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Using the simple ‘allosteron’ model, we show that it is possible, in principle, to

elicit pathways by which fluctuation allostery affects self-assembly of protein

complexes. We treat the cases of (i) protein fibrils and nucleation, (ii) n-mer

protein complexes, and (iii) weakly attractive allosteric interactions in

protein-like soft nanoscale objects that can be tuned to define exclusive

self-associating families.

This article is part of a discussion meeting issue ‘Allostery and molecular

machines’.
1. General Introduction
Effector-binding and self-assembly are vital to the function of proteins,

which form part of all living organisms. Allostery, a non-local signalling and

cooperativity among chemically remote sites, commonly has been related to bind-

ing-induced conformational changes: regulatory ligands trigger the transitions

between ‘relaxed’ and ‘tense’ state of a protein [1,2]. However, as evidenced by

a moiety of proteins that show cooperative or anti-cooperative binding without

major conformational change, allostery does not imply such transitions. In this

work, we investigate an alternative, but less familiar, mechanism of allosteric sig-

nalling compared with that of structural change. This mechanism exploits the

modification that substrate binding, in general, applies to the amplitudes of ther-

mal fluctuations around the mean structure of an allosteric protein. As such a

restriction of random motion constitutes in turn a change in entropy, the full

allosteric free energy may contain components that arise purely by this route [3].

A feature of this mechanism is that to contribute to non-local allosteric inter-

action, the longer-wavelength low-frequency ‘global’ modes of motion are

recruited, rather than the higher-frequency and more local motions (such as

side-group oscillation). Successful models of protein dynamics that capture the

effect are, therefore, coarse-grained rather than atomically resolved. Specific

models of particular protein systems at various degrees of coarse-graining have

been constructed [4–7], which show that the orders of magnitude of real allosteric

free energies can be generated by such restriction of dynamical correlations alone.

An equivalent statement of the effect is a restriction of thermally accessible states

on binding [8]. An explanation of allostery based on thermal fluctuations thus

needs to account for the contributions of collective, non-local, vibrational modes

to the binding free energies in a suitably chosen model. To compute changes of

conformational entropy that arise from binding one or several ligands is a well-

known, yet demanding, theoretical task in protein thermodynamics [9,10]. Similar

challenges are presented to experiments, which need to identify the large-scale

dynamical changes at many points on a protein on substrate-binding, and

to connect them to thermodynamics. Nuclear magnetic resonance (NMR) [11],

X-ray analysis of B-factors and isothermal calorimetry [12] have been deployed

in comparison with modelling.

At the simplest level of theoretical approach to this phenomenon of ‘fluctu-

ation allostery’, the use of the toy model of a protein at the coarsest possible

level, with just one (harmonic) degree of freedom, has been extremely instructive.

This simple unit, which can be represented without loss of generality as the scissor

structure of figure 1a (although other spatial and geometric representations are

equally applicable, as any normal mode within the harmonic approximation is
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Figure 1. Schematic of (a) the allosteron and (b) its binding. (Online version in colour.)
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mathematically equivalent), possesses the minimal require-

ments of: (i) an internal structure that supports thermal

structural fluctuations, (ii) one or more potential effector-

binding sites with internal rules that modify the internal

fluctuations, and (iii) a route to bind to other units (figure 1b).

It is straightforward to calculate the free energy F(k) of a

single harmonic degree of freedom over its fluctuation spec-

trum, constrained by a spring constant k. As the relevance of

this treatment of the normal modes of crude protein models

is restricted to low-frequency, global modes, it is appropriate

to use the classical (continuous-energy) approximation to the

harmonic-oscillator partition function Z1:

F(k)

kBT
¼ � lnZ1 ¼ � ln

ð1

�1

exp � kx2

2kBT

� �
d

x
l

� �� �

¼ � 1

2
ln

2pkBT
kl2

� �
, ð1:1Þ

with Boltzmann’s constant kB, temperature T and a length scale

l for normalization.

Modelling the fluctuation restriction of effector-binding as

a modulation of the effective spring constant for the internal

mode by the dimensionless increment d, allows a simple and

direct calculation of the allosteric free energy DDF of even a

single degree of freedom. As a single dynamical mode of a

mechanical system is typically extended across the protein,

it will, in general, offer more than one potential binding

sites, which are also close to anti-nodes of the global mode,

where substrate-binding will, in general, affect the value

of k. If two successive effector-binding events take k! k þ
d! k þ 2d:

DDF ¼ F((1þ 2d)k)þ F(k)� 2F((1þ d)k)

¼ kBT=2 ln
1þ 2d

(1þ d)2

� �
:

ð1:2Þ

We have called this minimal fundamental building block for

models of allosteric systems the ‘allosteron’1. In a natural exten-

sion of the single-mode allosteron unit, allosteric interaction

between dimers can be modelled at the simplest possible level

by associating two allosterons into a dimer (figure 1b), introdu-

cing a single new parameter of the harmonic coupling between

them, kc. At any level of approximation within linear response,

the elastic part of the Hamiltonian H relevant to entropy-

driven allostery (without contributions of momenta) is a

quadratic form in the vector x of allosterons’ degrees of freedom,

with the (spring-constant) Hessian matrix H:

H ¼ k

2
xTĤx, ð1:3Þ

written in terms of a dimensionless form, Ĥ, of H in units of k. If

two allosterons with internal modes governed by spring
constants k1 and k2 meet in association, the Hessians H1 and

H2 in terms of the two single degrees of freedom (x1, x2), one

per monomer, before and after their weak association are

H1 ¼
k1 0
0 k2

� �
and H2 ¼

k1 þ kc �kc

�kc k2 þ kc

� �
: ð1:4Þ

The entropic free energy of binding, from the introduction of the

coupling interaction between two free allosterons is

DF ¼ kBT=2 ln
det (H2)

det (H1)

� 	

¼ kBT ln 1þ kc
1

k1
þ 1

k2

� �� 	
:

ð1:5Þ

This is, of course, positive definite as it represents a reduction in

internal entropy of structural fluctuations on binding. The full

free energy of binding will include an enthalpic term DU, so

DFbind ¼ DF þ DU, for which we will develop a simple model

below, in §4.

Such an approach has been used successfully as the

coarsest-level model for allosteric protein dimers [4–6], in

decorated form as a basis for theories of mode-coupling to

local fast dynamics [5], and as a generator of fitness land-

scapes in the evolution of allosteric systems [12]. In spite of

its extreme simplicity, this toy-model approach to protein

dimers, for example, has delivered highly non-trivial insights,

such as a region of its three-dimensional parameter space

where a dimer may exhibit negative cooperativity [6].

Within a graded series of approximations to protein

dynamics, the allosteron model sits at a similar level of

coarse-graining to the rotational translational block (RTB)

approximation [13]. The strong elastic inhomogeneities

within proteins that render the RTB picture appropriate also

suggest that the dominance, for some purposes, of a few low-

frequency and long-range dynamic modes is a valid one.

Allostery without structural change, driven by modulation of

thermal fluctuations, which depends on long-range infor-

mation transfer, is one such application. As the degree of

approximation is refined, we arrive at models that resolve indi-

vidual residues (such as elastic network models—ENMs

[12,14–16]), and finally at all-atomistic models [12].

In this work, we apply the allosteron model to elucidate

the potential contributions of internal fluctuation entropy to

protein self-assembly. The concatenation of fibre-forming

proteins, for example, is not usually thought of as an example

of allostery. However, if we think of the two effector mol-

ecules for an allosteric protein as copies of the protein itself,

then the connection is evident. There will, in general, be a

modification of the internal fluctuations in a protein when

it joins a self-assembling complex or fibre. In principle, this

generates a non-equivalence of binding free-energies for
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each protein in the complex, even when these are structurally

identical and when there is no mean change in structure on

binding. In the following, we explore this insight, at the

level of the allosteron model, in two cases: in §2, for protein

fibrils of arbitrary molecular weight; in §3, for ligand binding

of finite protein n-mers. Section 4 then explores another possi-

bility identified by this approach—that of elastically tuned

families of proteins that possess weak mutual and exclusive

association.
.org
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2. Self-assembly of allosteron chains
Protein fibrils that consist of reversibly bound proteins may

be viewed as supramolecular ‘living’ polymers that grow

and break up [17–19]. At steady state, the chain lengths of

polymers obey equilibrium statistics, and may therefore be

controlled by the thermodynamic properties of the building

blocks. These properties include an enthalpic and entropic

gain or penalty of monomer association to the polymer.

Because of structural, hydrophobic and electronic effects, to

name a few, the free energy of monomer association to a

polymer often depends on the length of the oligomer. Conse-

quently, polymerization is often cooperative and the degree

of polymerization strongly depends on the cooperativity
factor [17,20–22].

The entropic and energetic contributions that lead to

(cooperative) supramolecular polymerization can easily be

included in the allosteron model. For instance, the association

of a monomer can be entropically penalized by stiffening the

monomer through an increase of the internal spring constant

k 7! ak with a . 0, even in the absence of coupling, i.e. Kc ¼

0. The entropic penalty of dimerization is then DSnucl ¼

2kB lna, whereas the entropic penalty of elongation is only

DSelong ¼ kB lna. Hence, the allosteron model captures the

entropic origin for cooperativity by a statistical-mechanics

description [23]. The novel feature of the allosteron model

is that the internal modes of the monomers are coupled

(Kc . 0), which enables entropic allosteric signalling along

the backbone of the polymer. In this section, we show

that coupling leads to an entropic interaction range of
ffiffiffiffiffi
Kc

p

monomers, as well as an increase in the polymerization

concentration by a factor of
ffiffiffiffiffi
Kc

p
.

We predict these phenomena from the allosteron model

by investigating the equilibrium statistics of an allosteron

solution in a volume V [24,25]. The grand potential of the

mixture is given by

V

VkBT
¼
X1
N¼1

r(N) ln (r(N)y)� 1� ln (ZN)� mN
kBT

� 	
: ð2:1Þ

In this expression, r(N ) is the number density of chains of

length N (note that we consider a monomer to be a chain of

length N ¼ 1), y is the interaction volume of a monomer,

ZN is the partition function of a chain of length N and m is

its chemical potential.

The partition function of the chain is obtained from the

Hamiltonian where allosterons with spring constant k bind

through a binding energy e at an entropic cost dictated

by the coupling-spring constant kc. This bead-spring-like

Hamiltonian is constructed by enhancing equation (1.3) by

an enthalpic term e to give H ¼ 1
2 kxTĤNx� e(N � 1). The

dimensionless Hessian is a tridiagonal matrix of which the

main-diagonal elements are given by M11 ¼MNN ¼ 1 þ Kc
and by Mnn ¼ 1 þ 2Kc for 1 , n , N. Furthermore, the first

upper and lower diagonal elements equal 2Kc, whereas all

other matrix elements equal zero. The partition function is

given by

ZN ¼
ð

dNx exp � H
kBT

� �

¼ ZN
1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ĤN

p e�ððe=kBTÞðN�1ÞÞ, ð2:2Þ

withZ1 ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkBT=k

p
the partition function of a free monomer,

see equation (1.1).

We minimize the grand potential in equation (2.1) to find

that we can write the solution for the distribution function as

r(N) ¼ 1

y
KNe�(g�~m)N=kBT , ð2:3Þ

where we have defined the free energy of aggregation g ; �e�
kBT ln (

ffiffiffiffi
w
p

), the chemical potential ~m;e� m� kBT lnZ1=
ffiffiffiffi
w
p

and the equilibrium constant KN ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wN�1=det ĤN

q
. The sub-

sidiary definition w;1=2þ Kc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Kc

p
=2 guarantees

that the equilibrium constant equals unity for the monomers,

N ¼ 1, but converges to a finite value for large N (see electronic

supplementary material).

Indeed, from the Hamiltonian of the chain we deduce that

the entropic interactions between monomers along the back-

bone extend over a distance of a persistence length
ffiffiffiffiffi
Kc

p
. For

chains shorter than this, the stiffness may be considered large

and it can be shown that det ĤN � NKN�1
c (see electronic sup-

plementary material). For infinitely long chains, however, we

find that det ĤN ¼ swN�1, where s is a constant cooperativity
factor: If the cooperativity factor is unity then monomer

association to a chain is independent of the chain length

and polymerization is ‘isodesmic’. For small values of s,

elongation is considerably easier than dimerization and

polymerization is cooperative. In the present case, the value

of the cooperativity factor follows from the fact that the two

limits of det ĤN must crossover at N ¼
ffiffiffiffiffi
Kc

p
. This gives the

weak dependence s/ K21/4
c , which suggests that, in the

absence of ligand-binding to the monomers, the allosteron

model virtually predicts isodesmic polymerization.

We confirm this by finalizing our calculation of the chain-

length distribution of the polymers via a calculation of the

chemical potential, m, which is implicitly given by the mass

balance f ¼
P1

N¼1 Nr(N)y, with f the overall volume fraction

of the monomers [24,25]. By introducing the mass action

(proportional to the experimentally controllable monomer

concentration) X ¼ X(f,T; Kc,e) ; f exp (g=kBT), we cast the

mass balance in the form

X(f,T; e,Kc) ¼
X1
N¼1

NKNe�~mN=kBT : ð2:4Þ

We numerically extract the chemical potential and insert

it into equation (2.3) to obtain the length distribution of

the chains.

From this distribution, we obtain the fraction of poly-

merized material, f, and the number-averaged degree of

polymerization, �Nn. Figure 2 shows these quantities as a

function of the mass action for a coupling constant Kc

ranging from 0 to 104. We have scaled the mass action using

Xp ¼ 2.34, at which half of the material is polymerized for the

true isodesmic case, Kc ¼ 0 [24]. As expected, supramolecular

polymerization remains close to isodesmic: the polymerization
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curve maintains its symmetric S shape, and the degree of

polymerization for X� Xp, given by �Nn /
ffiffiffiffiffiffiffiffiffi
X=s

p
, only

weakly depends on Kc through s � K21/4
c .

Nevertheless, the crossover concentration and crossover

temperature may be affected by the entropic coupling

between the monomers through the coupling parameter Kc.

Indeed, in the isodesmic limit (KN ¼ 1 for all N ) the

polymerization temperature is

Tp ¼
DHp

DSp
/

1

ln
ffiffiffiffiffi
Kc

p , ð2:5Þ

with DHp ; e the enthalpy of polymerization and

DSp ;kB ln (
ffiffiffiffi
w
p

=4f) the entropy of polymerization. We hence

find that the polymerization temperature is only weakly

affected by the coupling constant. By contrast, the polymeriz-

ation concentration is much more strongly affected. This

quantity is given by

fp ¼
1

4
exp �

DHp � TDSp

kBT

� �
/

ffiffiffiffiffi
Kc

p
: ð2:6Þ

This shift in polymerization concentration originates from

the stiffening not only of the associating monomer, but also

of the monomers within a distance /
ffiffiffiffiffi
Kc

p
from the chain

end. The interaction range, as well as the shift in polymeriz-

ation concentration, may be reduced by increasing the

internal spring constants of the monomers to k 7! ak, which

leads to Kc 7! Kc/a. We speculate that this could be achieved

by the binding of activators, such as ligands, to the monomers.

The phenomena of ligand-induced dimerization and polymer-

ization can potentially be addressed using the allosteron

model. It should be noted that this generates a copolymer

that consists of both activated and non-activated monomers.

As we have seen, the range of entropic interaction exceeds

the nearest-neighbour distance, and currently available Ising-

like models cannot be applied directly [26]. We address this

in forthcoming work. The importance of entropic signalling

is not limited to supramolecular polymerization alone, but is

also of crucial importance to the allosteric properties of

proteins, as we discuss in the following.
3. Allosteric interactions on ring complexes
In this section, we apply the model of coupled allosterons—as

exploited for polymerization above—to the ligand-binding

cooperativity (allostery) of polymers of fixed size. Specifically,

we aim at the relative entropy changes induced by binding,
conditional on prior binding events. Many proteins are

known to occur as ring oligomers, such as the oxygen carrier,

ferro-protein haemoglobin, or to form multi-protein complexes

of ring topology. Owing to their doubly connected and intrin-

sically stable structure, rings are promising candidates to

display entropy-driven allostery without conformational

change [3]. In fact, for the hetero-tetramer haemoglobin, the

cooperative O2-binding is well known [27], yet the underlying

mechanism is still a matter of active research [28,29]. From a

modelling point of view, rings’ periodic boundary conditions

suggest the possibility of generalizing results obtained for

small rings to larger ones.

(a) Model
We briefly recall the main ingredients of the coupled-allosteron

picture, located within the class of ENMs [14,30]: Each allos-

teron, called ‘unit’ in what follows for the sake of brevity,

possesses an internal ‘breathing’ mode [7,31,32], modelled as

a single harmonic degree of freedom, of spring constant k

(figure 1). One unit can represent a monomer, a protomer

such as a helix dimer, or a protein, and interacts with its two

neighbours on the ring via a harmonic mode of constant kc,

of relative strength Kc ; kc/k. The dimensionless Hessian

matrix Ĥ that encodes the network’s connectivity takes for a

tetramer (four-unit) ring the form

Ĥ ¼

1þ 2Kc �Kc 0 �Kc

�Kc 1þ 2Kc �Kc 0
0 �Kc 1þ 2Kc �Kc

�Kc 0 �Kc 1þ 2Kc

0
BB@

1
CCA: ð3:1Þ

A first approach to model ligand-binding is to assume a

bound unit’s internal mode to change in strength, according

to k 7! ak. By taking this to be the only binding-induced

modification of interactions, we arrive at a single-parameter

model of binding. A more differentiated picture of allostery

emerges from invoking a two-parameter model, in which

ligand-binding is assumed to affect also the strength of the

harmonic coupling to the neighbouring units, according to

kc 7! bkc. The mappings in Ĥ which reflect this model of

binding, exemplified for unit i, take 1 7! a and Kc 7! bKc in

the ith diagonal entry, and multiply off-diagonal entries in

both the ith row and the ith column by b.

(b) Allosteric free energies
In order to quantify the entropy-induced cooperativity

between successive binding events, we analyse differences of
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entropic free energies of binding, such as the allosteric free

energy for two bindings,

DDF2,1 ¼ F2 � 2F1 þ F0: ð3:2Þ

Herein, F are total free energies computed via the determinant

of Ĥ, and subscripts 0, 1 and 2 refer to the state with no ligand,

one ligand, and two ligands bound, respectively.
(c) Trimer rings
Despite its simplicity, a trimer ring may illustrate transpar-

ently the mechanism of cooperativity (of both signs) at

work between states of different binding degrees. Indeed,

allosteric interactions exist between the three units, pairwise

neighbours in this case.

The values and spacing of free energies of binding, DF, for

the ith binding defined as DF ; Fi 2 F0, for no site, one site,

two, and eventually all sites binding a ligand, computed

within the one-parameter binding model, are plotted in figure

3a. Cumulative binding is seen to be cooperative, i.e. favoured

by the differences of DF, for all values of a and Kc. The map of

the particular allosteric free energy DDF2,1 (cf. equation (3.2))

against a and Kc, in figure 3b, shows explicitly the purely

cooperative allostery predicted by this model.

In part, this prediction may be traced back to the one-

parameter model of binding, which rescales diagonal

elements of the Hessian Ĥ only, combined with the logarith-

mic dependence of the free energy on the (eigenfrequency)

spectrum of Ĥ [7]. A more trimer-specific explanation relates

to the mentioned degeneracy as regards nearest neighbours:

Local decrease (increase) of the extent of thermal fluctuations

and the associated entropy loss (gain), induced by changing

one internal-mode strength, automatically carries over to all

remaining units, which in a trimer are all directly coupled.

Therefore, the entropy change upon altering another

internal-mode strength is smaller in modulus than that for

a previous binding.

Within the two-parameter model of binding, we find that

both cooperativity and anti-cooperativity of successive bind-

ings (both signs of DDF ) can occur, depending on the set of

modifiers, (a, b), and the initial ratio Kc of coupling to

internal-mode strength. Maps of DDF2,1(a, b) such as in

figure 4, parameterized by Kc, indicate anti-cooperative bind-

ing to arise particularly for strengthened internal mode and
weakened coupling. Larger values of Kc or a cause more pro-

nounced allosteric interactions, i.e. a larger range of values

of DDF2,1.

(d) Tetramer rings
Haemoglobin is one of the most prominent proteins of tetramer-

ring topology. In contrast with binding to a trimer ring,

successive binding to the four units can proceed via more

than one pathway, so that both number and configuration of

bound ligands [32] have to be specified in DF. The energy-

level plot for a tetramer within the one-parameter model of

binding is provided in figure 5. It reveals that two ligands at dia-

metrical sites of the tetramer ring, either stiffening or weakening

the respective internal modes, are entropically slightly less

favourable than two ligands at adjacent sites. If we recall the

plausibility argument for cooperativity on a trimer, via

entropy-cost transfer between nearest neighbours through

local change of fluctuations, the ordering of the DF agrees

with intuition. As in the trimer case, calculations based on the

one-parameter model of binding predict only positive allostery.

Already these minimal examples of cyclic coupling

demonstrate non-trivial allosteric interactions of subtle

parameter dependence between units with binding sites.
4. Dynamic allostery generates tuned weak
attraction

Weak association of proteins is determined by a balance of the

attractive forces operative at the mutual surfaces of interaction,

and entropic repulsion. The attractive forces may have for their

origin van der Waals, hydrophobic or screened electrostatic

effects. The entropic repulsion arises from the penalty that

their association generates from the constraints it places on

the amplitude of internal structural fluctuations. A general

question of interest is whether this delicate balance can be

‘tuned’ in different ways. This might allow distinct families

of weakly associating nanoparticles (or proteins in the biologi-

cal case) which bind reversibly among themselves, but which

do not associate with other, differently tuned, families. An

example of how weak, non-specific interactions may affect a

network of protein–protein interactions in just the way

described here has recently been published by Bhattacharyya
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et al. [33]. In this case, native and non-native homologues of the

protein DHFR, when artificially upregulated in Escherichia coli,
were shown to have very different effects. The native form was

able to alter abundances and functions of a network of several

associated proteins, whereas the non-native form, though still

functional by itself, did not possess the ‘resonance effects’

with the same network. The evidence for a network of weak

allosteric interactions is in the mutual effects on function in

the case of the native protein. Here, we use the simple ‘allos-

teron’ model, with both coupling spring constants and

enthalpic surface forces derived from Lennard–Jones (L-J)

potential, to explore the possibility for such entropic tuning.

Starting from the entropic free energy of binding, DF,

given in equation (1.5), and the total free energy DFbind ¼

DF þ DU, we construct a simple model for both the enthalpic

term, DU, and the spring constant kc. As a general model for

weakly attractive interactions between protein surfaces we

choose the L-J potential

U(r) ¼ A
r12
� B

r6
: ð4:1Þ

One of the advantages of a physics-based phenomenologi-

cal model such as the L-J potential is that it is able to illustrate

and work with the correlation between the enthalpic binding
strength DU ¼ min [U(r)] ¼ U(rmin) and kc ¼ U00(rmin). Using

the parameterized form of the interaction gives

DU ¼ � B2

4A
and kc ¼ U00(rmin) ¼ g

B7=3

A4=3
, ð4:2Þ

with g ¼ 156
2

7=3 � 42
2

4=3 ≃ 14:3.

Combining these allows a single-degree-of-freedom para-

meterization of the set of possible L-J couplings, using DU as

the free variable, and finding

kc ¼ 44=3gB�1=3(DU)4=3: ð4:3Þ

The dimensionless free energy at the potential minimum

f ¼ DFbind/kBT can be written in terms of a dimensionless

potential energy minimum x ¼ U(rmin)=kBT as

f(x) ¼ ln (1þ ax4=3)� x: ð4:4Þ

Figure 6 plots this function for various values of the renorma-

lized coupling constant, a. Note that the asymptotic form

decreases linearly with x as it must from the dominance of

the enthalpic interaction, but there exist other values of x, cor-

responding to a ‘tuning’ of the L-J coupling to the inner elastic

strength of the proteins (the ki), which lead to a family of shal-

low local minima. The depth and value of this minimum

increases with decreasing a (figure 6). There is a lower critical

value of a ≃ 1.4 below which the minimum disappears.

A word is necessary on the values of the interaction

strengths. These are, of course, very small (of order kBT/50).

However, this corresponds to the response of a single dynami-

cal mode of internal motion only. In practice, there will be many

internal modes that are coupled to the surface interaction, suffi-

cient to create an associative energy of the order of kBT. Should

two proteins from different families attract, the mutual free

energy of attraction will have the same form as the entropy/

enthalpy function within a single family, but will not be at

the tuned minimum potential. This permits the emergence of

interprotein potentials that generate weakly associated clusters

for proteins within ‘tuned’ families exclusively.
5. Discussion
The allosteron model constitutes the maximal level of coarse-

graining within models for protein dynamics that still captures

the physics of thermally excited modes of deformation within

proteins and their complexes. In spite of this level of simplicity,

the model is nevertheless able to make non-trivial predic-

tions about the contribution of structural fluctuations to the

statistical mechanics of complexation, in terms of the ratio of

coupling to internal interactions Kc. Such an extreme degree

of coarse-graining, although it may clarify the role of internal

entropy in protein–protein interactions, does not at first seem

to promise any more specificity, such as accommodating

sequence-specific or mutation effects. However, changes of

protein sequence will, in general, alter the key structural

elastic constants of allosteron models, so may, in principle, be

parameterized. The models presented here may, therefore, be

applied to real systems where effects emerge at this highly

coarse-grained level. Parameterization can be achieved from

finer-grained modelling at fully atomistic [4] or elastic network

[12] levels.

When applied as a building block of supramolecular poly-

mers, the allosteron model is capable of not only capturing

cooperativity in the usual way, but also predicting entropic
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allosteric signalling along the backbone of the chain. When a

monomer associates to the chain, a number of
ffiffiffiffiffi
Kc

p
of mono-

mers near the chain end are entropically penalized, which

causes an increase in the polymerization concentration by a

factor
ffiffiffiffiffi
Kc

p
. We find that a reduction in the polymerization

concentration may be triggered through ‘activation’ of the

monomers, e.g. by stimuli such as ligand-binding that

modify the coupling constant to Kc 7! Kc/a.

We have also investigated ligand-binding to allosteron com-

plexes that represent ring-type proteins. In this case, binding is

assumed to modify the strengths of both internal and coupling

interactions and predicts a palette of cooperative binding be-

haviour even for small rings. In particular, maps of the

allosteric free energy for two binding events in the parameter
space of the two spring modifiers show regions of negative

allostery and an intriguing non-monotonic dependence.

Further studies along these lines might extend to inter-ring

coupling, possibly adding to the understanding of allostery

without conformational change reported for chaperonins [34].

When an allosteron coupling model is derived from a

specific model for intermolecular potentials, we find the possi-

bility to ‘tune’ the surface attraction and the internal elasticity

of soft nanoparticles, in general, and proteins in particular.

Simultaneous tuning of the dimensionless interparticle

coupling Kc and the enthalpy of binding creates ‘families’ of

particles that possess weak mutual associativity (and thereby

potential allosteric activity of other, enzymatic, kinds).

The application of the allosteron model to the three cases

of small, specifically bound clusters, large specifically bound

fibrils and non-specific binding has for all revealed subtle

phenomena that are open to experimental investigation.
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Endnote
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