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While the theory of protein folding is well developed, including concepts such

as rugged energy landscape, folding funnel, etc., the same degree of under-

standing has not been reached for the description of the dynamics of

allosteric transitions in proteins. This is not only due to the small size of the

structural change upon ligand binding to an allosteric site, but also due to chal-

lenges in designing experiments that directly observe such an allosteric

transition. On the basis of recent pump-probe-type experiments (Buchli

et al. 2013 Proc. Natl Acad. Sci. USA 110, 11 725–11 730. (doi:10.1073/

pnas.1306323110)) and non-equilibrium molecular dynamics simulations

(Buchenberg et al. 2017 Proc. Natl Acad. Sci. USA 114, E6804–E6811.

(doi:10.1073/pnas.1707694114)) studying an photoswitchable PDZ2 domain

as model for an allosteric transition, we outline in this perspective how such

a description of allosteric communication might look. That is, calculating the

dynamical content of both experiment and simulation (which agree remarkably

well with each other), we find that allosteric communication shares some prop-

erties with downhill folding, except that it is an ‘order–order’ transition.

Discussing the multiscale and hierarchical features of the dynamics, the validity

of linear response theory as well as the meaning of ‘allosteric pathways’, we

conclude that non-equilibrium experiments and simulations are a promising

way to study dynamical aspects of allostery.

This article is part of a discussion meeting issue ‘Allostery and molecular

machines’.
1. Introduction
Describing the puzzling phenomenon of long-range communication between dis-

tant protein sites, allostery has been intensively studied in experiment and

computation [1–9]. In spite of its importance as an elementary process of cell sig-

nalling as well as a target in pharmaceutical research, there is surprisingly little

known about the underlying dynamical process of allosteric communication.

Most commonly, allostery is related to the binding of a ligand to the allosteric

site, which triggers the conformational change at a distant site of the protein.

This so-called ‘allosteric transition’, however, has been rarely observed directly,

in part because of the smallness of the structural changes, the experimental

challenges to observe transition pathways and also because of the time-scale

limitations of molecular dynamics (MD) simulations [10–14]. This situation is

in striking variance to the protein folding problem, where several decades of

theoretical and experimental work have resulted in a quite well-established

picture of how folding and unfolding proceed [15]. This includes general scen-

arios such as two-state and downhill folding [16,17], dynamical mechanisms

such as zipping or diffusion-limited processes [15], as well as a wealth of theoreti-

cal formulations, including the concepts of rugged energy landscapes and folding

funnel [18,19] or Markov state models [20]. In comparison, a dynamical picture of

the allosteric transition appears to be still in its infancy.

With ‘dynamics’, we here do not refer to the rates of ligand binding and

unbinding, kon and koff, respectively. These rates represent very well-established

concepts in biochemistry, as their ratio is related to the binding free energy

via kon/koff ¼ e2DG/kBT. With ‘dynamics’, we also do not mean equilibrium
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Figure 1. MD snapshots of PDZ2 in cis (a) and trans (b) equilibrium states,
showing a-helices and b-sheets in brown, loop regions in purple, the
C-terminal in green, and the azobenzene photoswitch including linker
atoms in yellow. In a, labels indicate the regions b1 (residues 6 – 12), b2

(20 – 23), b3 (35 – 40), a1 (45 – 49), b4 (57 – 61), b5 (64 – 65), a2 (73 –
80) and b6 (84 – 90). Important loops connecting these regions include
b1-b2 (13 – 19), b2-b3 (24 – 34), b3-a1 (41 – 44) and a2-b6 (81 – 83).
In b, the blue lines indicate selected Ca-distances which characterize the con-
formational transition following cis – trans photoisomerization of PDZ2.
Adapted with permission from Buchenberg et al. [32].
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fluctuations, which are discussed as another possible

mechanism of allostery with essentially no structural

changes [21,22]. Rather, with ‘dynamics’ we refer to the

non-equilibrium response that transfers a signal within an

allosteric protein, triggered by ligand binding or unbinding.

However, most experiments and theories of allostery have

focused on equilibrium systems, i.e. the starting and end

states of an allosteric transition, hence they cannot say

much about possible intermediates.

The direct observation of non-equilibrium processes in an

allosteric protein requires us to define a starting point (say,

time t ¼ 0) and a time-dependent observable describing the

progress of the process. These requirements are naturally

provided in a pump-probe-type experiment, in which an

allosteric transition is triggered by light on a timescale that

is fast compared with any biologically relevant timescale. In

the realm of femtochemistry [23], that makes the difference

between ‘kinetics’, which in essence is an equilibrium concept

(as kon/koff ¼ e2DG/kBT), and non-equilibrium ‘dynamics’.

Designing photoswitchable proteins is one possible approach

to achieve a phototriggerable system (besides temperature-

[24,25] and pH-jumps [26,27]), which has already been

applied to the protein folding problem [28–30]. In the context

of allostery, this approach was recently demonstrated exper-

imentally by Buchli et al. [31] and computationally by

Buchenberg et al. [32] for a PDZ2 domain.

PDZ domains have been studied extensively as model

systems for allosteric communication [33–36]. They represent

an important class of protein interaction modules that are

involved in the regulation of multiple receptor-coupled

signal transduction processes. They share a common fold,

which consists of two a-helices and six b-strands, with the

second a-helix and the second b-strand forming the canonical

binding groove (figure 1), and generally bind the C-terminus

of their targets. One particularly illustrative example is the

PDZ3 domain from PSD-95, which has a short additional

third a-helix at the C-terminus. It has been shown that the

removal of that helix, or its unfolding upon phosphorylation,

significantly reduces the ligand binding affinity [34]. Here,

we focus on the simpler PDZ2 domain from human tyro-

sine-phosphatase 1E (hPTP1E), which lacks that additional

a-helix, but which has been demonstrated to possess allo-

steric properties as well [33], albeit not in the sense of

functional allostery between two ligands. Both the PDZ2

and the PDZ3 domain have been studied, in particular,

with regard to intramolecular signaling pathways [37–42],

but the nature of the allosteric interaction remains a matter

of debate. While they are discussed as examples for a modu-

lated side-chain dynamics being responsible for the allosteric

mechanism [33,34,43,44], ligand binding to the PFZ2 domain

also results in a small but measurable structural change of

about 0.5 Å RMSD [45].

To explore in real time how such a structural change

propagates through the protein, Buchli et al. [31] have cova-

lently linked an azobenzene photoswitch across the binding

groove of PDZ2 and used an ultrafast laser pulse that effects

cis! trans photoisomerization of azobenzene. This results in

a photoinduced opening of the binding pocket, which structu-

rally mimics the apo-to-ligand-bound transition of native

PDZ2 (figure 1). The latter has been verified with the help of

NMR structure analysis of the starting and end points of the

photoinduced transition [31], that is structurally very similar

to the apo and ligand-bound structure of native PDZ2 [45].
Employing ultrafast time-resolved vibrational spectroscopy,

they showed that the conformational rearrangement of the

photoswitchable protein occurs on various timescales from

pico- to microseconds in a highly non-exponential manner.

The subsequent detailed MD study of the non-equilibrium

dynamics by Buchenberg et al. [32] reproduced many of these

findings and revealed a microscopic picture of the process.

Based on these experimental and computational works, in

this perspective we want to outline a time-dependent non-

equilibrium description of the dynamical process of allostery.

Employing a time-scale analysis to reveal the ‘dynamical

content’ [46–50] of the spectroscopic time traces as well as of

the computed intramolecular Ca-distances of the protein, we

investigate the origin of the non-exponential kinetics and over-

shootings exhibited by these observables. In particular, we

identify three physically distinct phases of the time evolution,

describing elastic response (�0.1 ns), inelastic reorganization

(approx. 100 ns) and structural relaxation (�1 ms), and explain

the dynamics in terms of the free-energy landscape of the allo-

steric transition. Issues such as the similarity to the ‘strange

kinetics’ observed in downhill folding [51,52] as well as the

interpretation of allosteric pathways [5,53] are discussed.
2. Real-time observation of the allosteric
transition

As a first impression of the time-resolved response of PDZ2

upon photoswitching, figure 2a displays results of the transi-

ent infrared (IR) experiment of Buchli et al. [31] at selected

frequencies v across the amide I band. As the corresponding

C¼O vibrators of the protein backbone are coupled among

each other, the amide I band depends, in a rather indirect

way, on the structure of the protein [54]. While it is usually

not possible to infer detailed structural changes from the tran-

sient amide I spectrum, the various timescales of the process

can still be determined. To that end, we show cuts of the tran-

sient IR difference spectrum and represent the resulting time

traces sv(t) on a logarithmic time axis. The logarithmic scale

represents an exponential decay with a single decay time t

by a sigmoidal-type shape, i.e. a smoothed step function
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Figure 2. Time-dependent description of the structural response of a photoswitchable PDZ2 domain, using a logarithmic scale for the time axis. (a) Normalized
transient IR time traces (black circles and red fits) across the amide I band in steps of 10 cm21, which are reproduced from Buchli et al. [31]. Owing to the limited
time resolution, there are no experimental data for the first decade. (b) Time evolution (black circles and red fits) of selected Ca-distances of PDZ2, obtained from
non-equilibrium MD simulations by Buchenberg et al. [32]. Blue bars indicate the associated dynamical content of experimental and MD data, i.e. the weight of
timescale ti in a multiexponential response function. Adapted with permission from Buchli et al. [31] and Buchenberg et al. [32]. (Online version in colour.)
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Figure 3. Averaged dynamical content D(ti) as a function of time constant
ti, pertaining to (a) all available transient IR time traces from the experimen-
tal data [31] and (b) the time evolution of all Ca-distances from the MD
data [32]. (Online version in colour.)
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around t. Evidently, the time traces sv(t) in figure 2a do not

exhibit one or a few well-defined decay times. Rather they

show a whole spectrum of timescales, covering six decades

in time from 10 ps to 10 ms.

To facilitate a quantitative analysis, we define for each

time trace a ‘dynamical content’ Dv(ti), which is a probability

distribution of the amount of dynamics occurring at timescale

ti [46–49]. To this end, we perform a fit of sv(t) to a multi-

exponential response function (equation (6.1)), that assigns

to each timescale ti a weight (or amplitude), the negative of

which is the dynamical content (see Methods for details).

Depending on the detection frequency, we can find in

figure 2a virtually any decay time in the IR spectral response.

Moreover, almost all time traces show one or even two

‘overshootings’ of the signal, which in some cases (e.g. for

v ¼ 1630 and 1640 cm21) are quite prominent.

To comprise the above time-scale analysis in a single plot,

figure 3a shows the ‘averaged dynamical content’ D(ti)

(equation (6.2)) of the experimental data. Interestingly, the

time-scale distribution reveals three well-defined maxima at

10 ps, 10 ns and 10 ms, with the first and last being at the

boundaries of the distribution. It should be mentioned that

the 10 ps process probably contains significant contributions

from heating of the protein induced by the photoswitching,

which is reflected in the IR spectra but does not necessarily

affect the structure of the protein on that timescale [55,56].

The fact that D(ti) still rises at the maximum timescale con-

sidered indicates that the process is not quite completed

within 10 ms. On the other hand, the similarity of the transi-

ent difference spectrum at 10 ms with the FTIR difference

spectrum seems to suggest that the process is in fact almost

completed [31].

To facilitate a direct simulation of the above-described

time-resolved experiments, Buchenberg et al. [32] performed
non-equilibrium MD simulations of the allosteric transition

in the PDZ2 domain. By mimicking the initial cis ! trans
photoisomerization of the azobenzene photoswitch via a

potential-energy surface switching method [57], 100 non-

equilibrium trajectories of 1 ms length were generated, of
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which 20 randomly selected were extended to 10 ms. Perform-

ing an ensemble average to calculate time-dependent

observables, photoinduced structural changes of PDZ2 were

described in terms of the time evolution of backbone dihedral

angles, residue–residue contacts and Ca-distances between

residues. To conduct a time-scale analysis of the non-

equilibrium MD data in a similar vein as done for the

experimental results, here we focus on the time evolution of

Ca-distances di,j(t) between residues i and j.
While a comprehensive collection of Ca-distances naturally

yields a detailed description of the conformational dynamics, it

is instructive to focus on a few representative coordinates that

illustrate various important motions associated with the struc-

tural transition in PDZ2. Starting from the anchor residues of

the photoswitch, the photoinduced structural perturbation is

expected to propagate via various intermediate secondary

structure segments to the C-terminus, chosen here as an

example of a region that is quite remote from the perturbation.

In this way, one finds that the relatively rigid a-helices and

b-sheets of PDZ2 undergo only small modifications, while

the flexible loops of the system, in particular b1b2 and b2b3,

exhibit significant changes of numerous residue–residue

contacts and backbone dihedral angles [58]. As representative

examples, figure 2b shows Ca-distances di,j(t) that reflect the

opening of the binding pocket (for (i, j ) ¼ (21, 76) and

(23,80)) as well as conformational rearrangements of loops

b1b2 (13,15),b2b3 (24,34), (27,34) andb3a1 (41,44). The response

of the C-terminus is illustrated by its distance to b2b3 (34,94)

and its end-to-end distance (91,96). A structural illustration of

some of these distances is provided in figure 1.

Similar to the experimental results, we find that the MD

time traces shown in figure 2b cover all timescales, from pico-

to microseconds. As may be expected, we find picosecond

dynamics mainly in the observables d21,76 and d23,80 describing

the initial rearrangement around the binding pocket. That fast

process, however, is somewhat artificial, as it is induced by the

strong force applied by the photoswitch and therefore would

not happen in the same way upon ligand binding/unbinding

in the native system [59]. (For example, the sheer event of

unbinding of a ligand takes on the order of 1 ns already [60].)

On the other hand, structural dynamics on nano- and micro-

second timescales is observed in all observables. Moreover,

the MD time traces exhibit peculiar overshootings, e.g.

(27,34), again quite similar to experiments.

Comparing the averaged dynamical content of the MD

data (comprising 4650 Ca-distances, figure 3b) with exper-

imental findings (figure 3a), we notice that the MD results

also reveal maxima at the boundaries of the distribution.

Because only relatively few Ca-distances report on the pico-

second response of the binding pocket, the lower boundary

maximum for MD is not very pronounced in the averaged

dynamical content. Moreover, we find weak maxima around

1 and 100 ns, which are similar but not identical to the

experimental results. Owing to the different nature of the

observables, IR spectra and Ca-distances in fact are expected

to represent different projections of the time-dependent struc-

tural evolution of the system. While the same timescales are

present, the amplitudes of these timescales may, therefore, be

different for experimental and MD data.

As indicated by the experimental averaged dynamical

content shown in figure 3a, the photoinduced response of

PDZ2 appears to occur in three phases which are character-

ized by timescales of 10 ps, 10 ns and 10 ms, respectively.
Considering the overall similarity of IR and MD time traces

with respect to timescales and general features (such as

overshootings), in the following we assume that the non-

equilibrium MD simulations provide at least a qualitative

description of the allosteric transition in PDZ2. This

allows us to exploit these simulations in order to develop a

microscopic understanding of the underlying dynamical pro-

cesses. Proceeding this way, Buchenberg et al. [32] identified

the three phases of the structural transition as elastic response

(�0.1 ns), inelastic reorganization (approx. 100 ns) and struc-

tural relaxation (�1 ms) of PDZ2, which are briefly described

in the following.

Accounting for the initial process, the elastic phase

describes the photoinduced opening of the binding pocket as

described by the Ca-distance d21,76. As shown in figure 2b,

the time-dependent average value d21,76(t) increases within

1 ms by approximately 0.3 nm, with the first half of the increase

occurring within only 0.1 ns. Because this initial expansion of

the binding pocket hardly involves conformational transitions

including the crossing of free-energy barriers, the protein

would elastically return to the initial state if the azobenzene

switched back to its cis configuration. Hence, the first phase

accounts for the elastic response of the protein. During the

first tens of picoseconds, we also observe the dissipation of

photoinduced excess kinetic energy, i.e. the cooling of PDZ2

to the solvent temperature [56,61].

The subsequent expansion of the binding pocket on a nano-

second timescale and the propagation of this conformational

change via the adjacent b1b2 and b2b3 loops, however, require

an inelastic rearrangement of the protein. As representative

observables monitoring this second phase of the protein’s

response, figure 2b shows Ca-distances d23,80, d13,15, d24,34 and

d27,34, which reflect these conformational rearrangements.

The overshootings of d23,80 and d27,34 reflect complex reorgan-

ization of the binding pocket and the making and breaking

of interresidue contacts, respectively [32]. Eventually, the struc-

tural changes of b1b2 and b2b3 extend via various ways to the

distant C-terminal region, e.g. via contacts of b2b3 and the

C-terminal loop (see the contact formation revealed by

d34,94(t)). Described by its end-to-end distance, d91,96, the

response of the C-terminus is seen to be delayed until approxi-

mately 10 ns, when d91,96(t) starts to increase on a 100 ns

timescale. Hence, we find that the inelastic phase begins on a

timescale of a few nanoseconds and leads to a significant

structural reorganization of PDZ2 on a 100 ns timescale.

The qualitative changes of the time evolution of most

observables in figure 2b for t � 1 ms indicate a new phase of

structural dynamics. This third and final phase of the structural

response of PDZ2 is found to describe the relaxation of the non-

equilibrium conformational distribution towards the trans equi-

librium state [32]. Employing density-based clustering [62] of

the time-dependent structural distribution, this relaxation pro-

cess has been shown to occur in a hierarchical way [63–65].

That is, we find that the relatively fast (100 ns) motion of the con-

formational reorganization in phase 2 represents a prerequisite

of the slow (10ms) structural relaxation in phase 3.
3. Free-energy landscape of the allosteric
transition

While we have so far explained allosteric communication as a

series of local structural changes, it is important to note that
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these changes do not necessarily occur in a directed sequence

as in a falling row of dominoes, except for the fact that

everything follows upon the initial 1 ps process around the

binding pocket. Beyond that 1 ps process, similar timescales

are found in figure 2b for all observables, regardless of

whether they are close to or far away from the effector

site. For example, the remote C-terminus settles already

between approximately 100 ns and 1 ms (see d91,96 and d34,94

in figure 2b), significantly earlier than the binding pocket

itself (d21,76 and d23,80 in figure 2b). Also the ensemble-

averaged structural evolution seems to suggest that on all

timescales numerous steps happen simultaneously.

To further investigate this notion, we change to a global

view of the dynamics and perform a dihedral angle principal

component analysis [66,67] of the cis and trans equilibrium tra-

jectories. The well-established approach achieves an efficient

dimensionality reduction of the high-dimensional atomic

motion to a low-dimensional reaction coordinate that sub-

sequently can be used for the interpretation of the considered

process [68]. Employing the first two principal components

PC1 and PC2 that reflect the largest variance of the protein

motion, figure 4a shows the resulting cis and trans free-

energy landscapes DG ¼ 2 kBT ln P(PC1, PC2), which can be

directly obtained from the probability distribution P along

these coordinates. We find that the cis and trans conformations

are well separated along the first principal component, while

the second principal component accounts for the confor-

mational heterogeneity of the b1b2 and b2b3 loops. As a

consequence, the latter is important for the description of the

structural reorganization of these loops during the second

phase of the allosteric transition.
By calculating the probability distribution of all non-

equilibrium trajectories, we may also define a free-energy

landscape associated with the non-equilibrium evolution

[32]. Figure 4b shows that this non-equilibrium energy

surface overlaps well with the landscapes of the cis
and trans equilibrium states, which suggests that our (up to

10 ms long) trajectories may be sufficient to cover a consider-

able part of the overall conformational transition. In the

following, we adopt this representation to study the behav-

iour of single trajectories of the non-equilibrium simulation.

Showing the colour-coded time evolution of four representa-

tive non-equilibrium trajectories in PC1–PC2 space, figure 4b
reveals that all examples are vastly different, indicating a

substantial structural diversity of the allosteric transition.

Structural analyses show that these changes do not necess-

arily correspond to a directed sequence along certain

residues, but may also occur non-locally. That is, if a protein

contains rather rigid segments (such as the b barrel of PDZ

domains), the initially applied conformational stress may

directly propagate to distant sites and cause a structural

change there. The feasibility of non-local and multiple

simultaneous structural changes along a single trajectory

together with the substantial heterogeneity found for differ-

ent trajectories clearly suggest that the commonly used

term ‘allosteric pathway’ should not be taken literally as in

a falling row of dominoes [5,53].

Another interesting observation from figure 4 is the frequent

changes and back-crossings of the trajectories between neigh-

bouring conformations, which resemble a diffusive motion on

the free-energy landscape, similar to that discussed for protein

folding [18,19]. Rather than the conventional picture of two-

state folding with a dominant free-energy barrier giving rise

to single exponential kinetics, the structural rearrangements

underlying allosteric communication resemble to a certain

extent a ‘downhill folding’ scenario [16–18,51,52]. Proceeding

from high-energy unfolded conformations to low-energy

native states without passing major (say, �3 kBT ) free-energy

barriers, downhill folders may exhibit numerous significantly

populated conformational states that are connected by a large

number of transition pathways. This structural and dynamical

heterogeneity typically leads to highly non-exponential kin-

etics, which is what we see in figure 2. Just like for proteins

that are characterized as downhill-folders [47], the dynamical

content of figures 2 and 3 contains a continuum of timescales

with some substructure, but without any clear gap that

would indicate a separation of timescales between the crossing

of a dominant barrier and the dynamics within free-energy

basins. However, different from the protein folding problem,

the system first evolves from an ordered initial state into a dis-

ordered ensemble, before it again relaxes into a relatively

ordered final state, as evidenced by the relatively narrow cis
and trans equilibrium free-energy surfaces (figure 4a) and the

much wider non-equilibrium distribution (figure 4b). In this

sense, allosteric communication may be considered as an

‘order–order’ transition.
4. Equilibrium versus non-equilibrium
description

It is interesting to compare the above non-equilibrium

approach with the more common equilibrium description

of the structural dynamics associated with the allosteric
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transition. As prime examples of the latter, NMR experiments

as well as MD simulations have observed significant

changes of the equilibrium dynamics upon an allosteric

transition [1,2,69,70]. These changes have been discussed as

a possible driving force of allostery, in particular in the

absence of essential structural changes [21,22]. The PDZ2

domain is considered as an example in this regard [33].

This raises the question to what extent equilibrium and

non-equilibrium descriptions carry the same information on

the allosteric transition.

If the protein responds linearly to the perturbation (e.g.

caused by ligand binding), the dynamics observed in an equili-

brium experiment (such as NMR spectroscopy) should contain

the same dynamical content as the dynamics observed in a non-

equilibrium experiment (such as pump-probe spectroscopy).

This equivalence is a consequence of Onsager’s regression

hypothesis [71] which, however, holds only in the case of

small non-equilibrium perturbations that explore regions on

the free-energy surface that are not outside the energy land-

scape explored in the equilibrium case. In the case of the

photoswitchable PDZ2 domain studied here, the linear

response assumption may become questionable. First, it is

clear from the discussion of figure 2 that the mechanical

response of the protein (including overshootings, etc.) is inelas-

tic, because, for example, contacts are broken and formed. These

findings cannot be described by a harmonic force field (used,

e.g. in the popular elastic network models [72,73]), in which

all forces are linear. MD simulations using common biomo-

lecular force fields as well as NMR experiments, on the other

hand, certainly may account for these effects.

It is less clear, though, if the basic assumption of Onsager’s

regression hypothesis is appropriate; i.e. if the non-equilibrium

perturbations explore the same free-energy surface than the

equilibrium states. This hypothesis is also presumed by the

‘population shift’ model, which explains allostery in terms of

a shift of the population probability of various equilibrium

states [2]. Employing a principle component analysis, we

have shown in figure 4a that the free-energy surfaces of the
cis and trans equilibrium states hardly overlap, which chal-

lenges the idea of a population shift. Of course, the notion of

overlapping free-energy surfaces depends to a large extend

on the reaction coordinates used to represent the energy

landscape [74]. This aspect is illustrated in figure 5, which com-

pares the distribution of the first principle component

(essentially the projection of figure 4a onto the PC1 axis) with

distributions of selected Ca-distances. The distance distri-

butions (which are similar to what an NMR experiment

might measure) are seen to strongly overlap for the cis and

trans equilibrium states, even in the case of the distance d21,76,

on which the photoswitch acts directly. For d13,15, and even

more so for d91,96, the range of possible distances is essentially

the same in both states of the protein; just various distances are

weighted differently. The overlapping distributions of Ca-

distances therefore seem to directly support the classic view

of a population shift model [2].

The principal component analysis, on the the other hand,

maximizes the separation between the two states by including

all correlations between structural measures that go into the

analysis. From the one-dimensional projection in figure 5,

the overlap of both distributions is only 6%, which reduces

further to 0.6% when the overlap is calculated using the first

seven principal components which show structured distri-

butions and slowly decaying autocorrelation functions [32].

As in fact the effective dimensionality of the dynamical

system may be larger than seven [75–78], we expect the true

overlap to be even smaller. That is, by employing a reaction

coordinate that is able to account for the global conformational

rearrangement of the allosteric transition, we find that free-

energy surfaces of the cis and trans equilibrium states hardly

overlap. Given the limited sampling of equilibrium MD trajec-

tories, however, some asymptotically small overlap of the

equilibrium energy landscapes with the full range of the

non-equilibrium energy surface can never be ruled out. In

that sense, the possible equivalence of visited equilibrium

and non-equilibrium phase spaces becomes a somewhat

academic and hardly verifiable question.



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc

7
Looking at it from a different perspective, non-equilibrium

experiments and simulations may be considered as an ‘impor-

tance sampling’ approach that facilitates an easy exploration of

the parts of the energy landscape that account for the allosteric

transition. That is, the non-equilibrium simulations cover the

full energy landscape (figure 4b), while the equilibrium simu-

lations separate the free-energy surfaces of the cis and trans
states (figure 4a). In the same vein, various non-equilibrium

enhanced sampling techniques exist that explore a rarely

sampled transition state by mechanically pulling the system

towards this direction [79–81]. In that sense, non-equilibrium

experiments and simulations are an effective and direct way

to study the real-time dynamics underlying the allosteric tran-

sition. Again, this is similar to the case of protein folding, where

pump-probe-type (non-equilibrium) experiments have been

designed to effectively study the folding dynamics [24–29].
.B
373:20170187
5. Concluding remarks
Combining time-resolved IR spectroscopy and non-equilibrium

MD simulations, this joint experimental/computational study

has shown that the allosteric transition in PDZ2 amounts

to a propagation of conformational change throughout the

protein. The associated structural reorganization process is

mediated by a change of atomic contacts and dihedral angles

in the flexible loop regions of the system. This manifests itself

in the transient overshooting of several observables (figure 2),

which indicate that first some contacts need to be broken,

before dihedral angles can change and new contacts are

formed. In this sense, allosteric communication is a genuinely

inelastic and nonlinear process. The non-equilibrium simu-

lations have shown non-local and multiple simultaneous

structural changes, even along single trajectories. Taken

together with the exceeding structural heterogeneity found

for different trajectories, we conclude that the notion of ‘allo-

steric pathways’ should not be taken literally as a directed

sequence of structural changes along certain residues. The

time evolution of the allosteric transition in PDZ2 rather

resembles a downhill folding scenario, showing diffusive

motion on a flat and rugged free-energy landscape, which

gives rise to a large ensemble of different transition paths. More-

over, we have found that the common assumption of linear

response becomes questionable in the case of the photoswitch-

able PDZ2 domain considered here, which also means that

equilibrium and non-equilibrium methods may reveal different

aspects of the allosteric system. In any case, we have demon-

strated that non-equilibrium experiments and simulations are

an effective and appealing way to study dynamical aspects

of allostery.

Clearly, further studies are required to reveal if these find-

ings are special for PDZ2 or may be found more generally in

other allosteric systems. In particular, the photoswitch in the

current model system is quite artificial, and it is, therefore,

not clear a priori to what extent it affects the dynamics and

the conclusions drawn here. To achieve a less artificial con-

struct, a phototriggerable protein system enabling initiation

of ligand-binding/unbinding would be desirable. To this

end, a photoswitchable ligand may be designed such that its

binding affinity to an allosteric protein changes in the two

states of the photoswitch [82]. Ligand unbinding is a unimol-

ecular reaction that does not include any diffusive (slow)

step. Therefore, it may allow us to investigate the dynamic
response of the protein in close analogy to the study of

Buchli et al. [31]. Another very interesting construct, which

would constitute a truly allosteric system, would be to attach

the azobenzene-photoswitch to the C-terminal a-helix of

PDZ3, and observe ligand unbinding upon photo-induced

unfolding of the helix [30]. That helix has been shown to be

allosterically coupled with peptide ligand binding [34]. In

addition, site-specific vibrational labelling [83,84] would

reveal site-specific information, similar to figure 2b from the

MD simulation.
6. Methods
Following Shaw et al. [46], we define the ‘dynamical content’ Dj(t)

of a non-equilibrium time trace sj(t) as the negative of its derivative

with respect to the logarithm of time. To calculate Dj(t) for the

noisy experimental data [31] and MD data [32], we need to first

smooth them by fitting to an appropriate function. To that end,

we choose a multiexponential response function

s j(t) ¼ a0j þ
X

i

aij e�t=ti , ð6:1Þ

where the time constants ti are kept fixed in the fit and distributed

equally on a logarithmic scale with three terms per decade. The

coefficients aij are the free fit parameters that result in a lifetime

spectrum for each time trace sj(t) as a function of time constant

ti. As nicely discussed in Knyazev et al. [49], the time derivative

of each exponential term in equation (6.1), when taken on a logar-

ithmic time-axis, is reasonably well localized around the

corresponding time constant ti. Hence, the definition of the dyna-

mical content Dj(ti) given in Shaw [46] is equivalent to the negative

of the lifetime spectra aij, i.e. Dj(ti) ¼ 2 aij.

Fitting equation (6.1) corresponds to an inverse Laplace

transformation, which is an ill-posed problem, because the expo-

nential functions in equation (6.1) are not orthogonal to each

other [50]. To render the fitting algorithm stable, we therefore

introduce a penalty function
P

i (aij � aiþ1,j)
2 that enforces a

smooth spectrum of coefficients aij [48] and minimize a weighted

sum of this penalty function together with the usual root

mean square deviation of the fit function sj(t) to the data. The

weighting factor was determined empirically.

For the ‘averaged dynamical content’ D(ti), we calculate

D(ti) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiX

j

a2
ij

s
ð6:2Þ

and subsequently normalize it. In Shaw [46], the dynamical con-

tent was calculated from equilibrium correlation functions and

hence is always positive (assuming the underlying dynamics is

Markovian and diffusive [85]). In the non-equilibrium case con-

sidered here, positive and negative values aij can be obtained,

which is why we average the squares of aij.
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