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Thirteen extensively characterised grain sorghum varieties were evaluated in a series of 7 broiler bio-
assays. The efficiency of energy utilisation of broiler chickens offered sorghum-based diets is problematic
and the bulk of dietary energy is derived from sorghum starch. For this reason, rapid visco-analysis (RVA)
starch pasting profiles were determined as they may have the potential to assess the quality of sorghum
as a feed grain for chicken-meat production. In review, it was found that concentrations of kafirin and
total phenolic compounds were negatively correlated with peak and holding RVA viscosities to signifi-
cant extents across 13 sorghums. In a meta-analysis of 5 broiler bioassays it was found that peak, holding,
breakdown and final RVA viscosities were positively correlated with ME:GE ratios and peak and
breakdown RVA viscosities with apparent metabolizable energy corrected for nitrogen (AMEn) to sig-
nificant extents. In a sixth study involving 10 sorghum-based diets peak, holding and breakdown RVA
viscosities were positively correlated with ME:GE ratios and AMEn. Therefore, it emerged that RVA starch
pasting profiles do hold promise as a relatively rapid means to assess sorghum quality as a feed grain for
chicken-meat production. This potential appears to be linked to quantities of kafirin and total phenolic
compounds present in sorghum and it would seem that both factors depress RVA starch viscosities
in vitro and, in turn, also depress energy utilisation in birds offered sorghum-based diets. Given that
other feed grains do not contain kafirin and possess considerably lower concentrations of phenolic
compounds, their RVA starch pasting profiles may not be equally indicative.

© 2017, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting
by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Rapid methods to assess feed grain quality are of interest to
integrated chicken-meat producers and feed-millers as the quality
of feed grains are important determinants of bird performance.
Starch pasting profiles of feed grains assessed by rapid visco-
analysis (RVA) may be a relatively rapid and accurate indicator of
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feed grain quality (Selle et al., 2016a). Promatest protein solubility
of feedstuffs may also be indicative although it cannot be consid-
ered as rapid methodology unless it can be harnessed by near-
infrared spectroscopy.

The determination of starch pasting profiles by RVA was origi-
nally developed by Charles (Chuck) Walker in relation to rain
damaged wheat (Walker et al., 1988). Presently, RVA starch pasting
profiles are used extensively in the human food industry but their
applications in animal nutrition have been limited. However, the
possibility remains that RVA starch parameters of feed grains may
provide valuable indications of their quality for chicken-meat
production (Masey O'Neil, 2008). Doucet et al. (2010) found
strong negative correlations between dietary peak and final RVA
starch viscosities with starch digestibilities at the mid-point of the
small intestine in weaner pigs. Example RVA starch pasting profiles
of maize, sorghum and wheat are shown in Table 1, which stem
from 2 related reports (Liu et al., 2014; Truong et al., 2014)
ction and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is
nses/by-nc-nd/4.0/).
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Table 1
Rapid visco-analysis (RVA) starch pasting profiles of maize, sorghum and wheat, adapted from Truong et al. (2014).

Feed grain RVA viscosity, cP Peak time, min Pasting temperature, �C

Peak Holding Breakdown Final Setback

Maize 1,107 622 485 1,056 434 4.13 75.1
Sorghum 1,371 503 868 1,206 703 4.04 76.3
Wheat 996 467 529 939 472 5.33 84.3
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comparing the effects of phytase supplementation of broiler diets
based on these 3 feed grains. Interestingly, as reported by Truong
et al. (2014), 1,000 FTU/kg phytase significantly decreased peak
RVA of maize- and wheat-based diets but significantly increased
this parameter in sorghum-based diets.

A number of papers have reported on the RVA starch pasting
profiles of grain sorghum including Zhang and Hamaker (2003,
2005), Sopade et al. (2009) and Shewayrga et al. (2012). Several
publications, including Miller et al. (1973), Atwell et al. (1988),
Batey (2007) and Acosta-Osorio et al. (2011), provide detailed ex-
planations of RVA starch pasting profiles, which is not to be
confused with starch gelatinisation. Pasting is a subsequent phe-
nomenon to starch gelatinisation involving granular swelling,
exudation of molecular components from the granule and, ulti-
mately, total disruption of the starch granule (Atwell et al., 1988).
The RVA curve depicts the impacts of agitation, temperature and
time on the viscosity of the starch paste (Batey, 2007).

Wheat is the dominant feed grain for chicken-meat production
in Australia and sorghum constitutes the balance but is usually
perceived to be somewhat inferior to wheat; consideration has
been given to this perception in several reviews (Selle et al., 2010,
2013; Liu et al., 2015). Contemporary Australian sorghum crops
do not contain condensed tannin (Khoddami et al., 2015); however,
there is the belief that the stigma associated with ‘bird-proof’ sor-
ghums, which did contain condensed tannin, persists. Neverthe-
less, the performance of birds offered sorghum-based diets is
variable (Hughes and Brooke, 2005). The majority of energy in
poultry diets is derived from starch and the fundamental problem
appears to be poor starch/energy utilisation in poultry offered
sorghum-based diets (Black et al., 2005). On the basis of both
in vitro (Giuberti et al., 2012) and in vivo (Truong et al., 2016a) data,
the digestibility of sorghum starch is inferior to maize. In addition,
sorghum-based poultry diets are associated with relatively poor
pellet quality and responses in broiler performance to inclusions of
exogenous enzymes may be modest.
Table 2
Amino acid profiles of kafirin in MP and HP sorghums in comparison to data
generated by Xiao et al. (2015).1

Amino acid, g/100 g
protein

Mean of MP and
HP sorghums

Data from Xiao
et al. (2015)

Arginine 2.2 2.1
Histidine 1.9 1.2
Isoleucine 4.1 3.7
Leucine 15.8 16.9
Lysine 0.5 0.2
Methionine 1.2 1.3
Phenylalanine 5.7 5.4
Threonine 2.7 2.5
Valine 4.8 4.2
Alanine 10.1 11.2
Aspartic acid 6.1 6
Glutamic acid 24.3 27
Glycine 2.1 1.1
Proline 9.5 9.2
Serine 4.2 3.7
Tyrosine 4.7 4.4

1 MP and HP are 2 sorghums: MP (107 g/kg protein, 41.1 g/kg kafirin) and HP
(113 g/kg protein, 50.5 g/kg kafirin).
2. Background

The focus of this review is on 13 very extensively characterized
grain sorghum varieties grown in New South Wales and Queens-
land primarily because both their RVA starch pasting profiles and
kafirin concentrations had been determined. Kafirinwas quantified
by methodology detailed in Truong et al. (2016a). The average
amino acid profiles of kafirin in 2 sorghums, MP (107 g/kg protein,
41.1 g/kg kafirin) and HP (113 g/kg protein, 50.5 g/kg kafirin), are
shown in Table 2. They are in very close agreement with data
generated by Xiao et al. (2015) which represent the average amino
acid profiles of kafirin in 3 grain sorghums. It is evident that kafirin
contains a paucity of lysine andmost essential amino acids with the
noticeable exception of leucine. Kafirin is the dominant protein
fraction in grain sorghum and the protein quality of this feed grain
is questionable as a consequence (Selle, 2011). Barros et al. (2012)
reported that condensed tannin interacts strongly with starch,
decreasing its digestibility, and suggested that amylose and linear
fragments of amylopectin are involved in these interactions.
Importantly, none of the 13 sorghums contained a pigmented testa
as detected by the Clorox bleach test (Waniska et al., 1992) and this
indicates that they did not contain condensed tannin. Concentra-
tions of ‘non-tannin’ total phenolic compounds, a range of poly-
phenols, free, conjugated and bound phenolic acids were
determined by analytical methodology described in Khoddami
et al. (2015).

Moreover, the 13 grain sorghum varieties were evaluated in a
series of broiler bioassays on the Camden Campus of this university.
Six red sorghums harvested on the Liverpool Plains in 2009
(designated as LvP 1 to LvP 6) were evaluated in sorghum-casein
diets as reported by Khoddami et al. (2015). Two of these sor-
ghums (LvP 3 and LvP 5) were subsequently compared in conven-
tional broiler diets by Truong et al. (2015a). The balance of one
white (Liberty) and 6 red sorghums (designated as FW, Block I,
Tiger, JM, MP, HP), which were variously grown on the Darling
Downs in Queensland or the Liverpool Plains and Murrumbidgee
Irrigation Area of New South Wales, were assessed in several
studies. Sorghum FW was evaluated by Truong et al. (2015b) in a
study involving the addition of sodium metabisulphite and exog-
enous phytase to sorghum-based diets. Sorghums Block I and Tiger
were evaluated by Selle et al. (2016b) in a study designed to
investigate the impacts of hammer-mill screen size and grain par-
ticle size on broiler performance. Liu et al. (2016) used sorghums
Block I, HP and Liberty to formulate 10 nutritionally equivalent
broiler diets that were compared in an ‘equilateral triangle’
response surface design. Truong et al. (2016b) compared sorghums
Block I, HP, Liberty, Tiger, MP and JM directly and in another study
sorghums HP and Tiger were again assessed Truong et al. (2016c).

In the relevant studies, RVA starch pasting profiles were deter-
mined in duplicate using a RVA-4 analyser (Newport Scientific,
Warriewood, Australia) via methods described by Beta and Corke
(2004). In brief, finely ground sorghum grain (4.2 g) was mixed
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with deionized water (23.8 g) in a heating and cooling cycle of
13 min. The slurry was held at a temperature of 50�C for 1 min and
then heated to 95�C and held for 2.5 min prior to cooling the slurry
to 50�C and holding that temperature for 2 min. Peak, holding and
final viscosities were recorded and, effectively, breakdown (peak
minus holding) and setback (final minus peak) viscosities deduced
and peak time and pasting temperature were monitored. Interest-
ingly, setback viscosity or the difference between peak and final
viscosities may be associated with starch retrogradation (Wang
et al., 2015).

Thus, the core objective of this review is firstly to identify the
factors inherent in grain sorghum that have the capacity to influ-
ence the feed grain's nutritional value as indicated their RVA starch
pasting profiles. The second phase is to assess the potential of RVA
starch pasting profiles as yardsticks for the quality of sorghum as a
feed grain in poultry. Finally, some attention will be paid to Pro-
matest protein solubilities of sorghum as yardsticks for the same
purpose. Assessments of sorghum quality as a feed grain will focus
on parameters of nutrient utilisation including apparent metabo-
lizable energy (AME), metabolizable to gross energy ratios (ME:GE),
nitrogen (N) retention and N-corrected AME (AMEn) in broiler
chickens.

3. Inherent grain sorghum factors and RVA starch pasting
profiles

Selected characteristics of the 13 grain sorghums are shown in
Table 3; these include starch concentrations determined by NIR,
amylose proportions of starch, protein contents and solubilities,
kafirin concentrations, concentrations of total phenolic compounds
and phytate, and grain texture as determined by the particle size
index (PSI) method (Symes,1965). In addition to total phenolics, the
polyphenols analysed included anthocyanin, flavan-4-ols, luteoli-
nidin, apigeninidin, 5-methoxy-luteolinidin and 7-methoxy-api-
geninidin Also, in addition to total phenolics, the phenolic acids
analysed included p-hydroxy benzoic, vanillic, caffeic, p-coumaric,
ferulic, syringic and sinapic acids in their free, conjugated and
bound forms. The corresponding RVA starch pasting profiles are
shown in Table 4.

Pearson correlations between numerous factors in sorghum and
their corresponding RVA starch pasting profiles were deduced and
selected examples are shown in Table 5. As is evident in this table,
sorghum protein contents were associated with decreased peak
and breakdown viscosities, and increased pasting temperatures, to
significant extents. Sorghum starch contents could be expected to
have reciprocal effects but this was not the case as there were not
Table 3
Selected characteristics of 13 grain sorghum varieties (analyses completed in duplicate).

Item Starch, g/kg Crude protein, g/kg Protein solubility, % Kafiri

LvP 1 624 107.7 44.7 51.7
LvP 2 638 105.4 46.8 44.5
LvP 3 624 109.2 49.5 50.7
LvP 4 649 101.6 48.1 45.4
LvP 5 620 126.4 41.2 61.5
LvP 6 626 91.7 44.4 41.9
FW 859 92.5 e 45.8
Block I 756 137.1 e 67.1
Tiger 830 99.9 e 51.3
JM 772 97.7 e 50.1
Liberty 851 80.9 e 41.4
MP 797 100.2 e 41.1
HP 818 109.1 e 50.5
Mean 728 104.6 45.8 50.2
Standard deviation ±98.5 ±14.6 ±3.0 ±7.3
Coefficient of variation 13.50% 14.00% 6.60% 14.50

GAE ¼ gallic acid equivalents; PSI ¼ particle size index; LvP ¼ Liverpool Plains; FW ¼ Fe
any significant correlations between starch contents and RVA pa-
rameters. Also, the amylose proportion of starch did not appear to
influence (P> 0.35) RVA starch pasting profiles. This is in contrast to
a study by Beta and Corke (2001) from which it may be deduced
that amylose proportions of ten sorghums were negatively corre-
lated to peak RVA viscosities (r ¼ �0.838; P < 0.005) but positively
correlated to final RVA viscosities (r ¼ 0.651; P < 0.05). However,
there was little variation from the mean amylose content (27.9%)
across the 10 sorghums.

Phytate concentrations in sorghum did not appear to have any
real influence (P > 0.15) on RVA profiles. Instructively, sorghum
kafirin concentrations were associated with significant depressions
in peak (r ¼ �0.578; P < 0.04) and holding (r ¼ �0.559; P < 0.05)
viscosities with trends towards depressed breakdown (r ¼ �0.493;
P ¼ 0.087) and final (r ¼ �0.479; P ¼ 0.098) RVA viscosities.

Additionally, total phenolic compounds in sorghum were asso-
ciated with significantly depressed peak (r ¼ �0.566; P < 0.05) and
holding (r¼�0.558; P < 0.05) viscosities. Phenolic compounds also
tended to depress breakdown (r ¼ �0.471; P ¼ 0.104), final
(r ¼ �0.425; P ¼ 0.087) and setback (r ¼ �0.493; P ¼ 0.147) RVA
viscosities. Alternatively, the polyphenolic compound 5-methoxy-
luteolinidin was associated with significant increases in peak,
holding and final RVA viscosities.

Ferulic acid is the dominant phenolic acid in sorghum but in its
free (P > 0.75) and conjugated (P > 0.125) forms it was not asso-
ciated with differences in RVA profiles. As tabulated, however,
bound (r ¼ 0.575; P < 0.05) and total (r ¼ 0.570; P < 0.05) ferulic
acid were associated with significant increases in setback viscosity
with positive trends evident for final viscosity.

The noteworthy outcome is that concentrations of both kafirin
and total phenolic compounds were associated with significant
linear reductions in peak RVA viscosities as illustrated in Fig. 1. This
is despite the relatively limited numbers of sorghum varieties
assessed which were grown under an unknown range of environ-
mental conditions. Catechin, a flavan-3-ol polyphenol, and ferulic
acid have been shown to influence sorghum RVA starch pasting
profiles (Beta and Corke, 2004). However, this is almost certainly
the first investigation into the relationship between kafirin and RVA
profiles in grain sorghum and it does appear that kafirin is
influential.

4. Sorghum RVA starch pasting profiles and nutrient
utilisation in broiler chickens

Pearson correlations between sorghum RVA starch pasting
profiles and parameters of nutrient utilisation in broiler chickens
n, g/kg Amylose, % of starch Phenolic, mg GAE/g Phytate, g/kg Texture, PSI %

32 3.12 7.62 11
34 3.45 7.98 10
26.4 3.52 8.33 10
36.9 3.28 6.74 12
27.2 3.59 8.51 9
31 3.33 9.4 11
30.9 2.31 6.58 10
30.9 4.68 9.79 11
26.4 4.12 8.4 9
35.1 3.9 8.94 10
35.1 3 4.93 11
27.4 3.21 8.3 9
29.9 3.52 7.77 8
30.7 3.46 7.92 10.1
±3.7 ±0.57 ±1.31 ±1.12

% 12.10% 16.50% 16.50% 11.10%

edworks; JM ¼ supplier; MP ¼ mid-protein; HP ¼ high-protein.



Table 4
Rapid visco-analysis (RVA) starch pasting profiles of 13 grain sorghum varieties (analyses completed in duplicate).

Item RVA viscosity, cP Peak time, min Pasting temperature, �C

Peak Holding Breakdown Final Setback

LvP 1 2,455 2,262 194 5,103 2,841 5.83 81.9
LvP 2 4,918 3,484 1,434 7,237 3,753 5.47 79.5
LvP 3 4,202 3,088 1,114 6,644 3,556 5.53 78.6
LvP 4 6,857 5,359 1,462 11,613 6,218 5.5 77.5
LvP 5 3,750 3,086 664 7,132 4,045 5.73 79.4
LvP 6 6,375 4,905 1,471 10,123 5,218 5.6 77.8
FW 9,511 5,458 4,053 8,695 3,238 5 73.4
Block I 2,392 2,091 300 4,592 2,501 5.63 79.9
Tiger 4,771 2,904 1,867 5,746 2,846 5.13 75.1
JM 5,559 3,202 2,357 5,726 2,524 5 73.2
Liberty 4,717 2,810 1,907 5,378 2,928 5.17 75.9
MP 3,619 3,022 597 6,347 3,325 5.64 77.9
HP 2,591 2,517 74 5,554 3,037 6.2 82.6
Mean 4,280 2,969 1,311 5,958 3,018 5.47 77.6
Standard deviation ±1,903 ±830 ±1,154 ±1,083 ±444 ±0.42 ±3.2
Coefficient of variation 44.50% 28.00% 88.00% 18.20% 14.70% 7.68% 4.12%

LvP ¼ Liverpool Pains; FW ¼ Feedworks; JM ¼ supplier; MP ¼ mid-protein; HP ¼ high protein.

Table 5
Pearson correlations between selected inherent factors and rapid visco-analysis (RVA) starch pasting profiles of 13 grain sorghum varieties.

Factor RVA starch pasting profile

Peak Holding Breakdown Final Setback Peak time Temperature

Protein r ¼ �0.575 r ¼ �0.454 r ¼ �0.597 r ¼ �0.297 r ¼ �0.143 r ¼ 0.505 r ¼ 0.560
P ¼ 0.040 P ¼ 0.120 P ¼ 0.031 P ¼ 0.325 P ¼ 0.640 P ¼ 0.079 P ¼ 0.046

Starch r ¼ 0.158 r ¼ �0.102 r ¼ 0.401 r ¼ �0.362 r ¼ �0.550 r ¼ �0.389 r ¼ �0.466
P ¼ 0.606 P ¼ 0.739 P ¼ 0.174 P ¼ 0.224 P ¼ 0.052 P ¼ 0.190 P ¼ 0.109

Amylose r ¼ 0.069 r ¼ 0.119 r ¼ 0.001 r ¼ 0.190 r ¼ 0.268 r ¼ �0.105 r ¼ �0.024
P ¼ 0.822 P ¼ 0.699 P ¼ 0.997 P ¼ 0.535 P ¼ 0.376 P ¼ 0.733 P ¼ 0.939

Kafirin r ¼ �0.578 r ¼ �0.559 r ¼ �0.493 r ¼ �0.479 r ¼ �0.370 r ¼ 0.320 r ¼ 0.341
P ¼ 0.038 P ¼ 0.047 P ¼ 0.087 P ¼ 0.098 P ¼ 0.213 P ¼ 0.286 P ¼ 0.254

Phytate r ¼ �0.362 r ¼ �0.255 r ¼ �0.405 r ¼ �0.141 r ¼ �0.067 r ¼ 0.273 r ¼ 0.229
P ¼ 0.225 P ¼ 0.401 P ¼ 0.170 P ¼ 0.646 P ¼ 0.827 P ¼ 0.367 P ¼ 0.451

Total phenolic r ¼ �0.566 r ¼ �0.558 r ¼ �0.471 r ¼ �0.425 r ¼ �0.258 r ¼ 0.141 r ¼ 0.193
P ¼ 0.044 P ¼ 0.047 P ¼ 0.104 P ¼ 0.147 P ¼ 0.394 P ¼ 0.646 P ¼ 0.527

5-methoxy luteolinidin r ¼ 0.704 r ¼ 0.690 r ¼ 0.591 r ¼ 0.540 r ¼ 0.302 r ¼ �0.379 r ¼ �0.405
P ¼ 0.007 P ¼ 0.009 P ¼ 0.033 P ¼ 0.057 P ¼ 0.316 P ¼ 0.201 P ¼ 0.170

Bound ferulic acid r ¼ 0.045 r ¼ 0.322 r ¼ �0.252 r ¼ 0.508 r ¼ 0.575 r ¼ 0.360 r ¼ 0.383
P ¼ 0.884 P ¼ 0.284 P ¼ 0.406 P ¼ 0.076 P ¼ 0.040 P ¼ 0.227 P ¼ 0.197

Total ferulic acid r ¼ 0.022 r ¼ 0.304 r ¼ �0.277 r ¼ 0.496 r ¼ 0.570 r ¼ 0.381 r ¼ 0.399
P ¼ 0.944 P ¼ 0.313 P ¼ 0.359 P ¼ 0.085 P ¼ 0.042 P ¼ 0.199 P ¼ 0.117

H.H. Truong et al. / Animal Nutrition 3 (2017) 11e1814
offered corresponding sorghum-based diets are shown in Table 6.
The analysed data was derived from 5 experiments (Khoddami
et al., 2015; Selle et al., 2016b; Truong et al., 2015a,b; 2016a,b,c)
involving 9 sorghum varieties (LvP 3, LvP 5, FW, Tiger, Block I, HP,
Liberty, MP, JM). Three results for Tiger, and 2 results from both
Block I and HP provided a total of 13 sets of observations.

As shown in Table 6, RVA starch pasting viscosities tended to be
positively correlated with AME but not to significant extents; the
strongest correlation was between peak RVA viscosity and AME
(r¼ 0.475; P¼ 0.101). Peak time and pasting temperature tended to
be negatively correlated with AME. However, peak (r ¼ 0.588;
P < 0.04) and breakdown (r ¼ 0.644; P < 0.02) viscosities were
positively correlated with AMEn to significant extents and, simi-
larly, peak time (r ¼ �0.661; P < 0.015) and pasting temperature
(r ¼ �0.618; P < 0.025) were negatively correlated. RVA starch
pasting viscosities were positively correlated toME:GE ratios; these
linear relationships were significant for peak (r ¼ 0.810; P < 0.005),
holding (r¼ 0.817; P< 0.005), breakdown (r¼ 0.749; P< 0.005) and
final (r ¼ 0.764; P < 0.005) RVA viscosities. Peak time (r ¼ �0.552;
P ¼ 0.05) and pasting temperature (r ¼ �0.559; P < 0.05) were
negatively correlated with ME:GE ratios to significant extents. The
linear relationships between peak and final RVA viscosities with
ME:GE ratios are shown in Fig. 2.
The Pearson correlations for energy utilisation parameters are
valid in that the leverage of different experiments was not signifi-
cant. The probability values from multiple linear regressions
combining the experiments and relevant parameters are shown in
parentheses (AME: P ¼ 0.352, ME:GE ratios: P ¼ 0.179, AMEn:
P ¼ 0.200). However, there was a significant experimental leverage
(P ¼ 0.012) for N retention and while the Pearson correlations are
tabulated they are not otherwise considered. Other than 2 excep-
tions, RVA starch pasting profiles were not significantly correlated
with weight gain, feed intake, FCR and ileal digestibilities of starch
and protein (N). The 2 exceptions were setback viscosity with
weight gain (�0.758; P < 0.005) and feed intake (�0.706; P < 0.01).

A sixth experiment (Liu et al., 2016) provides a unique oppor-
tunity to assess RVA starch pasting profiles in relation to bird per-
formance. In this experiment 3 sorghums (Block I, HP, Liberty) were
used to formulate 10 diets containing 620 g/kg sorghum of various
blends. Thus, the RVA starch pasting profiles of the 10 dietary
treatments can be calculated as shown in Table 7. This permits
Pearson correlations to be established between RVA profiles and
parameters of growth performance and nutrient utilisation re-
ported by Liu et al. (2016) (Table 8) and, similarly, starch and pro-
tein (N) digestibility coefficients and disappearance rates from 2
small intestinal sites (Table 9).



Fig. 1. Linear relationships between concentrations of (A) kafirin (r ¼ �0.578; P < 0.04)
and (B) total phenolic compounds (r ¼ �0.566; P < 0.05) in 13 sorghum varieties with
peak rapid visco-analysis (RVA) viscosities. GAE ¼ gallic acid equivalent.

Table 6
Pearson correlations between sorghum rapid visco-analysis (RVA) starch pasting
profiles and parameters of nutrient utilisation in broiler chickens offered corre-
sponding sorghum-based diets.1

RVA profile AME ME:GE N retention AMEn

Peak viscosity r ¼ 0.475 r ¼ 0.810 r ¼ 0.587 r ¼ 0.588
P ¼ 0.101 P ¼ 0.001 P ¼ 0.035 P ¼ 0.035

Holding viscosity r ¼ 0.439 r ¼ 0.817 r ¼ 0.552 r ¼ 0.452
P ¼ 0.133 P ¼ 0.001 P ¼ 0.050 P ¼ 0.121

Breakdown viscosity r ¼ 0.468 r ¼ 0.749 r ¼ 0.571 r ¼ 0.644
P ¼ 0.107 P ¼ 0.003 P ¼ 0.042 P ¼ 0.017

Final viscosity r ¼ 0.444 r ¼ 0.764 r ¼ 0.383 r ¼ 0.322
P ¼ 0.128 P ¼ 0.002 P ¼ 0.196 P ¼ 0.284

Setback viscosity r ¼ 0.259 r ¼ 0.363 r ¼ �0.097 r ¼ �0.030
P ¼ 0.393 P ¼ 0.222 P ¼ 0.752 P ¼ 0.922

Peak time r ¼ �0.469 r ¼ �0.552 r ¼ �0.404 r ¼ �0.661
P ¼ 0.106 P ¼ 0.050 P ¼ 0.172 P ¼ 0.014

Pasting temperature r ¼ �0.408 r ¼ �0.559 r ¼ �0.405 r ¼ �0.618
P ¼ 0.166 P ¼ 0.047 P ¼ 0.169 P ¼ 0.024

AME ¼ apparent metabolizable energy; ME ¼ metabolizable energy; GE ¼ gross
energy; AMEn ¼ apparent metabolizable energy corrected for nitrogen.

1 Data derived from Khoddami et al. (2015), Selle et al. (2016b), Truong et al.
(2015a,b, 2016a,b,c). P is the significance of probability value and r is the correla-
tion coefficient.

Fig. 2. Linear relationships between (A) peak (r ¼ 0.810; P < 0.001) and (B) final
(r ¼ 0.764; P < 0.0025) rapid visco-analysis (RVA) viscosities and ME:GE ratios in
broilers offered diets based on 9 sorghum varieties in 5 feeding studies [adapted from
Khoddami et al. (2015), Selle et al. (2016b), Truong et al. (2015a,b, 2016a,b,c)].
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As is evident in Table 8, final and setback viscosities were
positively correlated with weight gain to significant extents and
tended to be negatively correlated to FCR. RVA profiles were not
related to feed intake or AME. However, significant positive corre-
lations were deduced for peak, holding and breakdown viscosities
with both ME:GE ratios and AMEn and pasting temperatures were
negatively correlated with ME:GE ratios and AMEn to significant
extents. Also, peak, holding and breakdown viscosities tended to be
positively correlated with N retention. The linear relationships
between peak RVA viscosities with ME:GE ratios and AMEn are
shown in Fig. 3.

As shown in Table 9, final and setback viscosities tended to be
correlated with distal jejunal starch digestibility coefficients.
However, peak, holding, final and setback viscosities were posi-
tively and significantly correlated with starch disappearance rates
in both the distal jejunum and distal ileum. Final and setback vis-
cosities tended to be correlated with distal ileal protein (N) di-
gestibility coefficients. Alternatively, peak and breakdown
viscosities were negatively and significantly correlatedwith protein
(N) disappearance rates in the distal ileum; whereas, peak time and
pasting temperature were positively and significantly correlated
with distal ileal protein (N) disappearance rates. Collectively, this
suggests that sorghums with high starch paste viscosities may be
associated with rapid starch disappearance but slow protein (N)
disappearance rates.
5. Sorghum protein solubilities and nutrient utilisation in
broiler chickens

As documented in Table 3, the Promatest protein solubilities of
the 6 red sorghums harvested on the Liverpool Plains were



Table 7
Rapid visco-analysis (RVA) starch pasting profiles of sorghum blends constituting the basis of 10 sorghum-based dietary treatments [adapted from Liu et al. (2016)].

Dietary treatment RVA viscosity, cP Peak time, min Pasting temperature, �C

Peak Holding Breakdown Final Setback

1 2,392 2,091 300 4,592 2,501 5.63 79.9
2 2,591 2,517 74 5,554 3,037 6.2 82.6
3 4,717 2,810 1,907 5,378 2,928 5.17 75.9
4 2,492 2,304 187 5,073 2,769 5.92 81.3
5 3,555 2,451 1,104 4,985 2,715 5.4 77.9
6 3,654 2,664 991 5,466 2,983 5.69 79.3
7 2,814 2,282 531 4,885 2,662 5.65 79.7
8 2,913 2,495 418 5,364 2,929 5.93 81
9 3,974 2,641 1,333 5,276 2,875 5.42 77.7
10 3,230 2,470 760 5,169 2,819 5.66 79.4

Table 8
Pearson correlations between sorghum rapid visco-analysis (RVA) starch pasting profiles and parameters of growth performance and nutrient utilisation in broiler chickens
offered ten sorghum-based diets.1

RVA profile Gain Feed intake FCR AME ME:GE N retention AMEn

Peak viscosity r ¼ 0.250 r ¼ 0.240 r ¼ �0.165 r ¼ 0.524 r ¼ 0.860 r ¼ 0.606 r ¼ 0.788
P ¼ 0.486 P ¼ 0.505 P ¼ 0.650 P ¼ 0.120 P ¼ 0.001 P ¼ 0.063 P ¼ 0.007

Holding viscosity r ¼ 0.561 r ¼ 0.361 r ¼ �0.427 r ¼ 0.412 r ¼ 0.817 r ¼ 0.603 r ¼ 0.691
P ¼ 0.091 P ¼ 0.306 P ¼ 0.218 P ¼ 0.237 P ¼ 0.004 P ¼ 0.065 P ¼ 0.027

Breakdown viscosity r ¼ 0.120 r ¼ 0.179 r ¼ �0.058 r ¼ 0.528 r ¼ 0.813 r ¼ 0.564 r ¼ 0.766
P ¼ 0.741 P ¼ 0.621 P ¼ 0.873 P ¼ 0.117 P ¼ 0.004 P ¼ 0.090 P ¼ 0.010

Final viscosity r ¼ 0.707 r ¼ 0.370 r ¼ �0.566 r ¼ 0.157 r ¼ 0.505 r ¼ 0.403 r ¼ 0.362
P ¼ 0.022 P ¼ 0.292 P ¼ 0.088 P ¼ 0.665 P ¼ 0.137 P ¼ 0.248 P ¼ 0.304

Setback viscosity r ¼ 0.708 r ¼ 0.368 r ¼ �0.568 r ¼ 0.147 r ¼ 0.491 r ¼ 0.393 r ¼ 0.348
P ¼ 0.022 P ¼ 0.295 P ¼ 0.087 P ¼ 0.686 P ¼ 0.150 P ¼ 0.261 P ¼ 0.324

Peak time r ¼ 0.213 r ¼ �0.003 r ¼ �0.205 r ¼ �0.451 r ¼ �0.576 r ¼ �0.374 r ¼ �0.595
P ¼ 0.555 P ¼ 0.993 P ¼ 0.570 P ¼ 0.191 P ¼ 0.081 P ¼ 0.288 P ¼ 0.069

Pasting temperature r ¼ 0.095 r ¼ �0.067 r ¼ �0.109 r ¼ �0.488 r ¼ �0.680 r ¼ �0.454 r ¼ �0.673
P ¼ 0.795 P ¼ 0.855 P ¼ 0.764 P ¼ 0.152 P ¼ 0.031 P ¼ 0.187 P ¼ 0.033

FCR ¼ feed conversion ratio; AME ¼ apparent metabolizable energy; ME ¼ metabolizable energy; GE ¼ gross energy; AMEn ¼ N-corrected AME.
1 adapted from Liu et al. (2016). P is the significance of probability value and r is the correlation coefficient.

Table 9
Pearson correlations between sorghum visco-analysis (RVA) starch pasting profiles and digestibility coefficients and disappearance rates of starch and protein (N) parameters
in the distal jejunum (DJ) and distal ileum (DI) in broiler chickens offered 10 sorghum-based diets.1

RVA profile Starch
digestibility
(DJ)

Starch
digestibility
(DI)

Starch
disappearance
(DJ)

Starch
disappearance
(DI)

Protein (N)
digestibility
(DJ)

Protein (N)
digestibility
(DI)

Protein (N)
disappearance
(DJ)

Protein (N)
disappearance
(DI)

Peak viscosity r ¼ 0.240 r ¼ 0.186 r ¼ 0.634 r ¼ 0.633 r ¼ �0.043 r ¼ 0.015 r ¼ �0.403 r ¼ �0.682
P ¼ 0.504 P ¼ 0.607 P ¼ 0.049 P ¼ 0.050 P ¼ 0.907 P ¼ 0.967 P ¼ 0.249 P ¼ 0.030

Holding viscosity r ¼ 0.468 r ¼ 0.112 r ¼ 0.779 r ¼ 0.777 r ¼ 0.219 r ¼ 0.349 r ¼ �0.139 r ¼ �0.404
P ¼ 0.173 P ¼ 0.758 P ¼ 0.008 P ¼ 0.008 P ¼ 0.543 P ¼ 0.324 P ¼ 0.702 P ¼ 0.247

Breakdown viscosity r ¼ 0.140 r ¼ 0.199 r ¼ 0.536 r ¼ 0.535 r ¼ �0.134 r ¼ �0.107 r ¼ �0.469 r ¼ �0.734
P ¼ 0.699 P ¼ 0.582 P ¼ 0.110 P ¼ 0.111 P ¼ 0.712 P ¼ 0.769 P ¼ 0.172 P ¼ 0.016

Final viscosity r ¼ 0.557 r ¼ �0.001 r ¼ 0.678 r ¼ 0.676 r ¼ 0.425 r ¼ 0.589 r ¼ 0.186 r ¼ 0.024
P ¼ 0.094 P ¼ 0.997 P ¼ 0.031 P ¼ 0.032 P ¼ 0.221 P ¼ 0.073 P ¼ 0.607 P ¼ 0.948

Setback viscosity r ¼ 0.557 r ¼ �0.006 r ¼ 0.670 r ¼ 0.668 r ¼ 0.430 r ¼ 0.594 r ¼ 0.197 r ¼ 0.039
P ¼ 0.095 P ¼ 0.987 P ¼ 0.034 P ¼ 0.035 P ¼ 0.215 P ¼ 0.070 P ¼ 0.586 P ¼ 0.915

Peak time r ¼ 0.122 r ¼ �0.199 r ¼ �0.220 r ¼ �0.220 r ¼ 0.332 r ¼ 0.382 r ¼ 0.555 r ¼ 0.746
P ¼ 0.738 P ¼ 0.581 P ¼ 0.542 P ¼ 0.541 P ¼ 0.349 P ¼ 0.275 P ¼ 0.096 P ¼ 0.013

Pasting temperature r ¼ 0.027 r ¼ �0.204 r ¼ �0.346 r ¼ �0.346 r ¼ 0.264 r ¼ 0.288 r ¼ 0.536 r ¼ 0.761
P ¼ 0.940 P ¼ 0.571 P ¼ 0.327 P ¼ 0.327 P ¼ 0.460 P ¼ 0.420 P ¼ 0.110 P ¼ 0.011

1 adapted from Liu et al. (2016). P is the significance of probability value and r is the correlation coefficient.

H.H. Truong et al. / Animal Nutrition 3 (2017) 11e1816
determined by methodology outlined by Odjo et al. (2012). Pearson
correlations between protein solubility, kafirin and crude protein
contents of 6 red sorghums with parameters of nutrient utilisation
of birds offered corresponding sorghum-casein diets are shown in
Table 10. Interestingly, there were positive correlations between
sorghum protein solubility and parameters of energy utilisation
including AME (r ¼ 0.874; P < 0.025), ME:GE ratios (r ¼ 0.862;
P < 0.03), and AMEn (r ¼ 0.827; P < 0.05). Kafirin is a poorly soluble
protein source; however, the negative correlation between
sorghum protein solubility and kafirin (r ¼ �0.542; P > 0.25) was
not significant. This may simply reflect the small number of sor-
ghums assayed. Alternatively, kafirin and glutelin are the 2 prom-
inent protein fractions in grain sorghum and both are located in the
endosperm (Selle, 2011). Kafirin is found as discrete protein bodies
which, together with starch granules, are embedded in the glutelin
protein matrix of sorghum endosperm. Thus the solubilities of both
protein fractions may play a role in determining how efficiently
sorghum starch/energy is utilised. Far more attention is paid to



Fig. 3. Linear relationships between peak rapid visco-analysis (RVA) viscosity of 10
sorghum-based diets and (A) ME:GE ratios (r ¼ 0.860; P < 0.005) and (B) AMEn
(r ¼ 0.788; P < 0.01) [adapted from Liu et al. (2016)].
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kafirin but Beckwith (1972) described glutelin and its role in
starcheprotein interactions in sorghum probably deserves more
consideration. These preliminary outcomes do suggest that the
protein solubility of sorghum and other key feedstuffs for poultry
diets merits further investigations.
6. Conclusions

It is noteworthy that concentrations of kafirin and total phenolic
compounds in the 13 sorghum varieties assessed were negatively
correlated with peak and holding RVA viscosities to significant
Table 10
Pearson correlations between protein solubility, kafirin and crude protein contents of 6 r
sorghum-casein diets.1

Item Protein solubility Kafirin Protein

Protein solubility 1.000
Kafirin r ¼ �0.542 1.000

P ¼ 0.267
Protein r ¼ �0.440 r ¼ 0.954 1.000

P ¼ 0.383 P ¼ 0.003
AME r ¼ 0.874 r ¼ �0.537 r ¼ �0.45

P ¼ 0.023 P ¼ 0.272 P ¼ 0.365
ME:GE ratio r ¼ 0.862 r ¼ �0.687 r ¼ �0.62

P ¼ 0.027 P ¼ 0.131 P ¼ 0.184
N retention r ¼ 0.509 r ¼ �0.465 r ¼ �0.52

P ¼ 0.302 P ¼ 0.353 P ¼ 0.288
AMEn r ¼ 0.827 r ¼ �0.641 r ¼ �0.53

P ¼ 0.042 P ¼ 0.170 P ¼ 0.273

AME ¼ apparent metabolizable energy; ME ¼ metabolizable energy; GE ¼ gross energy
1 adapted from Khoddami et al. (2015). P is the significance of probability value and r
extents. The negative influence of phenolics is consistent with data
reported in Lemlioglu-Austin et al. (2012) as these researchers
found that sorghum extracts containing phenolic compounds
significantly reduced final and setback viscosities of maize starch.
However, this is almost certainly the first time that the negative
influence of kafirin on RVA starch pasting profiles has been re-
ported. The implication is that both kafirin and certain phenolic
compounds are interacting with starch.

Our contention is that ME:GE ratios provide a sensitive indica-
tion of the efficiency of energy utilisation. Therefore, it is instructive
that peak, holding, breakdown and final RVA viscosities were
positively correlated to ME:GE ratios to significant extents across 5
experiments. In addition, similar observations for peak, holding and
breakdown viscosities were made in the sixth experiment (Liu
et al., 2016). It is tempting to attribute the genesis of these posi-
tive relationships to the negative impacts of kafirin and phenolic
compounds on starch pasting viscosities which is being reflected as
inferior efficiency of energy utilisation in poultry. The probability
that ‘non-tannin’ phenolic compounds have this capacity was
specifically considered by Khoddami et al. (2015). Axiomatically,
white sorghum varieties will contain less polyphenols than red
sorghums and quite possibly less phenolic acids; on this basis the
likelihood is that broiler chickens offered white sorghum-based
diets will outperform their counterparts on red sorghum-based
diets.

The importance of starcheprotein interactions in relation to
utilisation of energy derived from feed grains in poultry is recog-
nized (Rooney and Pflugfelder, 1986). In sorghum, the focus is on
kafirin protein bodies and starch granules which are both
embedded in the glutelin protein matrix of sorghum endosperm.
The consensus is that kafirin impedes starch utilisation (Taylor,
2005; Taylor and Emmambux, 2010) although dissenting opinions
have been expressed (Gidley et al., 2011). However, 3 of our studies
(Truong et al., 2015b, 2016b; Liu et al., 2016) strongly indicate that
kafirin does indeed impede starch energy utilisation in sorghum-
based poultry diets although the underlying biophysical and
biochemical interactions have not been defined precisely. The
depressive impacts of kafirin on RVA starch viscosities reported
herein are entirely consistent with the proposition that kafirin has a
deleterious influence on the efficiency of energy utilisation of
broiler chickens offered sorghum-based diets. Of real concern is the
possibility that the kafirin proportion of sorghum protein has
increased in recent decades as an inadvertent consequence of
breeding programs (Selle, 2011; Liu et al., 2015).

Finally, the determination of RVA starch pasting profiles of feed
grains is a relatively rapid, inexpensive procedure. In the case of
sorghum, these findings suggest that varieties with high starch
ed sorghums with parameters of nutrient utilisation of birds offered corresponding

AME ME:GE ratio N retention AMEn

5 1.000

5 r ¼ 0.970 1.000
P ¼ 0.001

2 r ¼ 0.524 r ¼ 0.480 1.000
P ¼ 0.286 P ¼ 0.335

6 r ¼ 0.981 r ¼ 0.976 r ¼ 0.478 1.000
P ¼ 0.001 P ¼ 0.001 P ¼ 0.338

; AMEn ¼ N-corrected AME.
is the correlation coefficient.
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pasting viscosities, especially high peak RVA viscosities, will sup-
port better bird performance. The likelihood is that such varieties
will have low protein and kafirin contents and low concentrations
of phenolic compounds. However kafirin is unique to sorghum and
sorghum contains substantially more phenolic compounds than
other feed grains (Bravo, 1998). Thus, our conclusion is that RVA
starch pasting profiles do have real potential to assess the quality of
sorghum as a feed grain for chicken-meat production but it is
problematic if this potential extends to other feed grains.
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