Table 1.
EC material |
T
0
(K) |
|ΔE| (kV cm−1) |
|ΔS| (mJ K−1 cm−3) |
|ΔT| (K) |
|ΔSΔT| (J cm−3) |
|W| (J cm−3) |
|W|/|ΔSΔT| | Ref. |
---|---|---|---|---|---|---|---|---|
PbZr0.95Ti0.05O3 | 499 | 480 | 62.5 | 12 | 0.75 | 10.3 | 13.7 | 25 |
0.93PMN-0.07PT | 308 | 720 | 77.9 | 7.3 | 0.57 | 4.3 | 7.5 | 26 |
P(VDF-TrFE) | 353 | 2000 | 107.6 | 12.5 | 1.35 | 5.2 | 3.8 | 27 |
P(VDF-TrFE-CFE) | 310 | 3100 | 122.6 | 12.5 | 1.53 | 7.9 | 5.2 | 27 |
*P(VDF-TrFE-CFE) | 350 | 3500 | 174.3 | 22 | 3.83 | 8.7 | 2.3 | 28 |
At starting temperature T0, field change |ΔE| yields |ΔS| and |ΔT|, and hence cycle work |ΔSΔT| for the Ericsson cycle of Fig. 1b. The isothermal electrical work21,29 |W| associated with |ΔS| at optimum starting temperature T0 approximately represents the recoverable work at cold temperature Tc (Fig. 1b) given that |W| >> |ΔSΔT|. 0.93PMN-0.07PT = 0.93Pb(Mg1/3Nb2/3)O3-0.07PbTiO3. P(VDF-TrFE) = poly(vinylidene fluoride-trifluoroethylene) 55/45 mol%. P(VDF-TrFE-CFE) = poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) 59.2/33.6/7.2 mol%. *P(VDF-TrFE-CFE) = poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) 56.2/36.3/7.6 mol%.