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2Communications Cellulaires, Collège de France, Paris 75005, France

The concept of allosteric interaction was initially proposed to account for the

inhibitory feedback mechanism mediated by bacterial regulatory enzymes. In

contrast with the classical mechanism of competitive, steric, interaction between

ligands for a common site, allosteric interactions take place between topographi-

cally distinct sites and are mediated by a discrete and reversible conformational

change of the protein. The concept was soon extended to membrane receptors for

neurotransmitters and shown to apply to the signal transduction process which,

in the case of the acetylcholine nicotinic receptor (nAChR), links the ACh binding

site to the ion channel. Pharmacological effectors, referred to as allosteric modu-

lators, such as Ca2þ ions and ivermectin, were discovered that enhance the

transduction process when they bind to sites distinct from the orthosteric ACh

site and the ion channel. The recent X-ray and electron microscopy structures,

at atomic resolution, of the resting and active conformations of several homol-

ogues of the nAChR, in combination with atomistic molecular dynamics

simulations reveal a stepwise quaternary transition in the transduction process

with tertiary changes modifying the boundaries between subunits. These

interfaces host orthosteric and allosteric modulatory sites which structural

organization changes in the course of the transition. The nAChR appears as a

typical allosteric machine. The model emerging from these studies has led to

the conception and development of several new pharmacological agents.

This article is part of a discussion meeting issue ‘Allostery and molecular

machines’.
1. Introduction and definitions
The generally accepted definition of allosteric interactions is that they constitute a

mode of ligand–protein interaction radically different from classical molecular

competition. Instead of mutual exclusion from a common binding site by steric

hindrance, allosteric interactions are defined as indirect interactions between

topographically distinct sites, mediated by a reversible alteration of the protein’s

molecular structure. The concept was first proposed to account for the inhibitory

feedback mediated by the first enzyme in a bacterial biosynthetic pathway

(L-threonine deaminase/aspartate transcarbamylase) where the feedback inhibi-

tor (L-isoleucine/CTP) is not a steric analogue of the substrate (L-threonine/

aspartate) [1–3]. As a PhD student in the laboratory of Jacques Monod, I struggled

with L-threonine deaminase to find a way to dissociate regulatory interaction and

catalytic activity in vitro. The data could not be accounted for by the classical

Michaelis scheme of a competitive inhibition and it was suggested that substrate

and regulatory effector bound at topographically distinct sites [1] (figure 1). The

model of ‘no-overlapping’ sites was presented at the 1961 Cold Spring Harbor

Symposium on Quantitative Biology [1], and the word allosteric was subsequently

coined in the General Conclusions of the same meeting by Jacques Monod &

François Jacob [2].

The concept was expanded in 1963 [4] to explain properties of the few

regulatory proteins then known, as well as Perutz’s structural data on haemo-

globin. An initially suggested mechanism underlying conformational change

was inspired by Koshland’s induced-fit theory [5] for the specificity of enzyme

action, according to which the fit occurs ‘only after a change in shape of the

enzyme molecule had been induced by the substrate’. Results obtained with
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Figure 1. First diagrammatic representation of a competitive vs allosteric
interaction between ligands. This scheme was presented in [1] to account
for the properties of the bacterial enzyme L-threonine deaminase at the
1961 Cold Spring Harbor Symposium on Quantitative Biology. The ‘no-over-
lapping’ model was named ‘allosteric’ by Monod & Jacob in the General
Conclusions paper of the meeting.
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L-threonine deaminase [1,6–12], in particular the effects of regu-

latory ligands on the cooperativity of substrate binding and

their concomitant loss upon desensitization (noted indepen-

dently with aspartate transcarbamylase [3,13]), soon led to a

paradigmatic shift from instruction to selection. Rather than

being instructed by the ligand, the conformational transition

was proposed to pre-exist as an equilibrium among a few dis-

crete structural states, totally independent of ligand structure

or occupancy, and differentially stabilized by the various

ligands. This conformational selection hypothesis is one of the

key hallmarks of the 1965 Monod–Wyman–Changeux

(MWC) model [14].

A second structural assumption of the model accounted for

the observed cooperativities of substrate and regulatory ligand

binding kinetics, by endowing the protein itself with a coopera-

tive structure [14]. Regulatory proteins would be ‘oligomers’

comprising a small number of repeated units—protomers—

and consequently possess at least one axis of symmetry, the

conformation of each protomer being constrained by its associ-

ation with the others [14]. In the absence of ligand the

oligomers are, as already mentioned, assumed to naturally

exist as a thermodynamic equilibrium of (at least) two discrete

conformations, R (for relaxed) and T (for constrained, tendu in

French), with different tertiary organization, inter-subunit

bond energy, quaternary constraints, ligand binding affinity,

and biological activity.

Lastly, ligands would shift the conformational equili-

brium by stabilizing the oligomer conformation for which

they have the highest affinity, thus mediating the important

process of signal transduction [14]. An important parameter

of the protein then becomes the intrinsic (ligand-free) equili-

brium constant between R and T states Lo ¼ To/Ro, termed

the allosteric constant. In the model’s formalization, ‘the

microscopic dissociation constants, KoR and KoT, of the ligand

for each state were assumed to be the same for all homologous

sites in each of the two states’ regardless of ligand occupancy.

The model therefore predicts both a ‘state function’ R describ-

ing the conformational equilibrium, and a ‘binding function’
Y, as distinct functions of ligand concentration [14]. Soon

after the MWC model, Koshland et al. [15] proposed,

in 1966, a sequential induced-fit mechanism of allo-

steric transition—known as the Koshland–Nemethy–Filmer

(KNF) model—characterized by a progressive conformational

change of the ligand-bound subunits within the oligomer.

Unlike the MWC model, it excludes any change of protein

conformation in the absence of ligand.

These research models triggered numerous experimental

tests. Early on, Manfred Eigen and his group, measuring fast

binding kinetics by T-jump relaxation, producing the first kin-

etic evidence supporting the MWC scheme [16]. A second

confirmation was the demonstration [17] that ligand binding

and conformational status as functions of ligand concentration

do not superimpose, i.e. that, as the MWC model predicts, state

function R differs from binding function Y.

Recent re-formulations of the MWC paradigm have

emphasized the possible occurrence of multiple conformations

in equilibrium and the notion of ‘population shifts’ by ligands

within the energy landscape formalism (see [18–23]). Among

many developments in the field during the past decades is

the discovery of so-called ‘disordered’—or better, unordered—

sequences in proteins [24]. There is evidence that in some

systems, such as transcription factors, they facilitate the confor-

mational changes that mediate long distance allosteric

interactions [22] (see other articles in this issue).

Importantly, MWC (and KNF) models both formulate a

static (equilibrium or steady-state) picture of allosteric behav-

iour. Understanding the phenomenon’s dynamics requires

structural studies at atomic resolution and complementary

time-resolved analyses (including molecular dynamics)

together with novel model systems and relevant technologies

(see [18,20,25]). This recent development is presented in the

last part of this paper.

The extension of the concept of allosteric interaction to

intercellular communication, in particular neurotransmis-

sion in the nervous system [6–12,26], has opened a new field

of research on brain chemistry and pharmacology (reviewed

[27]). In this paper I shall focus on one typical allosteric machine

that played a decisive role in the evolution of the domain: the

nicotinic acetylcholine receptor (nAChR), the first receptor for

a neurotransmitter to be chemically identified [28].
2. The nicotinic acetylcholine receptor
(a) Identification
Transmission of nerve signals at the synapse is an important

physiological process where the temporal dimension of the

response to the chemical signal is critical. Possible extension of

the concept of allosteric interaction to ‘membrane phenomena

involved in the recognition of (intercellular) communication

signals and their transmission—synaptic transmission, for

example’—was contemplated from the beginning [6–12].

Theoretical models were soon elaborated for membrane recep-

tors composed of transmembrane oligomers [26,29] or even

for large two-dimensional arrays of highly cooperative protein

assemblies [26]. The lattice model was documented decades

later, at the structural and functional level, in particular in bac-

terial chemoreceptors (reviewed [30]). Here I review the

nAChR as a model of allosteric transmembrane oligomer

together with its structure at atomic resolution and its molecular

dynamics within the in vivo timescale of synaptic transmission.



Figure 2. Structural organization of a pentameric ligand-gated ion channel of
the nicotinic receptor family. Data from the crystal structure of GluCl [35]
illustrating the pentameric organization, the distinction between the extra-
cellular domain ECD and the transmembrane domain TM, the orthosteric
site for glutamate (in green), the Ca2þ (cyan) and ivermectin (magenta)
allosteric modulatory sites respectively in ECD and TM. Reproduced from
Taly et al. [36, fig. 1].
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Following Langley’s (1905) proposal [31] of the pharmaco-

logical receptor concept it took about 65 years for the nAChR to

be chemically identified through an elaborate process using

fish electric organ (a very rich source of cholinergic synapses)

and a snake venom toxin (a highly specific label of the

nAChR) ([28,32–34], reviewed [34]). The upshot was that

nAChRs are integral allosteric membrane proteins, of molecu-

lar mass about 290 kDa, that form oligomers comprising five

identical or homologous subunits symmetrically arranged

around a central ion channel, with a fivefold rotational sym-

metry axis perpendicular to the membrane (reviewed [34])

(figure 2). The primary structure of each subunit established

through protein sequencing [37,38] and cDNA cloning and

sequencing [39–41] reveals a large hydrophilic amino-terminal

extracellular (EC) domain, a transmembrane (TM) domain

comprising four hydrophobic segments (M1–M4) and a

variable hydrophilic intracellular domain. The EC domain har-

bours two to five ACh binding sites located at the boundaries

between subunits. These widely (approx. 40 Å) separated

ACh binding sites are functionally linked to the 60 Å-distant,

centrally located cationic ion channel delineated by the M2

a-helix (reviewed [34]) (figure 2). The gating of the ion channel

by ACh takes place between topographically far distant sites. It

is an unquestionable allosteric interaction. The nAChR protein

thus possesses all the structural elements required to convert a

chemical signal, typically a local rise of extracellular ACh

concentration, into an electrical signal caused by the ion chan-

nel’s opening [34]. It behaves as a typical, yet highly

sophisticated, allosteric machine.

Over the years the nAChR has become the ‘founding

father’ of the superfamily of pentameric ligand-gated ion
channels (pLGICs) which includes the 5-hydroxytryptamine

receptor (5HT3R), the inhibitory anion-selective g-aminobutyric

acid type A (GABAAR)/glycine receptors (GlyR) and the

invertebrate glutamate-gated chloride channel (GluCl) [34].
(b) In vivo dynamics of signal transmission
In the case of synaptic transmission, electrophysiological tech-

niques made it possible, mid-twentieth century, to record the

electric response of receptors to chemical transmitters on milli-

second timescales [42,43]. At the neuromuscular junction, for

instance, neurally released ACh elicits a fast (less than 0.2 ms)

rise of postsynaptic potential followed by decay over a few

milliseconds. The local ACh concentration in the synaptic

cleft transiently rises (less than 1 ms) to 3 � 1024 M over a back-

ground of 1028 M [42,43]. In other words the physiological

signal received by the nAChR is a transient millisecond pulse

of ACh. The ionic response was interpreted, without structural

evidence at the time, in terms of channel gating through an

induced-fit mechanism: R þ A$ RA$ R*A where RA is a

closed, and R*A an open-channel state. Patch-clamp tech-

niques revealed later that the kinetics of the postsynaptic

response recorded at the cellular level represent the collective

opening of a host of molecular channels, each individual open-

ing having a square shape with risetime in the microsecond

range and mean open duration of a few milliseconds [44].

These values set the time-range for the molecular dynamics

studies presented in this review.

In addition to the fast channel gating process, Langley [31]

had already noticed that prolonged application of the agonist

nicotine blocks subsequent receptor responses, a process

termed desensitization. To fit the electrophysiological data

then available, Katz & Thesleff [45] proposed that ACh

slowly (on a 10 ms21 s timescale) stabilizes a new high-

affinity closed (refractory), referred to as desensitized, state of

the receptor. Subsequent electrophysiological and biochemical

studies with nAChR-rich ‘excitable’ membrane fragments

[46,47] and a fluorescent acetylcholine analogue (dansyl-

C6-choline) allowed one to follow directly in vitro the binding

kinetics of a nicotinic ligand and its conformational and

ionic consequences without the need for in vivo electrophysio-

logical recordings ([48–50], see also [51] with radiolabelled

ligands). The data yielded the first millisecond-range in vitro
demonstration of the allosteric transitions among several con-

formational states including : (i) a resting closed-channel R

state stabilized by nicotinic antagonists; (ii) an active, fast,

open-channel A state with low affinity for ACh and nicotinic

agonists (kDa ACh: approx. 50–100 mM); and (iii) at least a fast

(I) and a slow (D, desensitized, refractory) state with higher affi-

nities for agonists (but also for antagonists) (kDa of I for ACh:

approx. 1 mM; kDa of D for ACh: approx. 3–5 nM) ([48–51;

see [52]). Contrary to an opinion widespread among pharma-

cologists, the highest-affinity states do not correspond to the

active functional state of the receptor—far from it. On the

other hand, the A state’s low affinity for ACh allows binding

and unbinding of ACh at millisecond rates and thus permits

fast and repetitive transmission.

Moreover, in agreement with the MWC scheme, Jackson

[53] observed spontaneous opening of muscle nAChR in

the absence of ACh. A sizeable (approx. 20%) fraction

of the receptor protein resides in the high-affinity D state in

the total absence of ligand [48–50]. Recent analysis of the

channel gating transition in terms of the MWC model further
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led to the conclusion that in vivo ‘diliganded and brief unli-

ganded openings are generated by the same essential,

global transition’ [54].

These findings rule out the induced-fit mechanism and vali-

date the fundamental premise of the MWC model, namely that

the basic activation mechanism involves a discrete R$ A con-

formational transition independent of ligand binding [48–54].

The nAChR protein behaves as a molecular machine that

plays the role of ‘allosteric switch’ in the physiological timescale

of synaptic transmission.
 g
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3. X-ray and electron microscopy high-resolution
structures of pentameric receptors

An important step in the understanding of the allosteric mech-

anism mediating the nAChR signal transduction process

within the timescale of synaptic transmission has been the

availability of high-resolution structural data. They resulted

in the first description of the allosteric transition of a LGIC

and its allosteric modulation in structural terms.

Early electron micrographs of nAChR from fish electric

organ [55,56] revealed ring-like pentameric particles (8–9 nm

in diameter) with a hydrophilic core linked to a compact

bundle. These nAChR images were the first ever of the structure

of a neurotransmitter receptor. A step further was the X-ray

structure of a water-soluble ACh binding protein (AChBP)

from Lymnaea which displays, like the nAChR, a pentameric

organization and approximately 30% sequence homology

with the EC domain of nAChRs [57]. These structural data led

to the development of atomic models for full-length nAChR

[58] which were subsequently abandoned (see [36,59,60], for

discussion) because, in particular, of altered conformational

states and alignment errors.

The situation changed dramatically with the discovery in

bacteria of DNA sequences homologous to eukaryotic nAChR

[61]. One of such sequence from photosynthetic Gloeobacter vio-
laceus [62] was cloned and expressed in eukaryotic cells.

Electrophysiologically the protein behaves as a ligand-gated

ion channel activated at acidic pH [62]. Purification and crystal-

lization of that and a closely related protein led to the first full

X-ray structures for a pentameric ligand-gated ion channel

(pLGIC) in a closed-channel state (resolution 3.3 Å) from

Erwinia chrysanthemi (ELIC) [63] and in an open-channel state

(resolution 2.9 Å) from G. violaceus (GLIC) (figure 3) [64,65].

Consistent with early models inferred from the primary

sequence data of the nAChR [37–41], the EC domain carries

the orthosteric ligand binding sites and folds into a highly

conserved immunoglobulin-like b-sandwich; on the other

hand, the TM domain consists of four a-helices organized

as a well-conserved bundle (figure 2). The M2 helix lines,

as expected, the channel walls [66–70] and is surrounded

by a ring made of a-helices M1 and M3. The fourth TM

a-helix, M4, is most peripheral and interacts extensively

with the lipid bilayer (reviewed [34]).

Strikingly similar 3D X-ray and high-resolution electron

microscopy (EM) structures have been reported with the anio-

nic glutamate receptor from Caenorhabditis elegans (GluCl) [35],

human GABAA b3R [71], mouse 5HT3R [72], fish glycine a1R

[73] and a3R [74], and, last but not least, human nAChR a4b2

[75]. Also, the cytoplasmic domain, lacking in prokaryotic

receptors, was revealed for the first time in 5HT3 receptors
[72]. The available structural data beautifully illustrate that

active sites and ion channel are far distant (at the protein

scale), making the nAChR a typical allosteric membrane

protein. They further show a remarkable conservation of 3D

organization (down to the atomic level), illustrating the

common phylogenetic origin of bacterial and brain pentameric

receptors.
4. Structure of the ligand binding sites
A critical proposal of the allosteric scheme (figure 1) is that the

interacting regulatory and biologically active sites are topogra-

phically distinct. The atomic structures of the orthosteric site

and ion channel with the nAChR and its homologues defini-

tively demonstrate this point together with the discovery of

new allosteric modulatory sites.

(a) The orthosteric binding site
X-ray structures of the neurotransmitter—orthosteric ligand—

binding pocket have confirmed its location in the EC domain at

the interface between subunits. With or without ligand bound,

the orthosteric pocket is found to be lined by amino acid side-

chains from three main regions of the ‘principal’ subunit (loops

A, B and C) and four from the ‘complementary’ subunit (loops

D, E, F and G) ([62–65], reviewed [34]). Consistent with nAChR

photolabelling and directed mutagenesis data from nAChR

[76], the X-ray structure of AChBP shows that loops A (Tyr),

B (Trp), C (two Tyr) and D (Trp) form an aromatic ‘box’ chelat-

ing the ammonium group of ACh with the tryptophan residue

from loop B, establishing a direct cation–p interaction [77].

A similar organization is found in GluCl, GABAAR and

a4b2 nAChR, with variations depending on the natural

ligand ([35,71–75], reviewed [34]). Unexpectedly, the orthos-

teric ‘neurotransmitter’ site in pLGICs appears remarkably

conserved from bacteria to humans.

(b) The ion channel binding site(s)
Channel blockers constitute an important category of nicotinic

drugs that—like mecamylamine—are valuable therapeutic

agents. They bind to the TM domain M2 of nAChR and prevent

ion flux by sterically occluding the channel pore (reviewed

[78–80]). High-resolution X-ray structures of nAChR and hom-

ologues ([35,62–65,71–75], reviewed [34]) confirm that

binding sites for channel blockers are distributed throughout

the transmembrane channel ([66–70], reviewed [34]) which

consist of stacked pentameric rings of homologous amino

acids. The data confirm the evolutionary stability of per-

meation and selectivity structure/function relationships in

the TM domain from prokaryotes to eukaryotes.

(c) The allosteric modulatory site(s)
An important outcome of the research on the allosteric proper-

ties of nAChRs (and pLGIC in general) has been the discovery

of diverse categories of modulatory sites, with positive (PAM)

or negative (NAM) effects upon the signal transduction mech-

anism. These new modulatory sites are ‘allosteric’ in the sense

that they are topographically distinct from the orthosteric sites

and indirectly modulate the channel gating transition of the

nAChR. They are distributed throughout every domain of the

receptor molecule.

I review the main ones [79,80] (figure 2).
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(i) Ca2þ site
Ca2þ potentiates most neuronal nAChRs [81,82] at the level of

sites located in the EC domain at the subunit interfaces,

below the orthosteric ACh site near the TM domain

[83–86]. Homologues of these sites have been identified in

prokaryotic ELIC [85] and in GLIC [86]. In agreement with

the MWC model, in a7-nAChR, Ca2þ primarily affects the

R-to-open A isomerization constant [83].

(ii) Transmembrane sites
A second class of allosteric modulatory sites lies at a rather

original location within the TM domain. These sites

accommodate pharmacological agents that regulate receptor

activity (as PAMs or NAMs), such as the anthelmintic iver-

mectin [87], general anaesthetics (GAs) [88] or ethanol [89].

The X-ray structure of GLIC in complex with propofol or des-

flurane reveals a common site for GAs within the upper part

of the TM domain of each subunit inside a cavity accessible to

phospholipids from the lipid bilayer [88]. Structures of GluCl

[35] and human GlyRa3 [90] bound to ivermectin show an

ivermectin binding site located at the periphery of the

upper part of the TM domain wedged by helices M3 and

M1 at the subunit interface. Sites for ethanol in an ethanol-

sensitized mutant of GLIC [89] appear closely related to the

ivermectin site like the sites for several synthetic modulators

of a7 nAChR such as PNU-120596 and LY 2087101 [91,92]

and GA in GABAA receptors [93] (reviewed [79,80]).

(iii) Cytoplasmic domain sites
Allosteric modulatory sites are also present in the intracellu-

lar domain and may play important roles in clustering,

stabilization, and modulation of receptor functions (reviewed

[34]; [79]), in particular through the interaction with

G-proteins and thus G-protein-coupled receptors [94].

In conclusion, several categories of allosteric modulatory

sites, with positive (PAM) or negative (NAM) effects upon

the signal transduction mechanism, have been discovered

with nAChRs and closely related receptors by academic

research groups [91,92,95–98] and companies (Abbott,

Neuroresearch or Lilly), attesting of the rich diversity of allo-

steric modulators of potential pharmacological importance.

These sites, topographically distinct from the orthosteric sites,

are distributed throughout every domain of the receptor mol-

ecule. The nAChR is an allosteric machine under potential

control by a broad diversity of chemical signals in addition to

the neurotransmitter.
5. Interaction of AChR with the lipid membrane
The nAChR is an allosteric protein specialized in intercellular

communication and integrated with the cell membrane. As a

transmembrane protein, it exhibits a definite transverse

polarity, with the neurotransmitter site facing the outside of

the cell. The lipid bilayer forms the natural environment to

the TM domain of the nAChR protein and may exert an allo-

steric modulatory role on receptor function. The precise

composition of the membrane lipids [99] affects channel

activity [49,50,100–102]. In the absence of anionic lipids and

cholesterol, nAChRs appear to populate an ‘uncoupled’ confor-

mation that binds agonists with resting-like low affinity but no

longer undergoes the gating isomerization [60,103–108],
supporting the view that binding of cholesterol to the TM

domain affects the structure and/or dynamics of pLGICs.

Computational analyses of the cryo-EM structure of Torpedo
nAChR [108] and a homology model of the GABA receptor

[109] reveal several cavities in the TM domain complementary

to cholesterol and suggest that bound cholesterol at these sites

stabilizes as a PAM the channel’s open-pore conformation.

Lipids, free fatty acids, and steroids are known to allo-

sterically modulate pLGICs and are thus likely natural

ligand candidates for the GA sites [88,101–107]. The choles-

terol binding site to the TM domain shows homologies

with ivermectin binding to GluCl, cholesterol possibly

acting as an endogenous allosteric modulator in eukaryotic

pLGICs [103–109] (figure 4).

The lipid bilayer is the original physico-chemical medium

that holds the receptor protein in place. But, diverse mem-

brane lipids (including cholesterol) have been found to

selectively modulate the activity of these allosteric machines.

The transmembrane domain therefore becomes a strategic

target for the design of pharmacological agents.
6. Molecular dynamics of nAChRs and
homologues

As mentioned in the introduction, the MWC model (and the

KNF model) explores allosteric transitions under the condition

of thermodynamic equilibrium. The application of time-

resolved analyses (including molecular dynamics) to the

nAChR [25] together with relevant modelling approaches

and technologies (see [18–23]) renew our understanding of

the molecular mechanism involved in the gating process

under conditions close to the actual physiological process.

(a) Early molecular dynamics studies
Even before high-resolution structural data became available,

Taly et al. [25] developed by comparative analysis a 3D model

of the a7-nAChR on which they performed the first, coarse-

grained, molecular dynamics simulation of a pLGIC, applying

the so-called ‘normal mode analysis.’ Approximating the

surface of the conformational landscape, the analysis decom-

poses the receptor protein movements into discrete modes.

Among the ten lowest-frequency modes, the first shows a struc-

tural reorganization described as concerted but opposite

rotations of the upper (EC) and lower (TM) domains around

the pore axis—a movement termed quaternary twist. The twist

widens the ion channel and, by reshaping the subunits’ inter-

faces in EC, opens or closes the agonist binding site(s) located

there. These results were confirmed and extended on a new

model of a7-nAChR based upon the crystal structures of

ELIC [110] and GLIC [111] and then on GLIC with a 1 ms-

long all-atom molecular dynamics simulation [112]. A parallel

computational study was undertaken on nAChR [113] carrying

pathological mutations associated with congenital myasthenia

and autosomal dominant nocturnal frontal lobe epilepsy.

These mutations constitutively stabilize the receptor in an

active open (or closed) conformation. The mutant amino acids

were found either at interfaces between subunits or, within sub-

units, between rigid domains, impeding the twist [113]. Taken

together, these results suggest that quaternary twisting is a

robust structural motion of the nAChR molecule accompanying

ion channel opening.



(b)

(a)

Figure 3. Model of the gating mechanism mediated by the prokaryotic channel from Gloeobacter violaceus GLIC. Left, the pH7 closed state; right, the pH4 open
state. (a) View from the top illustrating the twisting and blooming motion, indicated by black arrows. (b) View from the side schematically illustrating the trans-
mission of the signal through the ECD – TM interface. Reproduced from Sauguet et al. [86, fig. 4].
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(b) Molecular dynamics model of signal transduction
On the basis of structures for the GLIC open state, the ELIC

‘undefined’ closed state, and the GluCl open-channel form

bound to the PAM ivermectin, Calimet et al. [114] carried

out extensive all-atom molecular dynamics simulations over

0.2–0.5 ms. Removal of ivermectin causes the simulated trajec-

tory to undergo a sequence of structural steps that couple

agonist unbinding (from the EC domain) to ion-pore closing

(in the TM domain). The simulation also shows that, in agree-

ment with Taly et al. [25], a global twist initiates closure by

facilitating the un-tilting of the pore-lining helices. The mechan-

istic scenario that emerges suggests that receptor twisting

contributes to the activation process by ‘locking’ the ion channel

in the open-pore form. A major outward tilting of the extracellu-

lar b-sandwiches further contributes to the allosteric

communication between neurotransmitter binding site and ion

pore. Crystallography of GLIC at both pH 7 (closed) and pH 4

(open) provided the first pair of gating endpoints in a single

receptor [86] and the opportunity to generate a coarse-grained

dynamic of the allosteric transition model [86, sup. mat.].

Taken together, the latest molecular dynamics ([34,115]),

structural [86] and physiological [54,116] studies converge

on a common detailed atomic model for the gating transition.

According to the model, the stepwise process starts at the

orthosteric binding site (loops A, B and C), propagates to

the EC/TM interface (b1–b2 loop and Cys loop) via rigid-

body rearrangements of the EC b-sandwiches, and moves

on to the TM helices (M2, then M4 and M3) to finally open

the gate. Two distinct sequential quaternary transitions take
place: a radial concerted contraction or un-blooming of the

EC domain, which opens the ion pore, followed by global

concerted twisting to lock the channel in the active, open-

channel state. Accordingly, gating of muscle nAChR is not

a single-step ‘rigid’ event but proceeds through a concerted,

stepwise, conformational sequence [34].

Structural and molecular dynamics data are consistent with

the ms–ms kinetic analyses of single-channel recordings on

muscle nAChR [54,116], which show that the nAChR isomeri-

zation is a well-defined sequence of protein domain motions

that generate a propagated, Brownian, stepwise process ([54];

see also [116]). Moreover, the data are globally consistent

with the MWC postulate that the conformational transition is

‘concerted’, i.e. conserves symmetry from start to end.

Finally, in addition to the closed resting state and the open

active state, the structures of several fast (I) and slow (D) desen-

sitized states—and uncoupled forms—have been identified

with prokaryotic receptors. For example, the locally closed

state [117] which shows an ‘active’ EC conformation with a

‘closed’ TM channel might be blocked in the middle of the

stepwise R$ A transition [118] or alternatively be a fast desen-

sitized I state [117]. The closed state of ELIC—often considered

to be a resting state (see [114])—might then represent a slowly

desensitized D state [34,86]. The ELIC structure has also been

suggested to represent a ‘refractory’/’uncoupled’ state [60]

(see [34] for discussion). The nAChR and homologues defi-

nitely exist in more than the two basic resting and active

conformations of the minimal MWC model and this needs

further investigation (see [34,119]).



(b)

(a)

Figure 4. X-ray structure of the allosteric site for general anaesthetics from the bacterium Gloeobacter violaceus. The general anaesthetic ( propofol, desflurane)
binding site is located within the transmembrane domain near the interface with the extracellular domain (a) and in close relationships with membrane lipids
(b), which may behave as endogenous allosteric modulatory ligands. Reproduced from Nury et al. [88, fig. 1].
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(c) Allosteric modulation
Molecular dynamics is being applied to the analysis of the

mode of action of allosteric modulators. Studies of the crystal

structures of nAChR homologues GluCl and GLIC at pH 4

and pH 7 [34,86,88,120] are consistent with the view that allo-

steric modulators stabilize similar resting and active states to

the orthosteric ligands. They further show that the gating

transitions involve significant restructuring of subunit inter-

faces where sites for orthosteric ligands and allosteric

modulators are primarily located [86]. This restructuring

implements what was referred to as the ‘quaternary con-

straint’ in the original MWC model [14,34–36]. It includes a

strong contraction of the orthosteric sites in the R! A tran-

sition [37,86] as a major change at the level of allosteric

modulatory sites: the widening of the homologue of the

Ca2þ pocket in the R state and the stabilization by positive

allosteric modulators (ivermectin) of the untwisted (open-

pore) configuration of the TM domain [86,117,118,120–123]

(see [34,115]) (figure 5).

From a drug design perspective, the ongoing structural and

molecular dynamics studies suggest as logical targets both

orthosteric and allosteric modulatory sites present on these mul-

tiple structurally distinct conformation(s)—rather than a single

fixed binding site [34,48,86]. The consequences are important

for the design of drugs with expected agonist versus antagonist

properties. A new pharmacology is emerging.
7. Conclusion: allosteric receptors as the
molecular machines of mind

High-resolution structural data from nAChR and pLGIC hom-

ologues, combined with molecular dynamics studies of the

allosteric transition in pLGIC, have yielded a radically new

description, in atomic detail, of the chemical-to-electric signal

transduction mechanism present in the nervous system. The

mechanism involves the propagation of a concerted, stepwise,

conformational change on a microsecond physiological time-

scale. Parallel studies with the various nAChRs, ion channels,

G-protein-coupled receptors, tyrosine kinase receptors, and

even nuclear receptors (reviewed [20,27]) have significantly

advanced the understanding of the ‘switching’ events

mediated by these molecular machines, and highlighted

important features common to the mechanisms involved

[20,27,117,124–126].

This understanding has major practical consequences in the

conception of new pharmacological agents at both orthosteric

and allosteric modulatory sites in each of their conformational

states [27,34,91]. Attesting to the growing interest in allosteric

phenomena, the allosteric database lists 71 538 substances as allo-

steric modulators [127], among them 91 currently used as

medicines. A new pharmacology is on the way.

The allosteric MWC model also predicts that alter-

ing the intrinsic, unliganded equilibrium between discrete



Figure 5. Dynamic reorganization of the allosteric modulatory sites from Ca2þ (ECD) (top) and for ivermectin (TM) (bottom) in the course of the gating transition.
The comparison of GLIC pH4 (active) with GLIC pH7 (resting) reveals an important tertiary change in the EC subunits during activation, visualized by the crystal
structure of GluCl with ivermectin bound [35] and contraction of the intersubunit TM binding site by the receptor’s twisting. Reproduced from Cecchini & Changeux
[34, figs 5 and 6].
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conformational states, e.g. by gene mutation, may cause con-

stitutive receptor activation (or inhibition) with resulting

major human pathologies [20,27,124]. The Allosteric database
lists 3350 allostery-related diseases [127].

The dynamics of human brain processes, including mental

ones, are necessarily constrained by the timescale of the confor-

mational transitions of the brain’s building blocks, a fact

demonstrated here with nicotinic receptors up to conscious pro-

cessing [128]. The realization that many of these molecular

machines have barely changed over 3 billion years, from bacteria

to humans, raises an almost existential question: did such extra-

ordinary structural and functional conservation impose upon

human brain function a speed limitation in signal transmission

originating as a bacterial clock? Is this why our brain networks

propagate signals below the speed of sound as compared with

computers operating at the speed of light?

These investigations further document and enrich

what may be called a ‘chemical theory of higher brain
functions’ [129–131]. Within this framework, all processes

at the multiple levels of organization that span the human

brain, from synapse to consciousness, rest upon a biochemi-

cal universe of allosteric transitions that mediate neuronal

and interneuronal communications.
Data accessibility. This article has no additional data.

Competing interests. I declare I have no competing interests.

Funding. Funding was provided by CNRS UMR 3571, Institut Pasteur,
Paris F-75724, Communications Cellulaires, Collège de France, Paris
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