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Magnetic resonance imaging 
provides evidence of glymphatic 
drainage from human brain to 
cervical lymph nodes
Per Kristian Eide   1,2, Svein Are Sirirud Vatnehol   2,3, Kyrre Eeg Emblem3,4 & Geir Ringstad2,5

Pre-clinical research in rodents provides evidence that the central nervous system (CNS) has functional 
lymphatic vessels. In-vivo observations in humans, however, are not demonstrated. We here show 
data on CNS lymphatic drainage to cervical lymph nodes in-vivo by magnetic resonance imaging (MRI) 
enhanced with an intrathecal contrast agent as a cerebrospinal fluid (CSF) tracer. Standardized MRI 
of the intracranial compartment and the neck were acquired before and up to 24–48 hours following 
intrathecal contrast agent administration in 19 individuals. Contrast enhancement was radiologically 
confirmed by signal changes in CSF nearby inferior frontal gyrus, brain parenchyma of inferior frontal 
gyrus, parahippocampal gyrus, thalamus and pons, and parenchyma of cervical lymph node, and 
with sagittal sinus and neck muscle serving as reference tissue for cranial and neck MRI acquisitions, 
respectively. Time series of changes in signal intensity shows that contrast enhancement within CSF 
precedes glymphatic enhancement and peaks at 4–6 hours following intrathecal injection. Cervical 
lymph node enhancement coincides in time with peak glymphatic enhancement, with peak after 
24 hours. Our findings provide in-vivo evidence of CSF tracer drainage to cervical lymph nodes in 
humans. The time course of lymph node enhancement coincided with brain glymphatic enhancement 
rather than with CSF enhancement.

In 2015, the traditional view of the brain having no lymphatic vessels was challenged by evidence showing func-
tional lymphatic vessels lining the cranial dural sinuses in rodents1,2. This observation may have profound impact 
on our understanding of inflammatory and degenerative central nervous system (CNS) diseases. The authors 
suggested that their findings of lymphatic vessels may represent the second step in the drainage of the interstitial 
fluid from the brain parenchyma into deep cervical lymph nodes after first been drained into the cerebrospinal 
fluid (CSF) through a glial “lymphatic” (glymphatic) paravascular pathway. The latter is suggested as a brain-wide 
route for clearance of water and waste solutes from the brain3. Moreover, several reports indicate that reduced 
glymphatic function may be instrumental in conditions such as Alzheimer’s disease3, and post-traumatic illness4. 
Clearance of brain waste metabolites by the glymphatic system is enhanced during sleep5.

Our knowledge of CNS lymphatic circulation is largely based on animal studies. Whether differences between 
species are a determining factor is not known. A recent study has demonstrated presence of meningeal lymphatic 
vessels in man after administration of intravenous contrast agent at MRI6. However, in-vivo imaging studies 
of CNS lymphatic drainage in humans utilizing a tracer substance administered to the CSF have not yet been 
reported. Human CSF tracer studies might provide better insight into lymphatic drainage of macromolecules 
from the CNS, and could be pivotal to assess the impact of lymphatic failure in neuroinflammatory and neuro-
degenerative diseases.

Brain-wide glymphatic circulation was first visualized by MRI after intracisternal MRI contrast agent admin-
istration in rats7. In a recent cohort study, we have shown the existence of glymphatic parenchymal contrast 
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enhancement in man by applying intrathecal contrast enhanced MRI8. Whether the glymphatic system drains to 
cervical lymph nodes in man remains to be determined.

The present study provides novel in-vivo observations of CNS lymphatic drainage in man and demonstrates 
that CSF tracer uptake in neck lymph nodes is a much slower process than previously observed in animals, and 
that peak CSF tracer uptake in the glymphatic system and cervical lymph nodes coincides in time.

Results
This cohort includes 19 individuals who underwent MRI of the head (intracranial) and neck regions with utili-
zation of the contrast agent gadobutrol as CSF tracer (Table 1), and in whom a cervical lymph node with largest 
diameter >1.5 cm was identified. Figure 1 illustrates from one study individual (no 5) the locations for meas-
urements of MRI signal units in CSF nearby inferior frontal gyrus and parenchyma of inferior frontal gyrus 
(Fig. 1a), parenchyma of parahippocampal gyrus (Fig. 1b), parenchyma of thalamus (Fig. 1c), parenchyma of 
pons (Fig. 1d), parenchyma of cervical lymph node (Fig. 1e) and tissue of the medial pterygoid muscle (Fig. 1f) at 
different time points after intrathecal CSF tracer (gadobutrol) injection. The images are focused on the anatomical 
areas of study. Figure 1 also presents the trend plots of changes in signal units with the specific regions of interest 
and within the reference tissue, as well as trends of signal unit ratios.

Table 2 presents the percentage change of signal unit ratios within the CSF and cervical lymph nodes over time 
after intrathecal gadobutrol administration in the 19 individuals who were included. It should be noted that in 
two individuals (nos 11 and 13), there was no positive change in signal unit ratio in cervical lymph nodes follow-
ing intrathecal gadobutrol, and in additional two individuals (nos 12 and 14) only 1% change in signal unit ratio 
was found. Among the remaining 15 individuals, the signal unit ratio within the lymph node increased maximum 
16 ± 8%. In Table 3 is shown the percentage change of signal unit ratios within the brain parenchymal regions of 
interest (inferior frontal gyrus, parahippocampal gyrus, thalamus and pons) at different time points after intrath-
ecal gadobutrol administration in the 19 individuals. In patient no. 13 there was no positive change in signal unit 
ratio within intracranial parenchymal regions of interest (Table 3) or the cervical lymph node (Table 2), indicative 
of no parenchymal CSF tracer enrichment, despite marked increased signal unit ratio within the CSF (Table 2). 
This observation is extraordinary.

Supplementary Tables 1–6 present the signal units from the locations at study and of the reference tissues, as 
well as the normalized signal unit ratios for the 19 individuals at the various time points. It should be noted that 
we lacked MR images at 6–9 hours in 7/19 individuals, which represents a weakness regarding assessment of the 
time point for peak enhancement.

Among the 19 study individuals, detection of the tracer coincides in time with glymphatic tracer enhancement, 
where both peaked at 24 hours, while tracer in CSF peaked after 4–6 hours and had declined at 24 hours (Fig. 2a–f). 
Linear mixed model analysis revealed significant changes in signal unit ratios within all locations (Fig. 2a–f).

Regarding peak enhancement, there was some inter-individual variation. For example, some of the trend plots 
of individual no. 5 (Fig. 1) differed from trend plots of the entire cohort (Fig. 2). Moreover, peak tracer enhance-
ment occurred in CSF after 4–6 hours in 8/19 individuals (42%) and after 6–9 hours in 7/19 individuals (37%), 
and after 24–48 hours in 1/19 individuals (5%). In comparison, after 24–48 hours peak enhancement occurred 
in18/18 (100%) in parenchyma of inferior frontal gyrus, 14/18 individuals (78%) in parahippocampal gyrus, 
14/18 individuals (78%) in thalamus and 15/18 individuals (83%) in pons, considering the 18/19 individuals 

Patient Age (yrs) Gender (F/M) Diagnosis

1 64 M Idiopathic normal pressure hydrocephalus

2 22 F Idiopathic intracranial hypotension

3 76 M Idiopathic normal pressure hydrocephalus

4 25 F Hydrocephalus

5 47 F Idiopathic intracranial hypertension

6 28 F Idiopathic intracranial hypertension

7 33 F Idiopathic intracranial hypertension

8 34 F Idiopathic intracranial hypertension

9 39 F Idiopathic intracranial hypertension

10 19 F Idiopathic intracranial hypertension

11 71 F Idiopathic normal pressure hydrocephalus

12 47 F Arachnoid cyst

13 54 F Idiopathic intracranial hypertension

14 28 F Arachnoid cyst

15 54 F Ventricular cyst

16 20 F Idiopathic intracranial hypertension

17 45 M Arachnoid cyst

18 44 M Idiopathic intracranial hypotension

19 38 F Arachnoid cyst

Table 1.  Demographic data of patients. F. Female, M: Male.
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Figure 1.  The enrichment of CSF tracer is illustrated in one of the study patients (no 5) at multiple time points 
within different anatomical regions, including (a) CSF nearby inferior frontal gyrus and parenchyma of inferior 
frontal gyrus, (b) parenchyma of parahippocampal gyrus, (c) thalamus, (d) pons, (e) a cervical lymph node. The 
medial pterygoid muscle (f) served as reference tissue in the neck region. The reference tissue from the head 
region (superior sagittal sinus) is not shown. The left column shows axial (ax) and coronal (Cor) multiplanar 
reformatting (MPR) T1 images from the head region (a–d) and coronal neck T2 images (e,f) to give an overview 
of the regions from which the magnified images in column 2–5 are retrieved. Column 2 from left presents MRI 
at baseline (before intrathecal tracer administration; pre) and three subsequent imaging time points (MRI 
columns 3–5). All images are T1 weighted, except from the image to the left in figure part 1e-f, which is T2 
weighted with fat suppression used for location of lymph nodes. The CSF tracer uptake was measured in the T1 
weighted images, and in all locations a-f. All measured signal units were normalized against a reference tissue 
to correct for any baseline shift of image greyscale between time points. The regions of interest are marked by an 
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with a positive change in signal unit ratio after intrathecal gadobutrol (Table 4). Within the cervical lymph node, 
enhancement peaked after 24–48 hours in 11/17 individuals (65%) with a positive change in signal unit ratio after 
intrathecal gadobutrol. While the timing of peak enhancement within CSF and cervical lymph node differed 
significantly (P = 0.005; Pearson Chi-square; Table 4), the time point of peak enhancement within brain paren-
chymal regions and cervical lymph node did not differ significantly (Table 4).

No serious adverse events were reported following gadobutrol administration.

Discussion
Our study provides in-vivo evidence of lymphatic drainage of a CSF tracer to cervical lymph nodes. Moreover, 
the time series provide evidence that tracer enhancement within lymph nodes parallels glymphatic enhancement 
in time.

The study cohort included individuals with various CSF disorders. Therefore, this cohort cannot be considered 
to consist of healthy individuals, and the present data may not be representative for lymphatic drainage in healthy 
people. It was, however, beyond the scope of this work to determine how disease type affects lymphatic drainage. 
In future studies we may utilize the method to compare healthy individuals and patients with various clinical 
conditions to address how disease affects lymphatic drainage.

Several lines of experimental research in animals have provided evidence of lymphatic drainage from CNS 
to the cervical lymph nodes along cranial nerves and through the cribriform plate9–18. However, the existence of 
functional, classic lymphatic vessels within the CNS has been disputed. A recent breakthrough was the demon-
stration of functional dural lymphatic vessels1,2,6. It has been proposed that these dural lymphatic vessels may 
represent the anatomical continuation of the glymphatic system1, though it has not been established how the 
glymphatic system communicates with meningeal lymphatic vessels. It has previously also been suggested that 
interstitial solutes are drained from the glymphatic system into CSF before resorption into meningeal lymphat-
ics19. The present observations, demonstrating that lymph node enhancement coincides with glymphatic, rather 
than CSF enhancement, favors resorption into lymphatic pathways directly from the glymphatic perivenous 
space. We therefore hypothesize that the perivenous compartments of the brain and lymphatic vessels are inter-
connected rather than that subarachnoid CSF and substances drain directly to the meningeal lymphatic pathways.

It should be noted, however, that several aspects of glymphatic circulation are still controversial, including 
whether interstitial transport is propagated by convective flow or diffusion20,21. Drainage to meningeal lymphatic 
vessels directly from perivenous spaces, as may be inferred by our data, would strongly support a convective force 
through the interstitial space with direction towards the perivenous compartment.

The assumption that lymphatic drainage to cervical lymph nodes primarily originates from perivascular 
(glymphatic) transport receives some support from previous experimental animal research showing lymphatic 
drainage from cerebral perivascular circulation16,22, even though these early studies could not define the anatom-
ical link between the perivascular compartment and lymphatic pathways.

While the available evidence for CNS lymphatic drainage to cervical lymph nodes originates from animal 
research; corresponding in-vivo methods for humans have yet not been developed. In a recent cohort study8, 
we reported brain-wide distribution of the contrast agent, and suggested that glymphatic MRI (gMRI) may be 
utilized to assess glymphatic circulation in man, inspired by previous observations in rodents7. The previous 
human study showed comparable time course for contrast enhancement within several brain regions, with peak 
after 24 hours. The present data extend and confirm previous observations of parenchymal CSF tracer enrich-
ment within the brain regions studied. In the previous study8, we reported that parenchymal contrast enrich-
ment depended on presence of contrast agent in nearby CSF and vicinity to larger, extra-parenchymal arteries. 
Therefore, the present observation of no parenchymal CSF tracer enrichment in one individual with idiopathic 
intracranial hypertension (no 13) despite marked enrichment within CSF is extraordinary.

In the present study, the MRI contrast agent gadobutrol was utilized as CSF tracer and detected in cervical 
lymph nodes in 19 patients. It should be noted that a relative MRI signal increase in tissue at interest, even though 
when induced by presence of contrast agent cannot be used to quantify contrast agent concentrations at this stage. 
We estimated contrast enhancement in the largest, deep cervical lymph node available for measurement and with 
a length diameter of at least 15 mm. A threshold of 15 mm was selected to avoid partial volume effects and provide 
robust measurements. We aimed at exploring contrast enrichment in cervical lymph nodes on a phenomenolog-
ical basis, since smaller lymph nodes are more susceptible to measurement error.

By normalization of MRI signal unit measurements to standardized reference tissue (superior sagittal sinus 
and neck muscle, respectively), a change in signal unit can be detected. However, we also measured a signal unit 
decline in some lymph nodes at a few time points (Table 2), which is most likely due to variations in the measured 
signal related to stability of the measuring method. While the medial pterygoid muscle should be considered to 
serve as a robust reference tissue, the muscle is not always in the nearest vicinity of the lymph node at interest, 

open circle. Reference tissue was blood of superior sagittal sinus for intracranial MRI (not shown) and medial 
pterygoid muscle for neck MRI. To the right is presented trend plots of signal units (blue lines for location and 
green for reference tissue) and signal unit ratios (red stippled lines) for the different anatomical locations in 
patient no 5, including (a1) CSF nearby inferior frontal gyrus, (a2) parenchyma of inferior frontal gyrus, (b1) 
parenchyma of parahippocampal gyrus, (c1) parenchyma of thalamus, (d1) parenchyma of pons, and (ef1) 
parenchyma of cervical lymph node and the medial pterygoid muscle. In this patient, the CSF enrichment 
nearby inferior frontal gyrus reached maximum after 8 hours (a1), while it reached maximum after 24 hours 
within inferior frontal gyrus (a2), thalamus (c1), pons (d1) and cervical lymph node (ef1). The CSF tracer 
enrichment was at the same level after 8 and 24 hours within the parahippocampal gyrus.
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and local magnetic field inhomogeneities might affect these structures differently. Other contributors to meas-
urement error in lymph nodes as well as reference tissue might be image noise and partial averaging effects, even 
though we strived to minimize these as far as possible by allowing for robust measurements at the central part of 
the lymph nodes. Nevertheless, despite these sources of error, the tendency for peak glymphatic and lymph node 
enhancement to coincide still seems clear.

Patient

Time after intrathecal gadobutrol

2–4 hours 4–6 hours 6–9 hours 24 hours 48 hours

CSF CLN CSF CLN CSF CLN CSF CLN CSF CLN

1 2397 1 2471 −1 1611 5

2 3881 2 4919 13 5138 5 2104 26

3 2900 −19 3577 −9 1793 15 128 14

4 72 1624 4 955 16

5 5516 −3 5684 5 5585 −1 2067 25 361 3

6 3929 0 6478 2 4943 8 3250 1 484 7

7 1980 2 1580 −4 1623 −2 336 12 119 −7

8 4431 1 4125 6 1202 9 65 1

9 2881 −5 3083 1 1875 6

10 1612 20 1744 30 1764 24 498 16 115 28

11 3239 −11 4221 −43 4517 −9 2343 −14

12 4213 1 4606 −3 4163 −1 2238 1

13 507 −8 1198 −7 1793 −2 372 −2

14 412 −6 1687 1 2787 −2 305 −4 −5 −8

15 3143 −11 3703 1 2838 8 2817 −1 833

16 4246 12 4246 −2 1226 19 207 10

17 1183 19 1481 8 1570 −1 603 5 121 1

18 1956 4 4402 4680 6 1393 28 18 1

19 1370 3 1893 0 1965 −8 729 −1 −5 14

Mean ± STD 2625 ± 1534 0 ± 10 3301 ± 1585 0 ± 14 3238 ± 1555 3 ± 8 1573 ± 1110 9 ± 11 368 ± 639 4 ± 12

Table 2.  Percentage change in CSF tracer enrichment within CSF and cervical lymph node at various time 
points after intrathecal gadobutrol (max increase in bold). CSF = CSF within Sylvian fissure close to frontal 
inferior gyrus; CLN = cervical lymph node.

Patient

Time after intrathecal gadobutrol

2–4 hours 4–6 hours 6–9 hours 24 hours 48 hours

IFG PHG THA PO IFG PHG THA PO IFG PHG THA PO IFG PHG THA PO IFG PHG THA PO

1 15 25 5 7 10 49 1 −7 70 64 11 7

2 −10 −10 −9 −8 13 28 23 11 27 56 9 7 77 81 16 23

3 7 14 26 15 8 23 17 11 42 52 30 26 18 11 4 6

4 9 −1 −3 3 5 5 −7 −9 90 76 13 18

5 19 28 25 20 20 55 22 16 55 101 27 26 96 101 47 47 61 45 33 36

6 13 19 16 20 49 71 49 47 16 54 19 20 89 107 42 38 48 46 23 33

7 25 27 23 21 29 47 22 23 17 43 6 5 45 45 5 3 35 31 11 16

8 9 46 5 7 0 66 2 −2 18 63 14 21 10 0 −8 1

9 22 51 21 22 31 106 20 17 129 129 43 33

10 10 17 7 11 17 52 12 8 48 89 5 3 72 65 21 15 40 34 12 24

11 23 39 19 15 17 63 2 −1 122 93 26 18 82 51 31 31

12 −5 0 −12 −6 13 34 −4 −3 20 45 −6 −6 63 60 10 11

13 −15 −15 −13 −11 −13 −14 −13 −14 −7 −8 −14 −13 −2 −6 −15 −17

14 −4 −3 −6 −2 −1 −4 −9 −6 10 9 4 4 13 11 −4 −4 24 14 10 13

15 −15 −10 −7 −10 −9 4 −10 −7 −14 3 −19 −18 78 72 17 7 46 39 17 14

16 35 58 29 27 28 114 16 11 53 70 23 12 31 28 11 12

17 −4 14 11 1 8 25 16 12 21 50 18 14 52 77 27 9 24 25 11 10

18 −4 4 −3 5 2 16 5 9 −3 14 −4 1 45 67 23 18 15 23 7 10

19 6 7 4 7 10 25 7 5 21 35 14 12 62 52 20 14 20 19 9 11

Mean ± STD 7 ± 14 16 ± 21 7 ± 14 8 ± 12 13 ± 15 40 ± 35 9 ± 15 6 ± 14 18 ± 20 41 ± 33 5 ± 14 4 ± 13 64 ± 34 67 ± 31 19 ± 15 16 ± 15 35 ± 20 28 ± 15 13 ± 11 17 ± 11

Table 3.  Percentage change in CSF tracer enrichment within brain parenchyma at various time points (max 
increase in bold). IFG = inferior frontal gyrus; PHG = parahippocampal gyrus; THA = thalamus; PO = Pons.
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Similar to the venous drainage of the brain, lymphatic drainage to cervical lymph nodes may also show heter-
ogeneity and inter-individual variations. To date, there are no human studies on which particular cervical lymph 
nodes that receive lymphatic drainage from the intracranial compartment. Hence, before this is further revealed, 
demonstration of lymph node enhancement with MRI is challenging, underlined by the non-enhancement of 
lymph nodes in 4 of 19 patients with lymph nodes >15 mm in this study. Due to this heterogeneous pattern, we 
selected the neck lymph node with the largest degree of enhancement when more than one neck lymph node was 
available for measurement. Other imaging modalities, such as positron emission tomography, might demonstrate 
as more sensitive to assess cervical lymph node uptake of CSF tracer.

Figure 2.  The percentage change in signal unit ratios at different time points after intrathecal CSF tracer 
(gadobutrol) in the 19 individuals included in the study. Each bar shows the mean ± standard error. The 
anatomical locations include the (a) CSF nearby inferior frontal gyrus, (b) parenchyma of inferior frontal gyrus, 
(c) parenchyma of parahippocampal gyrus, (d) parenchyma of thalamus, (e) parenchyma of pons, and (f) 
parenchyma of a cervical lymph node. While signal unit ratio peaked at 6–9 hours within the CSF (a), it peaked 
at 24 hours within the three brain parenchymal locations (b–e) and within cervical lymph node (f). Linear 
mixed model analysis revealed significant changes in signal unit ratios over time for all locations: Cerebrospinal 
fluid (a, P < 0.001), inferior frontal gyrus (b, P < 0.001), parahippocampal gyrus (c, P < 0.001), thalamus (d, 
P < 0.001), pons (e, P < 0.001), and cervical lymph node (f, P = 0.009).

Anatomical region

Time after intrathecal gadobutrol

2–4 hours 4–6 hours 6–9 hours 24 hours 48 hours aSignificance

Cerebrospinal fluid 3 8 7 1 0 =0.005

Inferior frontal gyrus 0 0 0 17 1 =0.10

Parahippocampal gyrus 0 3 1 13 1 =0.58

Thalamus 2 2 0 12 2 =0.65

Pons 1 2 1 10 4 =0.66

Cervical lymph node 2 2 2 10 1

Table 4.  Time for maximum positive increase in signal unit ratio depending on anatomical region. Data 
represented by number of individuals within each category (only including individuals with positive change in 
signal unit ratio at the different time points for each anatomical region). aSignificance: Difference with concern 
to time point of peak enhancement as compared to time point of peak enhancement in cervical lymph node 
(Pearson Chi-square test).
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Our findings point to a unique feature of human lymphatic drainage from the CNS. Early non-enhancement 
in neck lymph nodes suggests a more limited role of human CSF drainage through nasal lymphatics and peri-
neural root sleeves than previously assumed based on animal studies23,24. Moreover, the role of lymphatic vessels 
lining the dural sinuses could be more profound than previously thought, given their possible function as a main 
drainage system of the brain-wide glymphatic pathways1,2. In the 15 individuals with lymph node enhancement 
>1%, enhancement peaked at 24–48 hours in 11/15 individuals (73%). In this human cohort, brain glymphatic 
enhancement typically occurred after 24 hours. This is considerably slower than what is observed in anesthetized 
mice and rats, where glymphatic enhancement peaks within 2 hours7. Comparably, a previous study injecting 
contrast and dye to the cisterna magna of rats showed much faster lymphatic drainage to cervical lymph nodes25 
than in the current human cohort. Of note is that MRI of lymph nodes was not done during the time interval of 
6–9 hours in 7/19 individuals. Peak enhancement at this time can therefore not be excluded in these individuals.

We observed peak CSF tracer enhancement in the brain parenchymal regions of interest and cervical lymph 
nodes after 24 hours, i.e. after one night’s sleep (Fig. 2). While this observation is of interest, we cannot conclude 
whether peak enhancement after 24 hours is related to sleep since we did not perform MRI between the time 
points 6–9 hours (late afternoon) and 24 hours after administration of contrast agent (next morning). Another 
factor is that the patients were lying flat until the 6–9 hours scan, and thereafter were allowed to move freely. 
Therefore, further studies are needed to clarify the role of sleep in human glymphatic circulation, preferably also 
including a non-sleep control group. From animal studies, it has previously been suggested that sleep has a pro-
found effect on glymphatic circulation and thereby brain clearance of interstitial solutes. Hence, Xie et al.5 showed 
that natural sleep or anesthesia is accompanied with a 60% increase in the interstitial space. Furthermore, in that 
study, the increase in interstitial space increased glymphatic clearance of Aβ twofold. On the other hand, others26 
using contrast-enhanced MRI and near-infrared fluorescence imaging found that general anesthesia reduced 
glymphatic function in mice, as compared with awake mice.

Lymphatic failure might be involved both in neuro-immunological and neuro-degenerative diseases. The cer-
ebral lymphatic drainage system may be a pathway for immune cells10. In addition, it may be crucial for clearance 
of toxic waste solutes such as amyloid-β and hyperphosphorylated tau tangles; of which pathologic accumulation 
in the brain is a hallmark of Alzheimer’s disease27. Further development of imaging tools to assess lymphatic 
clearance may therefore show useful.

In our study, we applied the macrocyclic MRI contrast agent gadobutrol as a CSF tracer. Gadobutrol is well 
suited for this purpose because of its low molecular size (MW 604 Da). It is also highly hydrophilic and non-ionic, 
and distributes easily in water28. In a previous study assessing glymphatic function in rat brain, the linear MRI 
contrast agent Gd-DTPA (molecular weight 938 Da) was used7. For use in humans, the macrocyclic contrast 
agents may be preferable above linear agents29, because they appear more stable in biological tissue30.

Moreover, in previous studies in mice3,31, the contrast agent was injected into the cisterna magna at rates and 
volumes that potentially could overwhelm the intracranial compartment and interfere with CSF circulation32. 
In our study, we injected a total of less than 5 ml fluid into the subarachnoid space at level of the lumbar spine, 
which should not affect intracranial pressure and CSF flow in humans. Also, there were no serious adverse events 
following gadobutrol administration.

Comparing the different brain parenchymal regions of interest showed the most pronounced CSF enrichment 
within the inferior frontal gyrus and the parahippocampal gyrus, which are located close to the leptomeningeal 
arterial trunks. This observation compares with the view that pulsations are the force behind parenchymal con-
vective glymphatic flow8,33.

Assessment of cervical lymph node enhancement might benefit from MRI sequences with image slice of less 
thickness than applied in this study (3 mm), preferably isotropic 3D volume acquisitions, which also would allow 
for reconstruction in multiple planes.

A possible cause of cervical lymph node enhancement might be circulating contrast agent in the blood. For 
example, altered blood-brain-barrier might cause leakage of gadobutrol to the vascular circulation. This seemed, 
however, less likely since enhancement in reference regions (sagittal sinus for cranial MRI and muscle for neck 
MRI) was none.

The importance of lymphatic drainage compared to other potential routes for clearance of brain water and 
solutes is currently not known. Using phantom devices with known concentrations of a given contrast agent in 
conjunction with MRI acquisitions, it should be possible, however, to quantify lymphatic drainage. An MRI based 
quantification routine could thereby determine lymphatic failure as a pathogenic factor behind brain disease.

In summary, our study provides in-vivo evidence of CSF tracer drainage to cervical lymph nodes in humans. 
The temporal course of lymph node enhancement coincided in time with brain glymphatic enhancement rather 
than with CSF enhancement. This is in contrast to previous animal studies demonstrating lymphatic drainage 
from CSF via the cribriform plate and nasal mucosa, and at a much shorter time span. In the end, improved 
knowledge of human brain lymphatic drainage is expected to shed new light on pathogenic mechanisms behind 
degenerative and inflammatory brain diseases.

Methods
Ethical permissions.  The Institutional Review Board (2015/1868), Regional Ethics Committee (2015/96) 
and the National Medicines Agency (15/04932-7) approved the study. The study protocol was in accordance with 
relevant guidelines and regulations. Patients were included after written and oral informed consent.

Patients.  This prospective, observational study included consecutive individuals referred to the Department 
of neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway, for various cerebrospinal fluid (CSF) 
circulation disorders (Table 1).



www.nature.com/scientificreports/

8SCIENTIFIC REPorts |  (2018) 8:7194  | DOI:10.1038/s41598-018-25666-4

Exclusion criteria were: History of hypersensitivity reactions to contrast media agents, history of severe allergy 
reactions in general, evidence of renal dysfunction (i.e. normal glomerular filtration rate, GFR), age <18 or >80 
years, pregnant or breastfeeding women.

Inclusion criterion was the identification of a deep cervical lymph node with size >1.5 cm in the cranio-caudal 
direction. The reason for only including nodes >1.5 cm was to limit partial volume averaging effects from sur-
rounding tissue, mainly from fat, when measuring signal units in lymph nodes.

Among 44 individuals undergoing both head and neck MRI, 19 individuals (43%) had a cervical lymph node 
>1.5 cm. Hence, the present study cohort includes 19 individuals meeting the inclusion criterion.

This study cohort did not include patients previously reported on.

MRI protocol.  We obtained a series of T1-weighted (w) MRI scans of the intracranial compartment and 
neck region before and after intrathecal lumbar administration of the MRI contrast agent gadobutrol (0.5 ml of 
1.0 mmol/ml; Gadovist®, Bayer Pharma AG, GE).

All MRI scans were acquired on a 3 Tesla Philips Ingenia MRI scanner (Philips Medical systems, Best, The 
Netherlands), using a dedicated imaging protocol for each region, and at all time points. The parameters for 
3D T1 w imaging of the intracranial compartment were as follows: repetition time (TR) = 5.1 ms (set to min-
imum), echo time (TE) = 2.3 ms (set to minimum), flip angle = 8 degrees, field of view = 256 × 256 cm, and 
matrix = 256 × 256 pixels (reconstructed 512 × 512). We sampled 184 over-contiguous slices with 1 mm thick-
ness, which were automatically reconstructed to 368 slices and a thickness of 0.5 mm. Each image acquisition 
lasted 6 minutes and 29 seconds. An automated anatomy recognition protocol based on landmark detection in 
MRI data (SmartExamTM, Philips Medical Systems, Best, The Netherlands) was applied at every time point to 
secure consistency and reproducibility of the MRI studies. Images of the neck were all obtained in an anatomical 
standardized coronal plane, using T1 w turbo spin echo (TSE) DIXON with main image sequence parameters as 
follows: TR = 560 ms, TE = 14 ms, flip angle = 90 degrees, field of view 250 × 198 mm, voxel size = 1 × 1 × 3 mm 
reconstructed to 0.58 × 0.58 × 3 mm3, gap 0.3 mm, number of slices = 30. To detect neck lymph nodes, we 
obtained coronal T2 w TSE DIXON with TR = ranged 2500–3500 (actual 2500), TE = 80 ms, flip angle = 90 
degrees, field of view 250 × 200 mm, resolution 0.6 × 0.79 × 3 mm3 reconstructed to 0.58 × 0.58 × 3 mm3, gap 
0.3 mm, number of slices = 30. To ensure same position on the coronal slices between scan times a screen dump 
showing the placement of the first coronal images was saved and used as a reference for subsequent planning by 
the radiographer. In general, the center slice was placed at the anterior superior part of the 4th cervical vertebra.

Intrathecal administration of gadobutrol.  The study participants met about 8 a.m. for a pre contrast 
MR image acquisition and were thereafter transported on a mobile MRI-tabletop to an adjacent operating room, 
where an interventional neuroradiologist performed x-ray guided lumbar puncture. Intrathecal injection of 
0.5 ml of 1.0 mmol/ml gadobutrol (Gadovisttm, Bayer Pharma AG, Berlin, Germany) was preceded by verifying 
correct position of the syringe tip in the subarachnoid space in terms of CSF backflow from the puncture needle, 
and by injecting a small amount (typically 3 ml) of 270 mg I/ml iodixanol (VisipaqueTM, GE Healthcare, USA) to 
confirm unrestricted distribution of radiopaque contrast agent in the lumbar subarachnoid space. Following nee-
dle removal, the study subjects were instructed to rotate themselves once around the long axis of the body once 
before transportation back to the MRI suite, while remaining in the supine position on the same MRI-tabletop.

Post contrast MRI acquisitions.  The study participants were instructed to remain supine in bed during 
the first MRI cans. All transfer of study subjects between the neurosurgical department and the MRI suite, and 
between the bed and the MRI table, was performed by the hospital staff to allow for the patient remaining in the 
supine position. For practical purposes, patients were allowed to move without restrictions after the final MRI of 
day 1 and until the next morning (approximately 24 hours after contrast agent injection). Thirteen of 19 patients 
were also scanned at 48 hours.

All the MRI exams were categorized into the following time intervals: Pre-contrast, 2–4 hours, 4–6 hours, 
6–9 hours, 24 hours, and 48 hours.

Image analysis.  For each exam, a board-certified neuroradiologist (G.R.) with 11 years’ experience placed 
circular regions of interest bilaterally and symmetrically as discussed below directly on axially reconstructed T1 
weighted images using the hospital picture archiving and communication system (PACS) (Sectra IDS7®, Sectra, 
Sweden). Each region of interest provides the mean signal intensity from the image greyscale, and was normalized 
to reference tissue to compare values between time points. All regions of interest were fitted to local anatomical 
landmarks to avoid partial volume effects from neighboring tissue or CSF.

For each exam, the following four regions of interest were used: 1) CSF nearby inferior frontal gyrus (average 
of left and right sides). 2) Parenchyma of inferior frontal gyrus (average of left and right sides). 3) Parenchyma 
of parahippocampal gyrus (average of left and right sides). 4) Parenchyma of thalamus (average of left and right 
sides). 5) Parenchyma of pons (one region of interest). 6) Blood of sagittal sinus within a predefined region above 
the venous confluence served as reference for measurements in brain parenchyma. 7) Parenchyma of deep cervi-
cal lymph node. If a lymph node was identified on the left and right side, we selected the one with largest enhance-
ment following contrast agent, and examined the same lymph node over time. 8) Medial pterygoid muscle as 
reference tissue for lymph node measurements to correct for any baseline variations in displayed signal intensity 
values between scans. To limit possible partial volume averaging effects, all ROIs were placed well within the 
borders of the defined tissue or fluid compartment. Figure 1 illustrates measurements fromdifferent anatomical 
regions of interest before (pre) and at different time points after gadobutrol administration.
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For each time point, we determined the signal unit ratio between the intracranial region of interest and blood 
of sagittal sinus, and between parenchyma of deep cervical lymph node and medial pterygoid muscle.

Statistics.  Statistical analyses were performed using the SPSS software version 24 (IBM Corporation, 
Armonk, NY). Statistically significant changes in signal unit ratios over time were determined by linear mixed 
model analysis. Differences between categorical data were determined using Pearson Chi-square test. Statistical 
significance was accepted at the 0.05 level (two-tailed).
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