.591 0.746 1.445

Table 10.  Performance of model-based and model-free methods (using all features).

Method acc sens spec ppv npv lor auc

Logistic Regression 0.736 0.289 0.932 0.650 0.750 1.718 0.781

Random Forests 0.777 0.444 0.922 0.714 0.792 2.251 0.697

AdaBoost 0.750 0.444 0.883 0.625 0.784 1.803 0.693

XGBoost 0.777 0.467 0.913 0.700 0.797 2.213 0.657

SVM 0.757 0.467 0.883 0.636 0.791 1.892 0.742

Neural Network 0.669 0.400 0.786 0.450 0.750 0.898

Super Learner 0.784 0.467 0.922 0.724 0.798 2.341

Table 11.  Performance of model-based and model-free methods (using top 6 features).

Method acc sens spec ppv npv lor auc

Logistic Regression 0.505 0.390 0.581 0.381 0.590 −0.121 0.603

Random Forests 0.689 0.537 0.790 0.629 0.721 1.473 0.702

AdaBoost 0.718 0.610 0.790 0.658 0.754 1.773 0.719

XGBoost 0.670 0.610 0.710 0.581 0.733 1.340 0.711

SVM 0.757 0.512 0.919 0.808 0.740 2.482 0.767

Neural Network 0.680 0.659 0.694 0.587 0.754 1.474

Super Learner 0.670 0.512 0.774 0.600 0.706 1.281

Table 12.  Performance of model-based and model-free methods (using all features).
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Method acc sens spec ppv npv lor auc

Logistic Regression 0.728 0.537 0.855 0.710 0.736 1.920 0.774

Random Forests 0.796 0.683 0.871 0.778 0.806 2.677 0.821

AdaBoost 0.689 0.610 0.742 0.610 0.742 1.502 0.793

XGBoost 0.699 0.707 0.694 0.604 0.782 1.699 0.787

SVM 0.709 0.561 0.806 0.657 0.735 1.672 0.822

Neural Network 0.699 0.610 0.758 0.625 0.746 1.588

Super Learner 0.738 0.683 0.774 0.667 0.787 1.999

Table 13.  Performance of model-based and model-free methods (using top 10 selected features).

Method acc sens spec ppv npv lor

Random Forests 0.767 0.805 0.742 0.673 0.852 2.473

Table 14.  Fine-tuned RF classification results on the Tel-Aviv dataset.

Selected Features Acc Sens Spec ppv npv lor

PIGD_score, FOG_Q, 
H&Y(OFF), gaitSpeed(Off) 0.738 0.439 0.935 0.818 0.716 2.429

Table 15.  Logit model prediction of falls in the Tel-Aviv case, using only four features.

All Features
TD/
PIGD + Others

Remove 
UPDRS

Image 
Features

Selected 
Features

Four 
Features

AUC 0.669 0.671 0.640 0.559 0.779 0.796

Table 16.  Performance of the RF falls/no-fall classifier under different conditions.

Figure 14.  ROC plot for random Forest, lines in different colors represents the results under 6 different training 
conditions: (1) All features; (2) TD/PIGD classification and other clinical/demographic information; (3) Remove 
all UPDRS items; (4) Neuroimaging features only; (5) 10 selected features and (6) 4 vital features (PIGD Score, H_
and_Y_Off, FOG_Q, gaitSpeed_Off). Corresponding Area Under the ROC Curve (AUC) are listed in Table 16.
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Michigan Data.  Table 24 shows that compared to prediction of falls using all features, the overall accuracy for 
both logistic regression and AdaBoost TD/PIGD classification is improved, compare to Table 10.

Tel-Aviv Data.  Table 25 demonstrated improved sensitivity of TD/PIGD classification, as compared to pre-
diction of falls using all features (Table 12). This indicates TD/PIGD classification may also be an important 
predictor of patients’ falls.

no-falls two or more falls

Number of cases (%) 62 (69%) 28 (31%)

Table 17.  Distribution of patients without fall history compared to patients with two or more falls.

Method acc sens spec ppv npv lor auc

Random Forests 0.767 0.464 0.903 0.684 0.789 2.090 0.821

AdaBoost 0.789 0.536 0.903 0.714 0.812 2.377 0.836

XGBoost 0.711 0.393 0.855 0.550 0.757 1.338 0.848

SVM 0.733 0.643 0.774 0.563 0.828 1.820 0.839

Neural Network 0.733 0.679 0.758 0.559 0.839 1.889

Super Learner 0.744 0.393 0.903 0.647 0.767 1.798

Table 18.  Performance of model-based and model-free methods (using all features) for Tel-Aviv dataset to 
predict no fall or at least two falls, contrast to results in Table 10 (fall/no-fall), using the same features.

Method acc sens spec ppv npv lor auc

Random Forests 0.811 0.714 0.855 0.690 0.869 2.689 0.880

AdaBoost 0.822 0.750 0.855 0.700 0.883 2.872 0.886

XGBoost 0.811 0.643 0.887 0.720 0.846 2.649 0.885

SVM 0.833 0.714 0.887 0.741 0.873 2.978 0.881

Neural Network 0.722 0.607 0.774 0.548 0.814 1.667

Super Learner 0.800 0.643 0.871 0.692 0.844 2.497

Table 19.  Performance of model-based and model-free methods (using selected features) for Tel-Aviv dataset 
to predict no fall or at least two falls, contrast to results in Table 11 (falls/no-fall).

Method acc sens spec ppv npv lor auc

Logistic Regression 0.594 0.488 0.648 0.420 0.709 0.566 0.639

Random Forests 0.737 0.407 0.909 0.700 0.746 1.926 0.772

AdaBoost 0.717 0.407 0.879 0.636 0.740 1.605 0.753

XGBoost 0.689 0.419 0.830 0.563 0.733 1.259 0.734

SVM 0.629 0.558 0.667 0.466 0.743 0.927 0.768

Neural Network 0.641 0.488 0.721 0.477 0.730 0.904

Super Learner 0.729 0.430 0.885 0.661 0.749 1.758

Table 20.  Performance of model-based and model-free methods (using all features) on aggregated data.

Method acc sens spec ppv npv lor auc

Logistic Regression 0.773 0.430 0.952 0.822 0.762 2.696 0.817

Random Forests 0.705 0.453 0.836 0.591 0.746 1.445 0.774

AdaBoost 0.717 0.558 0.800 0.593 0.776 1.620 0.765

XGBoost 0.745 0.547 0.848 0.653 0.782 1.909 0.781

SVM 0.777 0.512 0.915 0.759 0.782 2.425 0.785

Neural Network 0.661 0.512 0.739 0.506 0.744 1.089

Super Learner 0.729 0.453 0.873 0.650 0.754 1.739

Table 21.  Performance of model-based and model-free methods (using selected features) on aggregated data.
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Aggregated Michigan+TelAviv Data.  Table 26 shows a slightly higher sensitivity for random forest and 
AdaBoost TD/PIGD classification, compared to falls prediction using all features (Table 20). Yet, compared to 
within archive training with internal CV assessment, the performance of both classifiers on the aggregated dataset 
is less impressive, which may be explained by the heterogeneity of the sets discussed in Challenge 1.

Discussion and Conclusions
Regarding Challenge 1 (data compilation), we carefully examined, harmonized and aggregated the two inde-
pendently acquired PD datasets. The merged dataset was used to retrain the algorithms and validate their classi-
fication accuracy using internal statistical cross validation. The substantial biomedical variability in the data may 
explain the fact that the predictive accuracy of the falls/no-fall classification results were lower in the merged 
aggregated data compared to training and testing the forecasting methods on each dataset separately.

Challenge 2 (feature selection for prediction of falls) showed that three variables appear to be consistently cho-
sen in the feature selection process across Michigan, Tel-Aviv and aggregated datasets – the MDS-UPDRS PIGD 

Method acc sens spec ppv npv lor auc

Logistic Regression 0.718 0.390 0.935 0.800 0.699 2.228 0.832

Random Forests 0.738 0.537 0.871 0.733 0.740 2.056 0.796

AdaBoost 0.699 0.463 0.855 0.679 0.707 1.626 0.791

XGBoost 0.709 0.463 0.871 0.704 0.711 1.763 0.758

SVM 0.689 0.268 0.968 0.846 0.667 2.398 0.827

Neural Network 0.631 0.585 0.661 0.533 0.707 1.014

Super Learner 0.757 0.562 0.887 0.767 0.753 2.31

Table 22.  Performance of model-based and model-free methods. Train on Michigan and test on Tel-Aviv data.

Method acc sens spec ppv npv lor auc

Logistic Regression 0.777 0.489 0.903 0.688 0.802 2.186 0.794

Random Forests 0.709 0.667 0.728 0.517 0.833 1.678 0.755

AdaBoost 0.689 0.644 0.709 0.492 0.820 1.484 0.780

XGBoost 0.730 0.600 0.786 0.551 0.818 1.709 0.748

SVM 0.797 0.444 0.951 0.800 0.797 2.752 0.805

Neural Network 0.622 0.644 0.612 0.420 0.797 1.049

Super Learner 0.770 0.644 0.825 0.617 0.842 2.15

Table 23.  Performance of model-based and model-free methods. Train on Tel Aviv and test on Michigan.

Method acc sens spec ppv npv lor

Logistic Regression 0.615 0.311 0.748 0.350 0.713 0.291

Random Forests 0.743 0.356 0.913 0.640 0.764 1.751

AdaBoost 0.743 0.422 0.883 0.613 0.778 1.712

Table 24.  Performance of prediction for TD/PIGD class label on Michigan dataset.

Method acc sens spec ppv npv lor

Logistic Regression 0.738 0.707 0.758 0.659 0.797 2.024

Random Forests 0.738 0.610 0.823 0.694 0.761 1.980

AdaBoost 0.728 0.634 0.790 0.667 0.766 1.877

Table 25.  Performance of prediction for TD/PIGD class label on Tel-Aviv dataset.

Method acc sens spec ppv npv lor

Logistic Regression 0.713 0.279 0.939 0.706 0.714 1.792

Random Forests 0.689 0.430 0.824 0.561 0.735 1.264

AdaBoost 0.713 0.477 0.836 0.603 0.754 1.538

Table 26.  Performance of the prediction of TD/PIGD label on the aggregated dataset.
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subscore (MDS_PIGD), gait speed in the off state, and sum score for MDS-Part II: Motor Aspects of Experiences 
of Daily Living (M-EDL). This is consistent with expectations as PIGD has been previously related to fall risk in 
PD.

In the third Challenge (prediction of falls), we found some differences between the classification results 
obtained by training of the three different datasets. For instance, training on the Michigan data, the highest over-
all classification accuracy was about 78%, with a lower sensitivity, ~47%. Whereas, training on the Tel-Aviv data, 
the accuracy and sensitivity rates reached 80% and 68%, respectively. For the Tel-Aviv data, the prediction model 
can be tuned to yield a sensitivity of 81% and accuracy of 77%. Furthermore, training on the Tel-Aviv data yields 
better results when the classification outcome corresponds to discriminating PD patients with multiple falls from 
those without falls. When training on the aggregated dataset, the falls/no-fall classification accuracy is about 70% 
with sensitivity around 55%. The most realistic, yet difficult, case involves external out-of-bag validation, training 
on one of the datasets and testing on the other. For instance, training an RF classifier on the Tel-Aviv dataset and 
tested it out of-bag on the Michigan dataset yields accuracy of 71% and sensitivity of 67%.

The results of the last Challenge (TD/PIGD) suggest that tremor dominant (TD) vs. postural instability and 
gait difficulty (PIGD) classification is reliable. For example, training and statistically validating on the Tel-Aviv 
data yields accuracy of 74%, sensitivity of 61% and specificity of 82%.

The classification performance of different machine learning methods varies with respect to the testing and 
training datasets. Overall, the random forests classifier works best on most combinations of training/testing data-
sets and feature selection strategies. The boosting method also showed high predictive classification accuracy on 
Tel-Aviv data. When the number of features is small, logistic regression may provide a viable model for predicting 
patient falls and it has always the benefit of easy intuitive interpretation within the scope of the problem.

The reported variable importance results may be useful for selecting features that may be important bio-
markers helping clinicians quantify the risk of falls in PD patients. This study may have some potential pitfalls 
and limitations. For instance, the sample sizes are relatively small, Michigan (N1 = 148) and Tel-Aviv (N2 = 103). 
There was significant heterogeneity of the feature distributions between the Michigan and Tel-Aviv datasets. It 
is not clear if there were underlying biological, clinical, physiological, or technological reasons for the observed 
variation. This is a common challenge in all Big data analytic studies relying on multisource heterogeneous data. 
Features that were completely incongruent between the two data archives were removed from the subsequent 
analyses and were not included in the aggregated dataset. Finally, the classifiers trained on one of the datasets 
(Tel-Aviv) performed better when tested either via internal statistical cross-validation or via external out-of-bag 
valuation (using the Michigan test data). Our study of falls primarily focused on the binary indicator of falls. The 
frequency of falls, or the severity of falls, were not examined due to lack of sufficient information in either data 
archive. However, both frequency and severity of falls require further examination.

Clinical impact.  The study findings indicate that clinical markers of PIGD motor features were more robust 
predictors of falls than striatal dopamine bindings as measured by DTBZ VMAT2 brain PET imaging. Along 
the same line, typical clinical predictors of nigrostriatal dopaminergic losses, such as distal bradykinesias did 
not significantly predict falls in the analyses. These findings underscore the notion that falls are more related 
to extra-striatal and non-dopaminergic mechanisms than striatal dopamine level per se. The presented results 
suggest a need for new approaches for determining fall risk and motor phenotypes among patients with PD. If the 
conclusions are replicated on a larger scale and reproduced in prospective studies, then the methods described 
here can contribute to the diagnosis and prognosis, and perhaps to personalized or individualized treatment 
approaches.

Synergies with previous studies.  We have previously shown that PD fallers did not differ in nigrostriatal 
dopaminergic nerve terminal integrity but had lower cholinergic brain activity compared to the PD no-fallers44,45. 
We have also shown in prior analyses that freezing of gait is most prominent with extra-striatal non-dopaminergic 
changes, in particular the combined presence of cholinergic denervation and β-amyloid plaque deposition46. 
Some of the clinical predictors of falls in this study, such as slow gait speed or PIGD motor feature severity have 
been found to associate with cortical cholinergic and β-amyloid plaque deposition, respectively47,48 and were 
independent from the degree of nigrostriatal nerve terminal losses.

Another interesting observation in our analyses is that brain MRI morphometry measures did not appear to 
be robust predictors of fall status. It should be noted that mobility functions are subserved by a widespread net-
work of interconnected brain and extra-cranial structures (e.g., spinal cord, nerves). Therefore, it is unlikely that 
individual brain structures may be highly salient predictive features. In this study, infratentorial brain structures, 
such as the cerebellum and brainstem, performed relatively better than supratentorial brain regions. Another 
factor is that the etiology of falls is multi-factorial (cognitive impairment, freezing of gait, sarcopenia, postural 
instability) and thereby involving multiple neural and neuromuscular structures and connections. It is plausible, 
however, that more precise clinical sub-typing of specific fall mechanisms, may identify more vulnerable brain 
regions or networks of regions.

There are enormous opportunities for expanding this work to include additional classifiers, explore alternative 
features, validate on new cohorts and translate into clinical practice. For example, utilizing novel computational 
models and genomic biomarkers (e.g., noncoding RNA) may improve the automated PD diagnosis. For example, 
publicly available archives including long noncoding RNAs49,50, micro RNAs51,52, or other sequence, expression, or 
functional data may provide additional power to reduce classification error and enhance the forecasting reproduc-
ibility. Extreme Gradient Boosting Machine or other powerful classifiers may be able to improve the diagnostic 
prediction by capitalizing on RNA functional similarity, disease semantic similarity, and other RNA-disease asso-
ciations53. Knowledge-based machine learning is an alternative strategy for disease classification54. Combinatorial 
genomic signature sets55 and molecular signaling networks56,57 may also be useful to predict, prognosticate, or 
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forecast motor and cognitive decline in PD. In addition, combining these approaches with metrics extracted from 
long-term (e.g., 24/7) monitoring of movement also holds promise for enhancing this line of work21,58.

The present transdisciplinary work illustrates some of the advantages of open-science principles, collaborative 
research, and independent validation of findings. We have compiled and are sharing the entire data preproc-
essing pipeline, visualization tools, and analytic protocol. This promotes community-wide validation, improve-
ments, and collaborative transdisciplinary research into other complex healthcare and biomedical challenges. The 
R-based Predictive Analytics source-code is released under permissive LGPL license on our GitHub repository 
(https://github.com/SOCR).
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