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Abstract

Pulmonary fibrosis is the leading cause of death in systemic
sclerosis (SSc). Sirtuin1 (SIRT1) is a deacetylase with known
antiinflammatory and antifibrotic activity in the liver, kidney,
and skin. The role of SIRT1 in SSc-related pulmonary fibrosis
is unknown. In the present work, we determined that
the expression of SIRT1 in peripheral blood mononuclear cells
of patients with SSc with pulmonary fibrosis is lower than that in
patients with SSc without pulmonary fibrosis. In in vivo studies
of bleomycin-induced lung fibrosis in mice, SIRT1 activation
with resveratrol reduced collagen production when it was
administered either prophylactically during the inflammatory
stage or after the development of fibrosis. Furthermore, SIRT1
activation or overexpression inhibited tumor necrosis factor-
a–induced inflammatory responses in vitro in human fetal lung
fibroblasts, depletion of SIRT1 in fibroblasts enhanced

inflammation, and these effects were related to changes in
the acetylation of NF-kB. In addition, SIRT1 activation or
exogenous overexpression inhibited collagen production
in vitro, and these manipulations also inhibited fibrosis via
inactivation of transforming growth factor-b/mothers
against decapentaplegic homolog and mammalian target of
rapamycin signaling. Taken together, our results show that a loss
of SIRT1 may participate in the pathogenesis of SSc-related
pulmonary fibrosis, and that SIRT1 activation is an effective
treatment for both the early (inflammatory) and late (fibrotic)
stages of pulmonary fibrosis. Thus, SIRT1 may be a promising
therapeutic target in the management of SSc-related pulmonary
fibrosis.
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Scleroderma or systemic sclerosis (SSc) is
a severe and devastating autoimmune
disorder characterized by immune
alterations, microvascular injury, and

fibrosis of the skin and internal organs. SSc
is classified into two subsets according to the
extent of fibrosis of the skin: limited
cutaneous SSc (lcSSc) and diffuse cutaneous

SSc (dcSSc) (1). Pulmonary fibrosis is the
leading cause of death in patients with SSc,
with more than 70% of patients with SSc
having some degree of pulmonary
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involvement (2–4). However, the treatment
of SSc-related pulmonary fibrosis is limited
due to insufficient understanding of its
pathogenesis, and greater knowledge of the
underlying processes is needed.

Pulmonary fibrosis is characterized by
the accumulation of fibroblasts and
extracellular matrix (ECM) in the lung
(5–9). The disorder arises from a variety of
etiologies that initiate inflammation (9–11)
and excess production of inflammatory
cytokines (e.g., IL-1b, IL-6), which promote
the progression to lung fibrosis (10, 11).
In later stages of lung injury, a variety
of proinflammatory and profibrotic
mediators, including transforming growth
factor (TGF)-b and connective tissue
growth factor (CTGF) interact to maintain
fibrosis (12). A pivotal role for profibrotic
inflammatory processes in the development
of pulmonary fibrosis has been suggested in
a large number of studies (6).

Sirtuin1 (SIRT1; a.k.a., silence
information regulator 1) is an nicotinamide
(NAM) adenine dinucleotide1–dependent
class III histone deacetylase (13) that
participates in many physiological
processes, such as cell survival,
antioxidative stress and antiinflammatory

pathways, metabolic regulation, aging, and
DNA repair (14–17). SIRT1 regulates
inflammation in fibroblasts, chondrocytes
(18, 19), and adipose tissue (20) via
inactivation of the NF-kB pathway that is
dependent on its deacetylase activity; SIRT1
abundance is decreased in the skin in SSc
(21, 22), and it attenuates fibrotic processes
in the skin (21), kidney (23), and heart (24)
by targeting TGF-b/mothers against
decapentaplegic homolog (Smad3)
signaling. It has been previously
determined that low expression of SIRT1
plays an important promoting role in the
development of liver fibrosis, and its
restoration contributes to the amelioration
of liver fibrosis (25). In contrast, how SIRT1
function is potentially altered and how its
manipulation may impact SSc-related
pulmonary fibrosis are unknown.

In the present study, we investigated
the function of SIRT1 and its links to
proinflammatory and profibrotic pathways
in SSc-related lung fibrosis in clinical
samples, in vitro in cell culture, and in vivo
in a model of bleomycin-induced
pulmonary fibrosis. Our results
demonstrate that SIRT1 mRNA abundance
is decreased in peripheral blood
mononuclear cells of patients with SSc with
lung fibrosis compared with those without
lung fibrosis. In addition, we found that
Bleomycin-induced lung inflammation
and fibrosis in mice were both alleviated
by activating SIRT1 with resveratrol.
Furthermore, we determined that SIRT1
exerts these effects by decreasing NF-kB
acetylation and by inhibiting TGF-b–
and mammalian target of rapamycin
(mTOR)–related signaling.

Methods

Human Study
A total of 145 Chinese patients who met
diagnostic criteria for SSc were enrolled
from Shanghai Traditional Chinese
Medicine–Integrated Hospital (Table E1 in
the data supplement) (26). The study was
approved by and performed in accordance
with the guidelines of the School of Life
Sciences, Fudan University (Shanghai,
China). Full details about the patients are
provided in the data supplement.

Lung Fibrosis Model
Pathogen-free, C57BL/6 female mice of
6–8 weeks of age were maintained with

water and pelleted food at the Animal
Centre of the State Key Laboratory of
Genetic Engineering, School of Life
Sciences, Fudan University. Bleomycin-
induced lung fibrosis was generated
using established procedures (27).
BAL fluid (BALF) collection and
analysis, lung histologic analysis and
immunohistochemical staining of SIRT1,
and total soluble collagen isolation and
analysis were done using previously
reported approaches (28). IL-1b and IL-6
concentrations in BALF and plasma were
measured by ELISA (Abcam Systems)
according to the manufacturer’s
instructions. All the animal protocols were
approved by the School of Life Sciences,
Fudan University (28). The detailed
methods are provided in the data
supplement.

Cell Culture Models
Experiments in cell culture were performed
in human fetal lung fibroblast cells (MRC-5
line) and NIH/3T3 cells. SIRT1 expression
was silenced, SIRT1 was overexpressed, and
luciferase reporter gene assays were done as
described in the data supplement.

Quantitative RT-PCR Analysis
RNA was isolated from mouse lungs and
cultured cells, and inflammation- and ECM-
related gene expression was evaluated by
quantitative RT-PCR, as described in detail
in the data supplement.

Western Blot Analysis
Methods used to analyze SIRT1, mTOR,
phospho (p)-mTOR, p-S6R, Smad3,
pSmad3, and collagen (COL) type I
polyclonal protein expression by
immunoblotting are described in detail in
the data supplement.

SIRT1 Activity Assay
SIRT1 activity was assessed using a SIRT1
deacetylase activity assay kit (CS1040;
Sigma-Aldrich) according to the
manufacturer’s instructions as described in
the data supplement.

Statistical Analysis
Data are expressed as mean (6SEM).
Student’s t tests or one-way ANOVA with
least significant difference (LSD) multiple
comparison test were used for the
evaluation of significance between
two groups or three or more groups,

Clinical Relevance

Pulmonary fibrosis is the leading cause
of death in patients with systemic
sclerosis (SSc), with more than 70% of
patients with SSc having some degree of
pulmonary involvement. However, the
treatment of SSc-related pulmonary
fibrosis is limited, owing to insufficient
understanding of its pathogenesis. In this
work, we specified the role of sirtuin1
(SIRT1) in the pathogenesis of
pulmonary fibrosis. It was demonstrated
that SIRT1 was reduced in peripheral
blood mononuclear cells of patients with
SSc with pulmonary fibrosis as well as
lung tissues of mice with bleomycin-
induced lung fibrosis. In addition, SIRT1
activation with resveratrol reduced
collagen production when it was
administered either prophylactically
during the inflammatory stage or after
the development of fibrosis; therefore,
SIRT1 activation may be a promising
approach for both the prevention and
treatment of SSc-related pulmonary
fibrosis.
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Figure 1. Sirtuin1 (SIRT1) mRNA level is decreased in peripheral blood mononuclear cells (PBMCs) of patients with systemic sclerosis (SSc) with pulmonary
fibrosis (PF), and SIRT1 activation attenuates experimental PF. Relative PBMC mRNA level of SIRT1 in (A) patients with SSc with PF versus those without
PF, (B) patients with diffuse cutaneous SSc (dcSSc) versus patients with limited cutaneous SSc (lcSSc), (C) patients with SSc with anti-DNA topoisomerase I
(ATA) versus those without ATA, and (D) patients with SSc with anticentromeric proteins (ACA) versus those without ACA. (E) Effect of resveratrol (Res)
on bleomycin (BLM)-induced lung inflammation and fibrosis. Magnification, 3400. Scale bars: 50 mm. (F) Lung collagen content determined by Sircol assay.
(G) Lung collagen mRNA levels. (H) Lung levels of connective tissue growth factor (Ctgf) and transforming growth factor (TGF)-b mRNA were measured
by real-time PCR and normalized to Gapdh. *P, 0.05, **P, 0.001. (F–H) Mean (6SEM); n = 6 mice per group. H&E = hematoxylin and eosin.
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respectively. A P value less than 0.05 was
considered statistically significant.

Results

Peripheral Blood Mononuclear Cell
SIRT1 Levels Are Decreased in
SSc-Related Pulmonary Fibrosis
Although it is known that SIRT1 is involved
in the development of SSc-related skin
fibrosis (21, 22), how SIRT1 participates in
the development of SSc-related pulmonary
fibrosis is unknown. We examined the
expression of SIRT1 in the peripheral blood
mononuclear cells (PBMCs) of patients
with SSc with pulmonary fibrosis versus
those without pulmonary fibrosis.
Transcript levels for SIRT1 in the PBMCs
of patients with SSc with pulmonary
fibrosis were decreased compared with
patients with SSc without pulmonary
fibrosis (P, 0.0006, Figure 1A). In
addition, the level of SIRT1 mRNA in the
PBMCs from patients with dcSSc was lower
than that in PBMCs from patients with
limited cutaneous (P = 0.0219, Figure 1B).
One of the main characteristics of SSc is
the presence of autoantibodies, such as

anti-DNA topoisomerase I (ATA),
anticentromeric proteins (ACA), and
anti-RNA polymerase III, and the
autoantibodies are associated with certain
SSc features. For instance, the presence of
ATA in patients with SSc is strongly
associated with dcSSc and pulmonary
fibrosis, whereas ACA is correlated with
less pulmonary involvement (1). Therefore,
SIRT1 expression was also analyzed in
patients with different autoantibody
subsets, and it was found to be decreased in
patients with ATA compared with those
without ATA (Figure 1C, P = 0.0320). In
contrast, there was a modest directional
change in the level of SIRT1 related to
ACA, with SIRT1 mRNA greater in
patients with ACA than in those without
ACA (Figure 1D, P = 0.1033). These
findings suggest that a deficiency in SIRT1
may play a role in SSc-related pulmonary
fibrosis.

SIRT1 Activation Attenuates
Pulmonary Fibrosis in Bleomycin-
Treated Mice
To directly determine how relative SIRT1
activity influences pulmonary fibrosis, we

investigated the effect of SIRT1 activation
on bleomycin-induced pulmonary fibrosis
inmice. As an activator of SIRT1, resveratrol
has been shown to be an effective treatment
for experimental renal and liver fibrosis (23,
29–32). First, we evaluated the effect of
resveratrol administered for a period of
24 days, from 3 days before bleomycin
through Day 21 after bleomycin.
Hematoxylin and eosin staining showed
disruption of the alveolar units and
infiltration of lymphocytes into the
interstitial and peribronchial space after
bleomycin treatment. In addition, Masson’s
trichrome staining revealed increased
collagen deposition in the interstitial space
after bleomycin treatment. In contrast,
resveratrol treatment ameliorated these
changes (Figure 1E). Furthermore,
compared with controls, bleomycin
treatment increased collagen content
2.3-fold (P, 0.001), and resveratrol
reduced collagen by 40% (Figure 1F,
P , 0.001). Compared with controls,
bleomycin administration also enhanced the
transcript level for Col1a1, Col1a2, and
Col3a1 (P, 0.001), whereas resveratrol
inhibited collagen transcript up-regulation
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Figure 2. SIRT1 attenuates inflammation induced by bleomycin in mouse lung. (A and B) Cells were counted and total protein was determined in BAL fluid
(BALF). (C) RT-PCR was used to quantify Il-6, Il-1b, nitric oxide synthase (iNOS), and matrix metallopeptidase 9 (Mmp-9) mRNA abundance in lung
tissues. mRNA levels were calculated relative to Gapdh. IL-1b (D) and IL-6 (E) BALF levels and IL-6 (F) and IL-1b (G) plasma levels were determined by
ELISA. Mean (6SEM); *P, 0.05, **P, 0.001 versus mice treated with BLM plus vehicle. For each group, n = 6.
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Figure 3. SIRT1 inhibits inflammation induced by TNF-a. (A) MRC-5 human fetal lung fibroblasts were transiently transfected with SIRT1 plasmid or
control plasmid and whole-cell lysates were used for immunoblotting of SIRT1. (B–E) MRC-5 cells were transiently transfected with control or SIRT1
plasmid for 6 hours, then incubated with TNF-a (10 ng/ml) for another 6 hours, and transcript abundance was quantified. (F–I) Cells were stimulated with
TNF-a in the absence or presence of Res (0, 10, 20, 40, or 50 mM) for 6 hours, and transcript abundance was quantified. (J) Cells were transfected with
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confirmed in three separate experiments.
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by bleomycin (Figure 1G, P, 0.001). Ctgf
and Tgf-b are two potent stimulators of
collagen production. Bleomycin enhanced
Ctgf and Tgf-b mRNA levels (P, 0.05 and
P, 0.001, respectively), and resveratrol
prevented the increases in Ctgf and Tgf-b
mRNA (Figure 1H, P, 0.05 and P, 0.001,
respectively). Recognizing that a model of
bleomycin-induced pulmonary fibrosis
was employed to represent the clinical
condition, these results suggest that SIRT1
activation may be effective in inhibiting the
development of SSc-related pulmonary
fibrosis.

SIRT1 Activation Attenuates
Pulmonary Inflammation in
Bleomycin-Treated Mice
The first 7 days after bleomycin
administration is the acute inflammatory
stage. Tomore subtly investigate the effect of
SIRT1 on pulmonary fibrosis–associated
inflammation, we treated mice with
resveratrol for 10 days, which began 3 days
before bleomycin administration through
Day 7 after bleomycin. Inflammatory cells
in BALF were counted to determine
whether resveratrol prevents their
bleomycin-induced infiltration into the
airways and parenchyma. The total number
of inflammatory cells, macrophages,

neutrophils, and lymphocytes in the BALF
of bleomycin-injected mice was elevated
compared with saline-injected controls, and
the increases were blunted by resveratrol
treatment (Figure 2A, P, 0.001). Total
protein in BALF from bleomycin-treated
mice was also reduced by resveratrol
treatment (Figure 2B, P, 0.001). Next,
we examined transcript levels for the
inflammatory cytokines, Il-6, Il-1b, iNOS,
and Mmp-9. The mRNA levels of these
inflammatory cytokines were markedly
increased in lungs from bleomycin-treated
mice (Figure 2C, P, 0.05 or P, 0.001),
and resveratrol decreased the abundance of
the mRNAs to normal levels (Figure 2C,
P, 0.05 or P, 0.001). We also measured
the levels of IL-6 and IL-1b in BALF and
plasma. Both cytokines were elevated in
BALF and plasma after bleomycin
treatment, and the increases were
attenuated by resveratrol (Figures 2D–2G,
P, 0.001). We further evaluated where
SIRT1 is expressed. Immunofluorescence
analysis of adjacent lung sections revealed
that SIRT1 was abundantly expressed in
CD11c1 dendritic cells and CD681

macrophages, and was partially expressed
in CD31 T cells and CD11b1 monocytes
(Figure E1A). These results indicate that
SIRT1 is expressed by immune cells and has

antiinflammatory activity in bleomycin-
induced pulmonary fibrosis.

SIRT1 Represses TNF-a–induced
Inflammation
To gain better insight into the
antiinflammatory effects of SIRT1 in a lung
cell type of relevance to pulmonary fibrosis,
MRC-5 human fetal lung fibroblasts were
transfected with control plasmid or SIRT1-
expressing plasmid, and then exposed to
TNF-a. SIRT1 expression was effectively
increased after transfection (Figure 3A).
Levels of inflammatory cytokine mRNAs
(IL-6, IL-1b, iNOS, and MMP-9) increased
in control cells in response to TNF-a
(Figures 3B–3E, P, 0.001), and SIRT1
overexpression prevented the increases
(Figures 3B–3E, P, 0.001), suggesting that
SIRT1 inhibits the production of
inflammatory cytokines. We then examined
the effects of resveratrol on proinflammatory
genes. Once again, TNF-a treatment
increased IL-6, IL-1b, iNOS, and MMP-9
mRNAs (Figures 3F–3I, P, 0.001 or
P, 0.05), and the increases were prevented
by resveratrol in a dose-dependent
manner (Figures 3F–3I, P, 0.001 or
P, 0.05). Resveratrol also dose-dependently
inhibited proinflammatory transcript
induction by TNF-a in NIH/3T3
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fibroblasts (data not shown), confirming an
antiinflammatory role for SIRT1.

Further evidence for SIRT1 inhibition
of inflammation in lung fibroblasts was
then obtained by the finding that silence
RNA (siRNA)-based depletion of SIRT1
in fibroblasts (Figure 3J) enhanced
inflammation-related gene up-regulation by
TNF-a (Figures 3K–3N). To further confirm
the antiinflammatory effects of SIRT1,
NAM, an inhibitor of SIRT1, was used. As
shown in Figures 3O–3R, the inhibition of
TNF-a–induced inflammatory cytokine
expression of IL-6, iNOS, and MMP-9 by
resveratrol was reversed by NAM. These
data suggest a pivotal role for SIRT1 in
mediating antiinflammatory responses.

SIRT1 Inhibits Inflammation through
NF-kB Signaling
The NF-kB pathway is a canonical
proinflammatory signaling pathway. We
used luciferase activity as a reporter of
NF-kB activation to investigate the effects
of SIRT1 on NF-kB signaling in fibroblasts.
Resveratrol or SIRT1 overexpression
decreased NF-kB activation by TNF-a
(Figures 4A and 4B). SIRT1 is a histone
deacetylase, and the acetylation of NF-kB
subunit, RelA/p65, at lysine 310 is critical
for its proinflammatory activity (33). We
found that p65 acetylation was increased
after TNF-a treatment, whereas resveratrol
inhibited the increase (Figure 4C). When
MRC-5 cells were transiently transfected
with a plasmid encoding SIRT1, the
overexpression of SIRT1 also caused a
decrease in RelA/p65 acetylation
(Figure 4D). Then the expression and
activation of SIRT1 and RelA/p65
acetylation in vivo were evaluated. The
mRNA level of SIRT1 was decreased by
bleomycin in mouse lung tissues, BALF
cells, blood, and spleen; in contrast,
resveratrol treatment restored SIRT1
expression in the mouse lung and BALF
cells (Figure 4E, Figure E2A). In addition,
the number of SIRT1-positive cells in the
lungs of mice was reduced by bleomycin,
and resveratrol treatment markedly
increased the number of lung cells
expressing SIRT1 (Figure 4F). Bleomycin
caused a decrease in SIRT1 protein level
and an increase in the acetylation level of
NF-kB p65. In contrast, SIRT1 was
increased by resveratrol treatment, whereas
the acetylation level of NF-kB p65 was
subsequently inhibited (Figure 4G).
Furthermore, compared with control,
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bleomycin caused a decrease in SIRT1
activity (Figure 4H), and the activity was
rescued by resveratrol treatment
(Figure 4H). These results suggest that
SIRT1 increase or activation prevents
inflammation by inhibiting the NF-kB
pathway. In addition, SIRT1 likely protects
against pulmonary fibrosis by causing a
decrease in NF-kB activation via a decline
in its acetylation.

SIRT1 Activation Attenuates
Established Pulmonary Fibrosis in
Bleomycin-treated Mice
Fibrosis begins 7–9 days after bleomycin
administration (34, 35). To determine the
effects of SIRT1 on established fibrosis,
resveratrol was administered daily
beginning at Day 10 after bleomycin for
14 days. Resveratrol treatment alleviated
pulmonary fibrosis progression (Figure 5),
as assessed by histological analysis
(Figure 5A), collagen content (Figure 5B),
and ECM gene expression (Figure 5C). In

addition, immunofluorescence analyses
of lung tissues revealed a complete
colocalization of SIRT1 and a-smooth
muscle actin (a-SMA), indicating that the
SIRT1 was abundantly expressed in
myofibroblast to exert the antifibrotic
ability (Figure E1B). Taken together, these
results show that SIRT1 has both
antiinflammatory and antifibrotic activity,
and that activating SIRT1 with
resveratrol at either the inflammatory or
fibrogenic stage of disease development
ameliorates bleomycin-induced pulmonary
fibrosis.

SIRT1 Inhibits TGF-b–induced
Fibrosis In Vitro
To evaluate the antifibrotic activity of SIRT1
in a lung cell of relevance to pulmonary
fibrosis, MRC-5 cells were transfected with a
control plasmid or a plasmid encoding
SIRT1, and collagen mRNA and protein
abundance were measured. Lower COL1A2
mRNA (P, 0.001), COL3A1 mRNA

(P , 0.05), and COL1 protein expression
was found in the cells overexpressing SIRT1
(Figures 6A and 6B). TGF-b was then used
to assess a fibrotic response and resveratrol
was used to activate SIRT1. Resveratrol
inhibited increases in a-SMA
(myofibroblasts marker) and COL1 protein
abundance stimulated by TGF-b
(Figure 6C). TGF-b also upregulated a-SMA
(P, 0.001), COL1A1 (P, 0.001), COL1A2
(P, 0.001), and COL3A1 (P, 0.001)
expression, and resveratrol prevented the
increases (Figure 6D). A luciferase reporter
gene assay was then employed to determine
the effect of SIRT1 on the activity of the
Smad-binding element (SBE) sequence in the
collagen promoter in response to TGF-b. As
shown in Figure 6E, SBE activity was
increased 3.45-fold (P, 0.001) after
stimulation with TGF-b, and resveratrol
treatment attenuated the increase, returning
SBE activity to nearly normal levels (P,
0.001). We next assessed the phosphorylation
of Smad3, an important downstream
transducer of TGF-b action. As shown in
Figure 6F, the TGF-b–induced increase in
p-Smad3 was blunted by resveratrol.

The phosphatidylinositol 3-kinase/protein
kinase B/mTOR pathway has recently been
implicated in fibrosis via the actions of its
downstream mediator, p70S6K1 (36), and
activation of the mTOR pathway has been
observed both in an animal model (37) and
in human patients (38) with pulmonary
fibrosis. The blockade of mTOR with
rapamycin has already been used as a
treatment for scleroderma-related fibrosis
(39, 40). Because SIRT1 has been shown to
inhibit mTOR signaling in TNF-a–induced
inflammation and diet-induced obesity
(18, 41), we postulated that SIRT1 impairs
mTOR signaling in lung fibroblasts, and
tested this possibility in MRC-5 cells.
TGF-b increased mTOR activity, as
indicated by enhanced mTOR and S6R
phosphorylation (Figure 6G), and the
increase was attenuated by both
rapamycin and resveratrol (Figure 6G).
The increases in expression of a-SMA
(P, 0.001), COL1A1 (P, 0.001), COL1A2
(P, 0.001), and COL3A1 (P, 0.001) mRNAs
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induced by TGF-b were also inhibited by
resveratrol and rapamycin, and the effect of
resveratrol was comparable to that of
rapamycin (Figure 6H). These data suggest
that the antifibrotic effects of SIRT1 may
involve mTOR pathway inhibition.

Discussion

The present work demonstrates that SIRT1
is downregulated in PBMCs of patients with
SSc with pulmonary fibrosis, and that the
down-regulation of SIRT1 is related to dcSSc

and the presence of ATA in SSc. Further
studies found that SIRT1 activation prevents
pulmonary fibrosis by down-regulating
proinflammatory and profibrotic signaling.
In addition, we determined that these
actions of SIRT1 require its deacetylase
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activity to block NF-kB signaling in
inflammation, and the inhibition of
mTOR pathway activity to attenuate
fibrosis.

SIRT1 plays critical roles in aging,
metabolism, and cancer. The function of
SIRT1 in SSc is now beginning to be
understood. Recent studies have delineated
the role of SIRT1 in SSc skin fibrosis,
finding that SIRT1 targets canonical TGF-b
signaling (21, 22). However, the role of
SIRT1 in SSc-related pulmonary fibrosis is
unknown. In this study, we evaluated SIRT1
mRNA expression in the PBMCs
of Chinese Han patients with SSc. We
found that SIRT1 mRNA levels are
downregulated in patients with SSc
with pulmonary fibrosis compared with
those without pulmonary fibrosis
(Figure 1A). Pulmonary fibrosis is the
leading cause of death in patients with SSc
(42). Our previous study suggested that
the presence of ATA in Chinese patients
with SSc is strongly associated with dcSSc
and pulmonary fibrosis, whereas ACA
is associated with less pulmonary
involvement (1). In addition,
further analysis found that the
decreased expression of SIRT1 was
correlated with dcSSc (Figure 1B) and
the presence of ATA (Figure 1C).
Taken together, these results suggest
involvement of SIRT1 loss in the
development of SSc-related pulmonary
fibrosis.

The bleomycin-induced pulmonary
fibrosis model is a well characterized,
commonly used model. Bleomycin
induces lung injury by causing DNA strand
damage, then endothelial injury, and then
leakage of inflammatory cells into the
alveolar space. This is followed by the
development of fibrosis. In this study, it was
found that the activation of SIRT1 by
resveratrol reduced the lung inflammation
and fibrosis invoked by bleomycin
(Figures 1E–1H, Figure 2, and Figure 5). It
was further determined that the basis for
SIRT1 effect on fibrosis involves multiple
mechanisms.

The overexpression or activation of
SIRT1 reduced the inflammatory responses
induced by bleomycin in vivo and by TNF-a
in vitro (Figures 1–3). These findings
support a role for SIRT1 as an
antiinflammatory mediator in pulmonary

fibrosis development. Further studies found
that SIRT1 activation ameliorated
established fibrosis (Figure 5). SIRT1
effectively inhibited collagen production and
myofibroblast differentiation in TGF-b–
induced fibrosis in lung fibroblast in the
absence of inflammation (Figures 6A–6D),
and, consistent with our previous
observation that SIRT1 has antifibrotic
effects by targeting TGF-b signaling (21),
we observed that SIRT1 inhibits the TGF-b
pathway in a cellular context (Figures 6E
and 6F). Therefore, the enhancement of
SIRT1 activity is a potential treatment
for patients with established pulmonary
fibrosis.

SIRT1 is a widely expressed NAM
adenine dinucleotide–dependent
deacetylase, and studies in vitro and in vivo
have implicated SIRT1 in the regulation of
inflammation due to its deacetylase activity.
NF-kB, a key intracellular mediator of
inflammatory responses, is a deacetylation
target of SIRT1, responsible for the
expression of many cytokines, such as
TNF-a, IL-6, and IL-1b (18, 43, 44). NF-kB
is sequestered in the cytoplasm through
interactions with the inhibitor protein, IkB.
Numerous extracellular stimuli can activate
NF-kB through signal transduction
pathways that activate an IkB kinase
complex that phosphorylates IkBa on
serines 32 and 36. The phosphorylation of
IkBa leads to its ubiquitination and
ultimate degradation by the proteasome,
allowing NF-kB to translocate to the
nucleus, where it activates the expression
of genes. Recently, it was found that
resveratrol decreases the protein level of
NF-kB to modulate the activity of vascular
endothelial growth factor and IL-8 (45).
In vivo, resveratrol has been demonstrated
to reduce NF-kB p65 protein expression
and exert protection in an experimentally
induced colitis model (46). Resveratrol may
also inhibit the activation of the IkB kinase,
thereby inhibiting the activation of NF-kB (47).
As exhibited by this work and that of
others, resveratrol may additionally cause a
decrease in the acetylation of NF-kB p65 to
inhibit the activation of NF-kB via SIRT1
(18, 33). Our results in vitro demonstrated
that NF-kB signaling and p65 acetylation
increased in response to TNF-a and
decreased after SIRT1 activation or
overexpression (Figures 4A–4D). These

findings are consistent with the results of
our experiments in vivo, in which
resveratrol treatment increased SIRT1
expression levels and activity and reduced
NF-kB signaling (Figures 4E–4H). As such,
our studies revealed that actions on
NF-kB signaling participate in the
antiinflammatory actions of SIRT1 in
pulmonary fibrosis.

Along with targeting NF-kB,
resveratrol had been identified to have
additional effects on other regulatory
pathways. It has been shown that
resveratrol activates mitogen-activated
protein kinase in a SIRT1-dependent
manner (48). In addition, it has been found
that resveratrol prevents inflammation and
fibrosis through inhibiting the activation
of signal transducer and activator of
transcription 3 (49). Furthermore, both
phosphatidylinositol 3-kinase and vascular
endothelial growth factor have been
implicated in pulmonary fibrosis in the
bleomycin mouse model (50), and
resveratrol administration inhibited their
functions (29, 51). Moreover, basic
fibroblast growth factor, a hallmark of
idiopathic pulmonary fibrosis (52), may
exert fibrogenic effects, and it may also
be regulated by resveratrol (53). Therefore,
it is possible that these various processes
may additionally contribute to the effects
of resveratrol observed in the present
study.

The present work is the first to
investigate the role of SIRT1 in SSc-related
pulmonary fibrosis. We reveal that SIRT1
expression is downregulated in patients with
SSc with pulmonary fibrosis, and in vivo
and in vitro studies demonstrated that
SIRT1 prevents inflammation and fibrosis
during pulmonary fibrosis development
via the inactivation of NF-kB and
TGF-b/mTOR signaling, respectively. We
propose that SIRT1 activation may
be a promising approach for both the
prevention and treatment of SSc–related
pulmonary fibrosis. n
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