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ABSTRACT

Although the vast majority of DNA damage induced by radiation exposure disappears rapidly, some lesions
remain in the cell nucleus in very small quantities for days to months. These lesions may cause a considerable
threat to an organism and include certain types of DNA double-strand breaks (DSBs) called ‘unrepairable DSBs’.
Unrepairable DSBs are thought to cause persistent malfunctioning of cells and tissues or cause late effects of radi-
ation, especially the induction of delayed cell death, mutation, senescence, or carcinogenesis. Moreover, the meas-
urement of unrepairable DSBs could potentially be used for retrospective biodosimetry or for identifying
individuals at greater risk for developing the adverse effects associated with radiotherapy or chemotherapy. This
review summarizes the concept of unrepairable DSBs in the context of persistent repair foci formed at DSBs.
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INTRODUCTION
Among the genome damage induced by ionizing radiation, DNA
double-strand breaks (DSBs) represent the most biologically dele-
terious type of lesion. To tackle these potentially lethally damaging
lesions, cells have evolved orchestrated and conserved mechanisms
known collectively as the DNA damage response (DDR) [1–4]; the
DDR coordinates cellular DSB repair activities immediately after the
damage is detected [4]. Indeed, within seconds, DSB repair proteins
start to accumulate at the site of DSBs, and the DDR directs the
cells to repair the breaks, undergo apoptosis, or become senescent
[3]. DSB repair is a quick and efficient process whereby broken
ends are rejoined. Using traditional and biochemical DNA size ana-
lyses [5–7] coupled with immunocytochemical staining [8–10], the
kinetics of DSB repair have been shown to occur in two phases: a
fast phase lasting up to a few hours, with a half-life of 30 min to 1 h,
followed by a slower phase that may persist for a long time. A few
persistent DSBs remain into the next day, and some of these DSBs
persist for days, months, or even years [10–13]. These DSBs are
more difficult to repair or remain unrepaired DSBs. Alternatively,
these persistent DSBs are termed residual DSBs and are retained in
the damaged cells unless the cells die and slip away [10, 14]. The
number of unrepairable DSBs in a cell is measured by detecting and

counting the number of persistent repair foci, which are composed
of multiple proteins that accumulate at DSBs. Specifically, it is sug-
gested that individual γH2AX or 53BP1 foci represent a single DSB
with a ratio of 1:1 [8, 15, 16]; hence, very few repair foci out of the
many that form immediately after radiation exposure remain and
become persistent in the cell nucleus. In this review, I summarize
the observations obtained from the exposure of quiescent normal
human cells to radiation, incorporate these observations into a dis-
cussion of the literature, and then discuss the biological implications
of unrepairable DSBs with respect to the effects of radiation on cells
and tissues. I also discuss the possible application of unrepairable
DSB measurement for retrospective biodosimetry.

GENERATION OF UNREPAIRABLE DSBS AND
PERSISTENT REPAIR FOCI

Radiation-induced DSBs are first detected by the MRE11/Rad50/
NBS1 (MRN) complex and the Ku70/Ku80 heterodimer [1, 3].
Accordingly, the DDR initiates many possible mediators and effec-
tors to potentiate distinct signals within a cell. The MRN complex
promotes the binding of a phosphorylated form of ATM and the
phosphorylation of H2AX. The MRN complex also promotes the
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binding of MDC1 and a group of ubiquitination proteins (RNF8
and RNF168) and their effectors at the DSBs, thereby forming the
fundamental structures of repair foci. Repair foci are a cluster of
many kinds of proteins. They have different components depending
on whether the cells are undergoing the NHEJ pathway (including
microhomology-mediated NHEJ) or entering S phase, during which
the cells undergo HR-mediated repair. In fact, in exponentially
growing normal human fibroblasts, 100% of cell nuclei have many
γH2AX/53BP1 foci after radiation exposure, whereas only 30% of
those exhibit BRCA1-positive foci. The repair foci containing
BRCA1 are specifically formed for recombination repair in S phase
(Fig. 1). This observation indicates that the accumulation of
BRCA1 protein depends on cell progression through S phase. In
somatic cells in living organisms, most of the cells are in quiescent
(Go) phase; they are not dividing and are instead terminally differ-
entiated, functioning to preserve their specified phenotype and exhi-
biting very long lifespans, up to years or decades. To create a model
system for this in vivo cell status, we have adopted quiescent cul-
tures of normal human diploid fibroblasts (NHDFs) in which the
cells are maintained in MEM + 0.1% FCS. In this condition, the
cells are permanently growth arrested (Go state) and can survive as
long as weekly medium changes are maintained (any time after qui-
escence, cells can reenter the cell cycle in the presence of medium
containing 10% FCS, which provides growth stimulation).

Analysis of the DSB repair kinetics of quiescent NHDFs showed
that 95% of the initial DSBs disappeared within a couple of days after
radiation exposure, followed by a very slow decline to ~1% DSBs
remaining after 2 weeks. These DSBs persisted in the cell nucleus as
long as the culture continued (up to 1 year in our study) [10], thus
we designated them ‘unrepaired DSBs’. The formation and resolution
of γH2AX/53BP1 foci have been extensively studied in vitro [8, 17–
20], and the kinetics have been shown to be biphasic [10–12, 21],
which matches well with the kinetics of DSB repair [5]. Although the
persistence of repair foci could arguably reflect insufficient H2AX
dephosphorylation [22], it has been readily accepted that the foci
represent unrepaired DSBs because the foci also include 53BP1 and all
other previously reported DDR proteins. Moreover, the phosphory-
lated form of DNA-PKcs (ser-2056), which marks the initial recogni-
tion of a DSB, was also detected in the foci [10]. Treatment of cells
with the ATM inhibitor KU55933 completely abolished the persistent
foci, and the foci recovered at the DSB sites when the inhibitor was
chased off. This effect was observed in cultures even 6 months post
exposure to radiation. Treatment with the polyubiquitination inhibitor
MG132 also produced the same effects. These results indicate that

there is a continuous turnover of foci components at the unrepaired
DSBs, which persists for a long time after the exposure.

Therefore, what is the function of the slow to very slow type of
DSB repair that follows the fast phase? Is it truly a process of very
slow repair, does this process establish unrepaired DSBs, or is it a
mixture of both processes? At present, we do not know the bio-
chemical difference between repairable and unrepairable DSB foci;
however, it is almost certain that the size of the foci grows larger
over time [10, 23–26]. We measured the foci enlargement over
time and found that the unrepaired foci could be sorted from the
small foci of the fast phase that would eventually disappear upon
the completion of repair. The repairable foci displayed a normal size
distribution immediately after radiation exposure, whereas after 1 or
2 months the unrepaired DSB foci formed a distinct distribution of
foci larger in diameter and could be separately counted (Fig. 2).

PROSPECTIVE APPLICATIONS OF
UNREPAIRABLE DSBS TO BIODOSIMETRY

We know that the effects of radiation stem from unrepairable damage
and not from the repair process of repairable damage. It has been
argued that the radiosensitivity of an individual cell can be attributed
to the presence of unrepairable DSBs [27–29]. These unrepairable
DSBs are responsible for the late effects of radiation, i.e. changes in
the aging process, late onset mutations, and cancer. It is also argued
that the measurement of unrepairable DSBs could be applied to radi-
ation dosimetry on previously irradiated cells and tissues [30–33].

By counting the number of large-sized foci remaining 1 month
after irradiation, we found that there was a linear relationship
between the radiation dose and the number of unrepaired DSBs.
Assuming that one unrepairable DSB is one lethal hit, then the
actual average one-hit dose is ‘Do’, which is the dose required for
37% cell survival in classic ‘radiation hit theory’. A similar idea
enables the calculation of the average two-hit dose required for
13.5% cell survival. Then, from the dose–response curves of the
formation of unrepairable DSBs we made hypothetical survival

Fig. 1. Staining of exponentially growing NHDFs
immediately after radiation exposure (1 Gy/1 h) with
antibodies against 53BP1 and BRCA1.

Fig. 2. Images of the size distribution of repair foci
immediately after or a long time after radiation exposure. One
month after exposure, transient/repairable DSB foci
disappeared, and persistent DSB foci remained in the nucleus.
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curves, which agreed well with actual cell survival phenotypes. The
concept that unrepairable DSBs limit the radiosensitivity of cells has
been validated by other studies [28, 29]. In fact, Menegakis et al.
have also attempted to calculate hypothetical cell survival [34].

Based on observations that the number of unrepairable DSBs accu-
mulates with repeated exposure [10, 20], retrospective radiation biodo-
simetry has been proposed [10, 20, 35, 36]. By measuring the number
of unrepaired DSB foci per unit area of mouse skin, Bhogal et al.
reported the possibility of biodosimetry [28]. In minipig, skin biopsies
taken 70 days after a 50 Gy exposure showed typical unrepaired DSB
foci patterns. Accordingly, minipig [37] and macaque models [38] for
persistent DSB-mediated biodosimetry have been reported. Cells from
plucked hair appeared to be especially useful [32]. In mouse spinal
cord, the persistent foci were detectable 1 year after the exposure [39].
Overall, these reports may offer a new avenue for the use of unrepair-
able DSBs in radiation biodosimetry. We also observed the appearance
of large repair foci one month after mouse pancreas was irradiated
with 6 Gy. Similar observations have been reported in human buccal
cells [40] and mouse germ cells [39, 41]. Moreover, increases in the
number of unrepairable DSBs have been associated with aging in
many studies [20, 36, 42–44].

Some pediatric cancer patients display increased unrepairable DSB
production levels in their peripheral blood lymphocytes. These patients
might represent groups at higher risk during radiation exposure [45].
A group of patients who demonstrated an excessive response to radio-
therapy, which was assessed by normal tissue toxicity, exhibited
increased levels of persistent repair foci [46]. The levels of persistent
repair foci per cell in lymphocytes were examined after radiotherapy in
breast cancer patients [29, 47]. This calculation will enable the fine-
tuning of radiation doses for improved cancer treatments. In head and
neck cancer cases, prescreening the levels of persistent foci in 2 Gy
irradiated lymphocytes was applied to reduce the side effects of radio-
therapy [48]. Thus, persistent repair foci are a useful measure for the
detection and evaluation of previously irradiated cells.

However, it has been reported that repair kinetics and the form-
ation of persistent repair foci vary extensively among mouse tissues
[49, 50]. Therefore, tissue differences should be considered when
evaluating unrepairable DSBs for biodosimetry.

THE REAL IDENTITY OF UNREPAIRABLE DSBS:
ARE THEY TELOMERE DSBS OR ARE THEY
LOCATED INSIDE THE CHROMOSOME?

Although the chemical structures of unrepairable DSBs have not yet
been precisely determined, two types of ‘complex’ lesions can be
postulated: those with non-ligatable termini due to crosslinks
between bases and sugars (dirty DSBs) and those with damaged
sites in which multiple DSBs/SSBs and/or base damage arise in
close proximity (clustered damage) [51]. The complexity of the
damage structure is evident by the slow rejoining kinetics of DSBs
induced by high-LET radiation [52]. It is apparent that the damage
induced by radiation is extremely heterogeneous and that damage
occurs randomly throughout the chromosome.

Unrepaired DSBs induce permanent cell growth arrest or death.
This fact is especially true in non-apoptotic terminally differentiated
cells, which in general have very long lifespans. In these cells,

cellular senescence is induced (radiation-induced senescence). It has
been shown that many adult survivors of juvenile cancer develop
symptoms of premature aging later in life [53], which may be
related to the unrepaired DSBs that were induced after radiotherapy
in normal tissues adjacent to the tumor. Their symptoms include
advanced frailty with increased risk for heart failure, severe cognitive
decline, coronary heart disease, and secondary neoplasms [53–55].
Meanwhile, neuronal stem cells bearing unrepairable DSBs undergo
premature senescence or terminal differentiation to become astro-
glial cells [56]. This process also reduces stem cell number, leading
to a premature aging of neuronal systems. Likewise, after radiation
exposure, melanocyte stem cells in hair bulge undergo terminal dif-
ferentiation in their niches, producing gray hairs [57].

Telomere-driven replicative senescence has been widely accepted as
a primary mechanism of organismal aging and cellular senescence.
Under this theory, eroded chromosome ends continuously activate the
DDR, thereby permanently inducing growth arrest and senescence.
Similarly, it has been hypothesized that radiation-induced unrepairable
DSBs eventually accumulate in chromosome ends, which establishes
senescence independent of the cell’s telomere length [14, 35, 36, 58].
This idea is based on the specific structure of chromosome ends,
known as Shelterin, which protect chromosomes from improper
recombination and degradation. Indeed, TRF2 and RAP1, the compo-
nents of Shelterin, were shown to inhibit DSB repair throughout the
entire telomere [35, 59–61], not only at the very ends. Therefore,
radiation-induced DSBs near the chromosome ends would be preferen-
tially protected from repair systems, even though radiation exposure
induces DSBs randomly throughout the chromosome. Such a mechan-
ism may eventually provoke continuous DDRs, leading to cellular sen-
escence in cells bearing radiation-induced unrepairable DSBs (Fig. 3A).

Fig. 3. (A) Possible mechanisms for the generation of
unrepaired DSBs. Although radiation exposure induces
DSBs randomly in the chromosome, those occurring
proximal to the telomere or unrepairable DSBs inside the
chromosome eventually become persistent. (B) Persistent
repair foci tend to make pairs. In the lower photo, two pairs
of foci of different sizes can be seen.

ii116 • A. Noda



This idea has been confirmed via confocal microscope observations
and telomere ChIP experiments [36]. Thus, the telomere hypothesis
suggests that the location, not the chemical structure, is important for
the establishment of unrepairable DSBs. This hypothesis may explain
the radiation-induced senescence of young cells in vitro and non-
dividing quiescent cells in vivo. Both of these cell types have long telo-
meres and no chance of undergoing replicative senescence. Assuming
that animals carrying longer telomere sequences have a wider target for
the creation of unrepairable DSBs, telomere length may have a negative
effect on lifespan. Indeed, inverse correlations between telomere length
and lifespan have been reported in different animal species [62].

However, other mechanisms of radiation-induced senescence may
exist. Most nuclei of 6 Gy-irradiated and 1-month-cultured young qui-
escent cells carried a few typical, large γH2AX/53BP1 foci, as men-
tioned above. Careful observations have revealed that these foci often
appear in pairs (i.e. even numbers per nucleus), as if they had origi-
nated from a single DSB and then distantly separated. Taking a closer
look, each partner of the foci pairs can be identified because each foci
had a distinct size (Fig. 3B and reference photos provided in the sup-
plemental data) [10]. In this case, the DSBs should have originated
from the inside of the chromosome and not from the very end. Data
in reports from Hewitt [36] and Fumagalli [35] indicates that, at
most, 50% of unrepaired DSBs are located in telomeres; therefore, it
is reasonable to assume that the causative mechanisms of unrepairable
DSBs can be attributed to both their locations and chemical struc-
tures [63]. Collectively, while the fast phase of DSB repair constitutes
rejoining of easy-to-repair ‘clean DSBs’, the slower phase might be
composed of two distinct components, namely, telomere-silenced
DSBs and unrepairable DSBs.

In yeast, several studies have indicated that persistent DNA
lesions relocate to either the nuclear pore complex (NPC) or the
nuclear envelope (NE) [64–66]. In such cases, specific membrane
structures, including the components of nuclear pore proteins,
appear to be crucial for the repair of persistent DSBs and eroded
telomeres. In mammals, mutated forms of nuclear lamin A, referred
to as progerin, induce deformation of the NE and impair certain
processes of DSB repair. This process has been argued to contribute
to the decrease in repair efficiency [67, 68] or to the enhanced pro-
duction of unrepairable DSBs [69, 70]. In either case the expression
of progerin has an adverse effect on DSB repair and induces prema-
ture senescence in cells. Likewise, NHDFs (normal cells) bearing
radiation-induced unrepairable DSBs, which undergo premature
senescence, show dysfunctional nuclear membrane structures [70].
These results indicate a possible link between unrepairable DSBs
and premature senescence, which are both mediated by a dysfunc-
tional nuclear membrane. The nuclear membrane and its periphery
has been shown to associate with heterochromatin, where ‘gene
deserts’ have also been shown to localize [71, 72]. The DSB repair
of such regions is slow and dependent on both ATM and Artemis
[51]. Overall, these data suggest that the final destination of unre-
pairable DSBs is the nuclear membrane. However, the nuclear per-
iphery is also a place where telomeres locate [73] and is where
telomere silencing occurs. Therefore, it is reasonable to speculate
that both types of unrepairable DSBs, which primarily originated in
either the telomere or heterochromatin, eventually colocalize in the
nuclear membrane. New technologies [63, 74] and biomarkers will

be necessary to distinguish radiation-induced unrepairable DSBs
from those found at telomere ends. A further application of unre-
paired DSBs measurement would be its use as an early indicator for
radiation risk.

New methods that artificially introduce unrepairable DSBs at
specific chromatin sites have been developed. White et al. [75]
delivered Sac I restriction enzyme to mouse liver using adenovirus.
They observed a liver-specific pathology of aging and inflammation.
However, lipofuscin accumulation was not observed. Kim et al. [76]
generated a conditional I-PpoI restriction enzyme expression system
in mouse. In this system, 19 persistent DSBs could be formed in
each cell, and the mice appeared to exhibit premature aging pheno-
types. However, the introduction of such unrepairable DSBs could
not fully explain all of the normal aging phenomena. The applica-
tion of recent gene editing technologies will enable the introduction
of unrepairable DSBs at specific sites in the chromosome. Such sys-
tems will help us to understand the risks of unrepairable DSBs in
specific cells and tissues in living organisms.

CONCLUSION: A VIEW OF RADIATION
BIOLOGY USING A NEW BIOMARKER

Although considerable efforts have been made to analyze the repair
of repairable damage, studies that measure and elucidate the biology
of unrepairable DSBs have not come to the forefront until recently.
To better measure unrepairable DSBs, especially in vivo, we need
definitive criteria for distinguishing unrepairable DSBs from transi-
ent and repairable DSBs. These criteria may include characterizing
the precise sequences and structures where these breaks originated
or new biomarkers that can specifically detect and measure these
lesions. Such new technologies may enable the further application
of radiation-induced unrepairable DSB quantification, which could
lead to a better understanding of the risks of radiation to the pro-
cesses of organismal development, growth, and aging.
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