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Allosteric regulation refers to the process where the effect of binding of a

ligand at one site of a protein is transmitted to another, often distant, functional

site. In recent years, it has been demonstrated that allosteric mechanisms

can be understood by the conformational ensembles of a protein. Molecular

dynamics (MD) simulations are often used for the study of protein allostery

as they provide an atomistic view of the dynamics of a protein. However,

given the wealth of detailed information hidden in MD data, one has to

apply a method that allows extraction of the conformational ensembles under-

lying allosteric regulation from these data. Markov state models are one of the

most promising methods for this purpose. We provide a short introduction to

the theory of Markov state models and review their application to various

examples of protein allostery studied by MD simulations. We also include a

discussion of studies where Markov modelling has been employed to analyse

experimental data on allosteric regulation. We conclude our review by adver-

tising the wider application of Markov state models to elucidate allosteric

mechanisms, especially since in recent years it has become straightforward

to construct such models thanks to software programs like PyEMMA

and MSMBuilder.

This article is part of a discussion meeting issue ‘Allostery and molecular

machines’.
1. Introduction
The biochemical phenomenon of allostery involves the regulation of a protein’s

functional activity via ligand binding at a site that is typically distant from its

active site. Allostery has been dubbed the ‘second secret of life’ after DNA

[1], because it plays such a fundamental role in cellular signalling networks

and disease. The pharmaceutical industry has also shown an interest in the

development of allosteric drugs because targeting the allosteric sites of a

protein offers certain advantages when compared with the orthosteric or pri-

mary binding site. For example, because allosteric sites are less conserved,

allosteric ligands can be much more selective and safer with fewer side-effects

[2]. Allostery is ubiquitous in biology and has been suggested as a universal

property of all dynamic proteins [3], meaning that even those proteins that

are not known to exhibit allosteric effects are likely to possess undiscovered

allosteric sites.

It is unsurprising that the elusive mechanism behind this curious molecular

‘action at a distance’ has attracted intense scientific investigation for decades

now. Early models of allostery were mostly two-state and focused on static,

thermally averaged structures. Of particular importance are the KNF model

(model of Koshland et al. [4]), also referred to as the ‘induced fit’ model, because

it assumes that the binding of a ligand induces a change in the protein structure,

and the MWC model (model of Monod et al. [5]), which supposes that the

ligand preferentially stabilizes or destabilizes binding competent structures.

These models explain some but not all of the observed experimental data on

allostery. The crucial role of protein dynamics in allostery was first realized
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Figure 1. Allosteric systems representing conformational dynamics of folded structures and large-scale disorder. (a) Haemoglobin is an example of allosteric motion
resulting from quaternary structure changes. The binding of oxygen to one haemoglobin subunit induces a 158 rotation of one a/b pair with respect to the other,
which raises the affinity of haemoglobin for oxygen, causing the other subunits to also bind oxygen. (b) PDZ domain proteins are an example of allostery without
significant structural changes, where ligand binding leads to modulation in distal side-chain motions. The superposition of the structures in the unbound (PDB 1BFE;
blue) and bound (PDB 1BE9; red and peptide ligand in orange) states are shown. (c) The allosteric transition in the catabolite activator protein (CAP) upon binding of
cyclic adenosine monophosphate (cAMP) is an example of allostery involving larger structural changes and local unfolding. The superposition of apo-CAP (PDB 2WC2;
blue) and CAP-cAMP (PDB 1G6N; red) are shown. As CAP is a homodimer, it binds two cAMP molecules, which are highlighted in orange. (d ) The binding of the
intrinsically disordered protein E1A to the TAZ2 domain of CBP/p300 causes E1A to fold and subsequently bind pRb, yielding a ternary complex. Alternatively, E1A
binds first to pRb and then the TAZ2 domain. TAZ2 and pRb do not associate directly, only within ternary complexes formed by binding of both proteins to E1A,
which acts as molecular hub involving allosteric regulation. Reproduced with permission from Nature Publishing Group: Ferreon et al. [7]. (Online version in colour.)
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in a paper by Cooper & Drysden [6], where they suggested

that allosteric communication can take place without any

change in mean structural conformation. Since then, a diverse

array of allosteric regulation mechanisms which involve vary-

ing contributions from the dynamics of the protein have been

discovered; these have been summarized in figure 1. A uni-

fied theoretical framework for allosteric phenomena has

emerged with the ensemble view of allostery, which focuses

on the statistical nature of allostery [8]. The perturbation

caused by allosteric ligands reshapes the original free-

energy landscape of the protein, changing enthalpic and

entropic factors that stabilize different protein conformations

and redistributing the thermodynamic ensemble.

In the light of this modern thermodynamic understand-

ing of allostery, stochastic Markov models have become

popular as a statistical tool that can provide insight into the

mechanism behind allostery. Markov models are typically
states-and-rates network models, which assume that a system

exists in one of several discrete states and describe the prob-

ability of transitions between these states. The fundamental

assumption of Markovian models is one of memorylessness,

i.e. the probability of transition from one state to another

depends only on the current state and not the history of

the system.

In particular, Markov state models (MSMs) coupled with

molecular dynamics (MD) simulations are being increasingly

used to gain a detailed, atomistic and predictive understand-

ing of biomolecular processes like allostery. MSMs are kinetic

maps of a system’s underlying free-energy landscape, which

allow us to extract essential information on the perturbation

caused by allosteric ligands in the protein’s energy landscape.

Allosteric modulations can often involve supra-millisecond

timescales [9] and with current high-performance computing

resources, simulation trajectories struggle to reach these.
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MSMs can, however, be built from multiple simulations

much shorter than the timescale of interest and yet describe

long timescale dynamics accurately. MSMs can be used for

adaptive sampling [10] or be constructed from enhanced

sampling simulations (e.g. replica exchange) [11], making

them even more attractive for bridging the timescale gap.

Once we have an MSM for a system, it can be used to calcu-

late many quantities of interest and draw connections with

experimental data. Finally, the resolution of an MSM can be

smoothly tuned from granular and detailed to coarse and

simple. They can therefore offer a reduced view of the ensem-

ble of a protein’s spontaneous fluctuations and generate

human-comprehensible insights into an allosteric system.

It should be noted that, until now, the lion’s share of the

effort to provide a theoretical description of allostery has

been dedicated to path and community analysis [12,13].

This approach models the protein as a network of its residues

and tries to identify the clusters of atoms and the atomic

interactions that connect the active site to its allosteric effec-

tor. This is markedly different from an MSM as the nodes

of an MSM network do not represent fragments of the protein

but rather different conformations of the full molecular

system. However, a few papers have applied concepts from

Markov modelling to traditional residue-based networks

and these have also been discussed in this article.
2. Overview of Markov state modelling theory
MSMs normally consist of two components [14]:

(a) a discretization of the system’s state space into n disjoint

sets S1, . . . , Sn

(b) a transition matrix of conditional transition probabilities

P: Pij(t) ¼ Prob(xtþt [ Sjjxt [ Si), where t is the charac-

teristic lag time for which the model is constructed.

Armed with this information, one can now correctly

derive many thermodynamic and kinetic quantities of inter-

est. These can be computed either by sampling an artificial

trajectory from P or by performing algebraic computations

on the transition matrix. For example, the transition matrix

P gives rise to a stationary distribution p by virtue of

the simple eigenvalue problem pTP ¼ pT. Moreover, the

dominant contributions to the system dynamics can be

obtained by solving Pri ¼ rili for the eigenvectors ri and

eigenvalues li of the system. The eigenvalues correspond to

the relaxation timescales ti ¼2t/jln(li)j, while the eigen-

vectors represent the changes in the system that takes

place within those timescales.

The technical complexities of constructing MSMs from

MD trajectories can be circumvented with software libraries

like PyEMMA [15] and MSMBuilder [16], which automate

this procedure to a great extent. The most critical challenge

for these software programs is finding a good discretization

for the conformation space of the protein without relying

on user intervention or specialized knowledge about the

system. A typical analysis using PyEMMA or MSMBuilder

is initiated by loading the molecular topology file and a list

of the simulation trajectories one wants to analyse. Molecular

descriptors or ‘features’ (e.g. distances between atoms, di-

hedral angles or contacts) are defined by the user, which

are then computed for each frame in the simulation
trajectories, thus transforming the Cartesian coordinate trajec-

tories into feature vectors. The next step is to conduct a linear

transformation on these feature vectors for dimension

reduction using time-lagged independent component analy-

sis (TICA) [17], which can identify a subspace in the feature

space containing the slowest kinetic modes by maximizing

the autocorrelation of the reduced collective coordinates. As

TICA can capture the slow, chemically relevant transitions

in a system, it is preferable to the more commonly used prin-

cipal component analysis (PCA) for the construction of

kinetic models because the latter only maximizes the variance

in the reduced coordinates and pays no importance to kinetic

information. The TICA reaction coordinates can be used to

project the free-energy of the system along with them. Now

that one has a convenient low-dimensional representation

of the MD data, k-means clustering [18] is used to decompose

the free-energy landscape into hundreds of discrete ‘micro-

states’ such that each frame of the trajectories can be

assigned to one of these microstates using a Voronoi parti-

tioning. The discretized trajectories are used to estimate an

MSM of the microstates by counting the number of tran-

sitions between microstates, computing the transition count

matrix (TCM), normalizing it with the total number of tran-

sitions emanating from each state and enforcing detailed

balance on the obtained transition matrix using symmetriza-

tion. This model is useful in itself and can be used to calculate

quantities of interest; however, it is too granular to provide a

simple, intuitive picture of the dynamics of a protein. This

can be achieved by coarse-graining the MSM into a hidden

Markov model (HMM) with a few metastable states, using

robust Perron cluster analysis (PCCAþ) [19]. PCCAþ is a

fuzzy version of the spectral algorithm for partitioning

graphs that assigns each microstate a probability of belonging

to a metastable macrostate. Whether the resulting HMM

satisfies the Markovian assumptions can be verified with a

Chapman–Kolmogorov test. The MSM procedure has been

summarized as a flowchart in figure 2.

It must be stressed that while automated MSM construc-

tion software is very useful, these programmes are not yet at

the stage where we can blindly use them as a black box tool.

Users must exercise judgement when choosing input features

that will be fed to the dimension reduction algorithm. Carte-

sian coordinates suffer from the defect of mixing local and

global motions and therefore, interatomic distances should

preferably be used in their place. The use of dihedral angles

can also be problematic if the periodicity is not properly

taken care of; the sines and cosines of these angles can be

used instead. The choice of algorithm used for state space dis-

cretization is also critical for building a good MSM and must

be made carefully. In the limit of infinite data, the final MSM

should not really be affected by this choice; but in practice,

we operate in the data poor regime. The recipe of TICA and

k-means clustering used in PyEMMA has been subjected to

some criticism in [20], because TICA is a non-unitary trans-

formation which distorts the free-energy landscape and the

geometrical nature of k-means clustering implies that borders

between adjacent microstates do not respect free-energy

barriers. The authors have proposed a combination of PCA

and density-based clustering as an alternative method of

defining the microstates [20]. Experimentation with different

dimension reduction techniques, clustering algorithms and

parameters therein is thus encouraged to ensure that the

final MSM is robust to these choices, passes the tests for
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Markovianity, and has low statistical errors in the estimated

kinetic quantities.
3. Applications of Markov modelling to study
allostery

(a) Experimental studies
The earliest use of Markov modelling to study allostery was

with the application of mechanistic Markov models to explain

experimental data. Mechanistic models usually rely on a

simple state-space discretization which does not consider ato-

mistic detail, typically distinguishing only between bound/

unbound or active/inactive states. Madsenb & Yeo in their

1998 study [21] used mechanistic Markov models to propose

an allosteric mechanism for the concentration-dependent

modulation of ion channel behaviour by drug molecules. The

linear sequential mechanism which was then accepted for

explaining the blockade of ion channel activity predicted

that the channel activity will decrease monotonically with

increasing concentration of a non-competitive inhibitor (NCI)

molecule. However, experiments observed a more complex

behaviour in some systems such as the skeletal muscle nicotinic

acetylcholine receptor: increased activity at low concentrations

of NCI in addition to the classic inhibition at high concen-

trations. To explain these results, the authors assumed a

sterically limited drug binding model with two closely located

but separate binding sites in the extracellular pore region of

the ion channel, one inhibitory and one stimulatory. Their con-

siderably more complex Markovian reaction network consisted

of three connected, parallel activation pathways with the drug

not bound at all, bound to the inhibitory site and bound to the

stimulatory site. The stationary distribution of their Markov

model was used to estimate quantities like mean open time

per burst whose behaviour fell in line with experimental expec-

tations. Boras et al. [22] used mechanistic Markov models to

understand how the holoenzyme protein kinase A (PKA) is

activated by the binding of cyclic adenosine monophosphates

(cAMPs) to the protein’s two cyclic nucleotide binding

domains (CBDs) A and B on each regulatory (R) subunit.

They examined five candidate reaction mechanisms whose
parameters were fitted to the experimental data by minimizing

the weighted sum of squares residual, and the goodness of fit

for each was evaluated using an F-test. The resulting 20-state

dually regulated model, which allowed both CBD-A and

CBD-B binding to affect activation of the catalytic (C) subunits

was found to be the best explanation for the experimental data.

Their results show that CBD-B plays an important role in R?C

interaction and facilitates the release of the first C-subunit prior

to the binding to CBD-A, highlighting the importance of

heterodimer interactions and cooperativity in PKA activation.

(b) Simulation studies
A majority of studies have focused on analysing MD simu-

lations of allosteric proteins with Markov models. Malmstrom

et al. studied conformational ensembles of CBD-A, one of the

cyclic nucleotide binding domains of PKA in cAMP-free and

cAMP-bound states (figure 3a) to understand the mechanism

of allostery atomistically [23]. The MSMs built for both ensem-

bles (figure 3b) show that the free-energy landscape is shallow

with many inter-conversion pathways between the active and

inactive states. The addition of cAMP slows down the transition

rate from the active to the inactive state but not vice-versa,

thereby increasing the population of the active state and indicat-

ing that conformational selection is the primary mechanism

here. MSMs were also generated for each of the key structural

motifs involved in the signal transduction process. These

revealed that the change in dynamics of the B/C helix was

the rate-limiting step and its motion was critical for signal

propagation to the N3A motif (figure 3a).

Thayer et al. [24] used the MD-MSM combination to study a

small single-domain allosteric protein CRIB-PDZ, where the

binding of an allosteric effector protein, Rho GTPase cdc42

resulted in a positive allosteric effect. They constructed a

5-state Markov model that showed allostery in CRIB-PDZ

involves a sequence-induced fit for allosteric activation and con-

formational selection for ligand binding. A kinetic network

analysis of the model also predicts that the PDZ protein binds

to the protein ligand with a 12-fold greater probability in the

allosteric route compared with the non-allosteric pathway,

which is close to experimental observations. Buchenberg et al.
[25] computationally investigated the photoswitchable PDZ
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Figure 3. Ligand-induced protein allostery illustrated for the cyclic nucleotide-binding domain of the PKA regulatory subunit. (a) The experimentally determined
conformational changes in the cyclic nucleotide-binding domain upon cAMP binding are shown. (b) From long-timescale, all-atom MD simulations, MSMs were
calculated to elucidate the conformational ensembles of the cyclic nucleotide-binding domain for the cAMP-free (cyan) and cAMP-bound (magenta) states. The
position of each conformational state node is the root mean square deviation (RMSD) of the corresponding representative conformation relative to the experimentally
determined structures. The diameter of a node is proportional to the log of its equilibrium population, i.e. the larger the node the more probable the state at
equilibrium. Reproduced with permission from Nature Publishing Group: Malmstrom et al. [23]. (Online version in colour.)
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domain (PDZ2S), for which time-resolved infrared spec-

troscopy had found that the allosteric transition occurs on

multiple timescales. The cis-to-trans photoisomerization of the

azobenzene residue was imitated using a potential-energy sur-

face switching method. However, because their simulations

were non-equilibrium (NEQ) in nature, Markovianity of

conformational transitions could not be assumed. A related

computational tool known as a dynamic network model is

therefore used instead of a Markov model, which allows time-

dependent transition probabilities to be determined. It was

found that the photoinduced opening of the binding pocket

was highly non-exponential in time. The results showed excel-

lent agreement with experiment and identified three physically

distinct phases of the time evolution: elastic response (approx.

0.1 ns), inelastic reorganization (approx. 100 ns) and structural

relaxation (approx. 1 ms). The diversity of the NEQ trajecto-

ries also dispels the notion of a single directed allosteric

pathway but rather points towards a multitude of possible

paths, consistent with the ensemble view of allostery [8].

The Bowman group has pursued a line of investigation that

is particularly relevant to the development of allosteric drugs.

They are using MSMs and MD simulations to identify cryptic

allosteric sites: transient pockets absent in crystalline structure

that can nevertheless alter enzymatic activity. These sites

can be potentially targeted by drugs. A 5000-state MSM of
b-lactamase was built [26] and representative structures of

each state were analysed for pockets with LIGSITE [27].

The pockets whose location coincided with the regions struc-

turally coupled to the active site were identified as potential

allosteric sites. The MSMs were very useful in quantifying

observables like the probability of a pocket being open and

the timescale for opening. A follow-up study from the same

group combined this method with experiments [28], where

the existence of the predicted pockets in b-lactamase from

MD-MSM was confirmed with thiol labelling experiments.

Pande and co-workers [29] ran large-scale MD simulations of

the c-Src kinase protein with the Folding@home computing

network. The resulting MSM identified key structural inter-

mediates in the activation pathways of this protein and

a novel allosteric site that could be used for drug design.

Pontiggia et al. [30] studied the interconversion between the

active and inactive states of nitrogen regulatory protein C

(NtrCR). In the apo form, NtrCR exists in a conformational

mixture of its active and inactive states. The active and inactive

forms of the protein differ mainly in the helix a4 region, which

is in allosteric communication with residue Asp54 whose

phosphorylation preferentially stabilizes the active state. The

landscape of the active–inactive interconversion was studied

in great detail by conducting many short MD simulations

with an aggregate simulation time of about a millisecond,
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using the Folding@home network. Important findings from

the MSM constructed from these data included the discovery

of multiple conversion pathways and the relative structural

homogeneity of the active state compared with the inactive

state, which was composed of several interconverting confor-

mations. This was followed up with two long, unbiased

MD runs of 21 ms and 71 ms, respectively, whose results

agreed with those from the Folding@home simulations. This

study is significant because the allosteric transition pathway

was very well sampled, as opposed to most studies in this

sub-discipline which suffer from chronic under-sampling.

Some studies using Markov modelling have focused more

on pinpointing the actual intra-molecular pathway involved

in allostery and identifying key players in the long-range sig-

nalling that takes place. A paper by Long & Brüschweiler [31]

introduces the master equation-based approach for allostery

by population shift (MAPS) which derives the timescales,

amplitudes and pathways of signal transmission in peptides

and proteins from dihedral angle dynamics. A master

equation describes the evolution of a continuous-time

Markov process and is usually of the form

dP

dt
¼ KcðtÞ,

where K is the transition rate constant matrix and c is a column

vector containing the populations of each state of the model.

The master equation can be subjected to constraints on popu-

lations and conformational transitions, which permits the

systematic investigation of perturbations due to the allosteric

ligand and their propagation within the molecule. They tested

this approach with the alanine–pentapeptide by applying a

harmonic potential to the dihedral angles of the terminal

residue Ala5 and studying how this local conformational

restraint is spread globally as monitored by the population

shifts in the distribution of the other dihedral angles. The equi-

librium distribution of the residues Ala1–Ala4 was found to be

shifted towards the coil state. The timescales for re-equilibration

in response to the perturbation were also calculated, and it was

found that the timescales for the residues closer to the site of the

perturbation were faster, meaning that it spread in a diffusive

manner. Next, they applied this technique to millisecond simu-

lations of the protein BPTI. A constraint was applied to the

Cys14 residue and, surprisingly, it was found that communi-

cations between Cys14 and loop 2 could largely bypass the

disulfide bond. In a study by Chennubhotla & Bahar [32], the

Markov network formalism was used to find pathways of allo-

steric signal transduction in large molecules. They modelled the

biomolecular structure as a network of residues through which

information diffuses in a Markovian fashion. An affinity matrix

that determines the probability of signal communication

between residues was computed based on their interaction

strength. The residue-level model can then be systematically

reduced by a soft-partition of residues into coherent clusters,

i.e. assigning each residue a probability of membership to clus-

ters. The coarsening can be applied in stages and the resulting

model is therefore inherently multi-resolution in nature. This

technique allowed Chennubhotla and Bahar to automatically

identify groups of residues acting as hubs and messengers for

collecting and passing information across the network, respect-

ively. They used it to study the bacterial chaperonin complex

GroEL–GroES and identified two possible pathways for com-

munication between the ATP binding and co-chaperonin

binding sites. A more recent study by Amor et al. [33] takes a
slightly different approach to identifying intra-molecular sig-

nalling pathways and allosteric sites. Here, a graph-theoretic

approach was used and a Markov stability analysis on an ato-

mistic graph representation of the protein performed to

identify coherent communities of atoms in the signalling path.

The adjacency graph for the molecule is built using bond ener-

gies from the DREIDING force-field [34]. Markov stability finds

an optimized partition of this graph at every timescale and, as

this Markov timescale is increased, the method virtually

zooms out, scanning across increasingly larger scales looking

for significant communities at different resolutions. The connec-

tivity between two nodes is determined using a transient

analysis of random walks that originate from the source node

and is quantified by the ‘half-life’ of a propagating signal at

the target node. This allows the determination of signalling

pathways. Like the previous study, this technique is also inher-

ently multiscale; however, unlike the previous study, this

method only uses static crystal structures and not MD simu-

lation data. A case study was performed using the active and

inactive structures of the caspase-1 protein which is known to

be allosteric. The analysis discovered that the active confor-

mation possesses a more fluid and less compartmentalized

structure which allows robust, long-distance signal propa-

gation. Bonds and residues that were found to be critical in

the active-to-allosteric pathway using transient random walk

analysis tallied with previous mutagenesis experiments and

new, alternative allosteric pathways were also identified.

Finally, computational point mutagenesis studies on the cas-

pase dimer revealed that pathways between the two active

sites are distinct from allosteric-to-active pathways. This also

agrees with experiments showing that mutating allosteric

residues does not affect dimer cooperativity.
4. Conclusion
There is a quote which is often attributed to Einstein and is of

particular relevance here: ‘Everything should be made as

simple as possible, but not simpler’. Simpler two-state models

of allostery are alluring but cannot capture the whole picture,

because allosteric modulators do more than just act as an on–

off switch. Markovian modelling can help us embrace the

complexity and stochasticity that truly underlies allostery. In

this brief review, we have seen how these models are compact

enough to be predictive yet complex enough to be a sufficient

description of the system. Markov models have been employed

variously to gain an understanding of the reaction mechanism,

the thermodynamics, the free-energy landscape perturbations,

the population shifts, the hierarchy of timescales and the

structural basis behind allostery.

Of course, because a model is only as good as the data one

uses to estimate it, MSMs are subject to the same limitations

that the MD simulations are. Insufficient sampling times and

inaccurate force fields still plague MD simulations. Neverthe-

less, with the advent of exascale computing and continuing

methodological improvements, Markov modelling and mol-

ecular simulation data are expected to greatly further our

understanding of allostery.
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14. Chodera JD, Noé F. 2014 Markov state models of
biomolecular conformational dynamics. Curr. Opin.
Struct. Biol. 25, 135 – 144. (doi:10.1016/j.sbi.2014.
04.002)

15. Scherer MK, Trendelkamp-Schroer B, Paul F,
Perez-Hernandez G, Hoffmann M, Plattner N,
Wehmeyer C, Prinz JH, Noe F. 2015 PyEMMA 2:
a software package for estimation, validation,
and analysis of Markov models. J. Chem. Theory
Comput. 11, 5525 – 5542. (doi:10.1021/acs.jctc.
5b00743)

16. Beauchamp KA, Bowman GR, Lane TJ, Maibaum L,
Haque IS, Pande VS. 2011 MSMBuilder2: modeling
conformational dynamics on the picosecond to
millisecond scale. J. Chem. Theory Comput. 7,
3412 – 3419. (doi:10.1021/ct200463m)
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