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Abstract

Background—Greater exposure to urban green spaces has been linked to reduced risks of 

depression, cardiovascular disease, diabetes and premature death. Alleviation of chronic stress is a 

hypothesized pathway to improved health. Previous studies linked chronic stress with a biomarker-

based composite measure of physiological dysregulation known as allostatic load.

Objective—This study’s objective was to assess the relationship between vegetated land cover 

near residences and allostatic load.

Methods—This cross-sectional population-based study involved 206 adult residents of the 

Durham-Chapel Hill, North Carolina metropolitan area. Exposure was quantified using high-

resolution metrics of trees and herbaceous vegetation within 500 m of each residence derived from 

the U.S. Environmental Protection Agency’s EnviroAtlas land cover dataset. Eighteen biomarkers 

of immune, neuroendocrine, and metabolic functions were measured in serum or saliva samples. 

Allostatic load was defined as a sum of potentially unhealthy biomarker values dichotomized at 

10th or 90th percentile of sample distribution. Regression analysis was conducted using 
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generalized additive models with two-dimensional spline smoothing function of geographic 

coordinates, weighted measures of vegetated land cover allowing decay of effects with distance, 

and geographic and demographic covariates.

Results—An inter-quartile range increase in distance-weighted vegetated land cover was 

associated with 37% (95% Confidence Limits 46%; 27%) reduced allostatic load; significantly 

reduced adjusted odds of having low level of norepinephrine, dopamine, and 

dehydroepiandrosterone, and high level of epinephrine, fibrinogen, vascular cell adhesion 

molecule-1, and interleukin-8 in serum, and α-amylase in saliva; and reduced odds of previously 

diagnosed depression.

Conclusions—The observed effects of vegetated land cover on allostatic load and individual 

biomarkers are consistent with prevention of depression, cardiovascular disease and premature 

mortality.
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1. Introduction

Greater exposure to green and natural environments in urban and suburban settings is 

associated with various health benefits (WHO 2016). These benefits include improved 

mental health (Gascon et al. 2015), reduced incidence of type 2 diabetes (Astell-Burt et al. 

2014), improved pregnancy outcomes (Dzhambov et al. 2014), reduced cardiovascular 

disease (Tamosiunas et al. 2014) and reduced mortality (Gascon et al. 2016).

Exposure to the green environment is linked with these health benefits through various 

interacting pathways, such as chronic stress alleviation, improved social cohesion, enhanced 

physical activity, and reduced air pollution (Hartig et al. 2014). Relative contributions of 

these different pathways to specific health outcomes may depend on the type of exposure to 

the green environment (e.g. urban parks vs. vegetation near residence) and specific 

population subgroup (WHO 2016). According to the biophilia hypothesis, humans have an 

innate need to affiliate with the living natural environment (Wilson 1984). As it appears that 

people are innately predisposed to find non-threatening natural stimuli relaxing, exposure to 

these stimuli triggers a parasympathetic nervous system response leading to feelings of 

enhanced well-being and relaxation, and shifting stressed individuals to a more positive 

emotional state (Ulrich et al. 1991).

Corroborating the biophilia hypothesis, reviews of epidemiological evidence demonstrated 

that restoration and stress reduction may be the most important pathways to better mental 

and physical health in individuals living in greener areas (Dadvand et al. 2016; Triguero-

Mas et al. 2015). Studies in different countries have linked greater vegetated land cover as 

well as improved access to geographically defined green spaces to reduced levels of 

depression, anxiety and psychological distress (Astell-Burt et al. 2013; Beyer et al. 2014; 

Pope et al. 2015; Reklaitiene et al. 2014; Taylor et al. 2015).
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Previous studies explored biological mechanisms underlying mental and physiological 

benefits of short-term contacts with nature. For example, an experimental study using 

wearable electroencephalogram (EEG) devices demonstrated the effects of a short walk in a 

green urban area on brain activity indicative of enhanced relaxation and restoration (Aspinall 

et al. 2015). Other studies have demonstrated beneficial effects of “forest bathing” and 

various short-term contacts with nature on biomarkers of cardiovascular, neuroendocrine and 

immune functions (Haluza et al. 2014). A cross-sectional observational study in the U.K. 

demonstrated that, among economically deprived sub-populations, residents of greener 

neighborhoods have healthier diurnal salivary cortisol patterns indicating reduced effects of 

chronic stress (Roe et al. 2013; Thompson et al. 2012).

Chronic environmental challenges that an individual perceives as stressful are known to have 

systemic detrimental effects, manifesting in measurable physiological dysregulation. 

Allostatic load (AL) is a biomarker-based measure of such dysregulation reflecting the 

physiological consequences of chronically fluctuating neural or endocrine responses 

resulting from repeated stress (McEwen and Stellar 1993; McEwen 2002; Seeman et al. 

1997). Numerous studies have used various AL indices which incorporate biomarkers of 

neuroendocrine, immune, metabolic and cardiovascular system functioning to demonstrate 

profound health implications of AL including burnout syndrome, reduced cognitive 

performance, increased risks of cardiovascular morbidity and death (Juster et al. 2010; Juster 

et al. 2011; Karlamangla et al. 2014; McEwen 2015; Milot et al. 2014).

AL has been increasingly used in epidemiology and community health research, and linked 

to adverse social and environmental conditions (Hansen et al. 2014; Jung et al. 2014; Juster 

et al. 2010; Petrovic et al. 2016; Robinette et al. 2016). While many previously conducted 

studies of health benefits of short-term exposure to outdoor nature have utilized some AL 

biomarkers (Haluza et al. 2014), to our knowledge, AL or other composite measures of 

physiological dysregulation based on multiple biomarkers have not been used to assess 

effects of long-term exposure to urban green spaces and living natural environments.

The main objective of the present study was to assess an association between vegetated land 

cover near participants’ residences and AL. Additional objectives were: (i) to explore 

associations between vegetated land cover and individual biomarkers in order to demonstrate 

potential mechanisms of beneficial health effects; and (ii) to explore associations between 

vegetated land cover, and diseases and health conditions.

2. Methods

2.1. Study design

This cross-sectional community-based study used archived serum and saliva samples, and 

associated questionnaire data from a previously conducted study in the Durham-Chapel Hill, 

North Carolina metropolitan area, which was designed to identify individual and community 

level factors affecting general health status and risks of selected chronic infections.
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2.2. Human subjects: recruitment and data collection

The study protocol involving the use of human subjects was approved by the Institutional 

Review Board at the University of North Carolina in Chapel Hill. Participants were recruited 

through advertisement in local newspapers and internet sites.

Enrollment was limited to individuals of at least 18 years of age. Data collection was 

conducted at the U.S. Environmental Protection Agency (US EPA) Human Studies Facility 

in Chapel Hill in May-September 2013. All data were collected during a single visit by a 

study participant, usually in the morning. The participants signed an informed consent form 

prior to data collection. Venous blood samples were drawn by registered nurses in BD 

Vacutainer SST Tubes without an anticoagulant (Becton, Dickinson and Company, Franklin 

Lakes, NJ). Serum was separated by centrifugation following manufacturer instructions. 

Oral fluid (hereafter called saliva) samples were collected using Oracol samplers (Malvern 

Medical Developments, United Kingdom), which consist of a cylindrical sponge with a 

handle and a container. Sampling involves rubbing the gums with the sponge for one minute 

or until the sponge becomes saturated with saliva (this sampling method produces variable 

sample volumes from less than 0.1 mL to 1 mL). Saliva was separated from the sponge by 

centrifugation in the collection tube at 1,500 g for 5 min. Debris were pelleted by 

centrifugation at 2,500 g for 5 min. Samples were transferred to microcentrifuge tubes and 

then further separated from debris by centrifugation at 3,000 g for 3 min and then transferred 

to a final microcentrifuge tube. Samples were archived immediately after processing at 

−80°C.

A brief questionnaire included basic demographic information, as well as data on self-

assessed health status and medically diagnosed chronic diseases and conditions.

2.3. Land cover data analysis

The residential vegetated land cover data were derived from 1 m resolution classified land 

cover data published online by the US EPA as part of the EnviroAtlas mapping application 

and decision toolkit (https://www.epa.gov/enviroatlas). Land cover data for the contiguous 

United States has 30 m resolution; 1-meter resolution land cover data are available for 

selected census urban areas including the Durham-Chapel Hill, NC metropolitan area 

(Pickard et al. 2015). The classified land cover data for Durham - Chapel Hill were 

developed with remote-sensing methods from U.S. Department of Agriculture 2010 National 

Agriculture Imagery Program (NAIP) aerial photography and supplemental data including 

Light Detection and Ranging (LiDAR) data. The land cover data for this area include five 

categories: (i) Water, (ii) Impervious surface, (iii) Soil & barren, (iv) Trees & forest, and (v) 

Grass & other herbaceous. US EPA previously conducted error analysis of the land cover 

data through random sampling of approximately 600 photo-interpreted reference points 

which demonstrated that the land cover classification for this area had an overall accuracy of 

83%. For this study, total vegetated land cover was defined as the proportion of land within 

the Tree & forest and Grass & other herbaceous categories.

Residential addresses of study participants who lived within the high-resolution land cover 

data area were geocoded. Only individuals with complete high-resolution land cover data for 
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a 500 m radius around the residence were included in further analysis. The 500 m radius was 

selected because previous epidemiological studies commonly used 500 m or smaller 

distance from residence for assessing exposure to greenery (Dadvand et al. 2015; Dadvand 

et al. 2016; Fuertes et al. 2016; James et al. 2016; Lovasi et al. 2013; Villeneuve et al. 2012). 

Measures of vegetated land cover were produced for ten concentric 50 m-wide annuli around 

each residence, from 0–50 m to 450–500 m.

In order to assess the distance-dependence of associations between vegetated land cover and 

AL, annulus-specific data were combined using seven different weighting schemes (Table 

1). The first scheme assigned 100% weight to the first 0 – 50 m annulus and zero weights to 

the remaining nine annuli to estimate average vegetated land cover within 50 m radius. The 

next four schemes were based on the assumption that the effect of vegetated land cover 

decays exponentially with the distance from residence. Weighted exposure measures were 

calculated as described below using sets of annulus-specific weights derived from 

cumulative probabilities of four exponential distributions. The cumulative density function 

of the exponential distribution is

P(X ≤ x) = 1 − e( − λx)

Weight for each annulus was calculated as an interval cumulative density

P(x1 ≤ X ≤ x2) = e
( − λx1)

− e
( − λx2)

In this equation, x1 was set equal to the inner radius and x2 to the outer radius of the 

annulus. The parameter λ varied from 0.02 (a steep decline of weights with distance from 

residence) to 0.0025 (a slow decline of weights), with 50% reduction at each step. The sixth 

scheme applied the same weight of 0.1 to all ten annuli. Finally, the seventh scheme used the 

average vegetated land cover within 500 m from residence. To calculate it from annulus-

specific data, weights were set proportional to the area of each annulus: from 1% for the 0–

50 m annulus (area 7,854 m2) to 19% for the 450–500 m annulus (area 149,226 m2).

To assess the degree of urbanicity, census block-group level data on average numbers of 

housing units per acre were abstracted from EPA’s Smart Location Database (https://

www.epa.gov/smartgrowth/smart-location-mapping#SLD). Housing unit density data were 

square root transformed for regression analysis.

2.4. Analysis of biomarkers

Biomarkers for this study were selected based on the review of AL indices by Juster et al. 

(2010) with additions and modifications. The resulting list of 18 biomarkers is presented in 

Table 2. It includes biomarkers which have been used in previous studies of AL (Cohen et al. 

2015; Juster et al. 2010), such as C-reactive protein (CRP), fibrinogen, uric acid, high 

density and low density lipoproteins (HDL and LDL, respectively), dehydroepiandrosterone 

(DHEA), catecholamines (epinephrine, norepinephrine and dopamine) and four pro-

inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-
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α); as well as several additional biomarkers reflecting effects of chronic stress including 

serum amyloid A (SAA), vascular cell adhesion molecule 1 (VCAM-1), intercellular 

adhesion molecule 1 (ICAM-1), and myeloperoxidase (MPO) in serum, and α-amylase in 

saliva. The study did not include AL biomarkers derived from medical examination, such as 

systolic and diastolic blood pressure or peak expiratory flow rate, because the parent project 

did not include such examinations of participants. Therefore, the biomarker-based composite 

indices which were used in this study differ from AL indices used previously. However, like 

AL indices employed in previous studies, they are comprised of biomarkers reflecting 

physiological effects of stress. Moreover, there is no standardized set of AL biomarkers, and 

new stress and adaptation-related biomarkers can be identified using research on specific 

health end-points (McEwen 2015).

Commercially available biomarker assay kits (Table 2) were selected based on technical 

characteristics, laboratory equipment requirements, minimum sample volume and cost of 

analysis. Two multiplexed assays based on the Meso Scale Discovery (MSD) 

electrochemiluminescence platform were used to analyze four pro-inflammatory cytokines 

or four inflammation and vascular injury biomarkers simultaneously.

Samples were analyzed at US EPA laboratories in Chapel Hill, NC and Cincinnati, OH in 

accordance with manufacturers’ instructions. Most biomarkers were initially analyzed in two 

matrices (serum and saliva) using a subset of samples (except the salivary enzyme α-

amylase, which was tested in saliva only, and lipoproteins, which were tested in serum only). 

Based on preliminary analysis of distributions of biomarker values and associations between 

biomarker values in serum and saliva (not shown), further analysis was conducted using one 

matrix per biomarker: 17 biomarkers were analyzed in serum and one in saliva (Table 2). In 

each assay, at least 20% of samples were assayed in duplicate. Geometric mean values from 

duplicate tests were used in data analysis.

Concentrations of analytes were estimated by linear interpolation of standards or by fitting 

four-parameter logistic dose-response curves to serially diluted standards and solving the 

resulting equations for individual samples in accordance with manufacturer’s instructions. 

Biomarker measurements which did not meet pre-set quality control criteria specified by 

assay manufacturers were excluded from further analysis.

Body mass index (BMI) values were calculated from height and weight data collected at 

enrollment. Preliminary analysis showed that, as expected, BMI was a strong predictor of 

many biomarkers of inflammation, vascular injury, metabolic and neuroendocrine functions. 

At the same time, BMI, as a continuous or categorical variable, was not associated with 

vegetated land cover in this dataset. Therefore, BMI was included in regression models for 

AL and individual biomarkers as a covariate to improve precision of parameter estimates.

2.5. Allostatic load indices

In this study, an AL index was defined as a sum of dichotomized biomarker values, which is 

the most commonly used approach in AL studies (Juster et al. 2010). Data on biomarkers 

were dichotomized at a low end of the distribution (DHEA, dopamine, and HDL), at a high 

end of the distribution (IL-1β, IL-6, IL-8, TNF-α, fibrinogen, uric acid, MPO, α-amylase, 
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CRP, LDL, SAA, VCAM-1, and ICAM-1) or at both ends (norepinephrine and epinephrine), 

depending on which tail of the biomarker distribution is associated with adverse stress-

related health effects.

For norepinephrine and epinephrine, both ends of the distribution have been linked with 

physiological dysregulation and disease. High levels of urinary norepinephrine and 

epinephrine have been used as indicators of neuroendocrine distress in previous AL studies 

(Clark et al. 2007; Seeman et al. 1997). While high levels of norepinephrine have been 

linked with adverse cardiovascular outcomes (Yufu et al. 2014), low levels of norepinephrine 

are also known to be associated with depression (Moret and Briley 2011). Results of some 

studies suggest that epinephrine may also be reduced in depression (Ambade et al. 2009).

Due to missing values (mainly lacking saliva samples for α-amylase tests and insufficient 

serum volume for LDL and HDL tests, which required the largest serum volume of all tests 

employed in this study), using all 18 biomarkers resulted in a greatly reduced sample size. 

Therefore, two alternative AL indices were calculated: (i) based on all 18 biomarkers (with 

two binary variables for epinephrine and norepinephrine each for a total of 20 binary 

variables); and (ii) based on 15 serological biomarkers, excluding α-amylase, HDL and LDL 

(17 binary variables in total). The AL indices were count data, which approximately 

followed Poisson distributions.

Biomarkers were dichotomized using two sets of distribution-based cut-off points: (i) below 

the 10th percentile or above the 90th percentile of the biomarker distribution; and (ii) below 

the 25th or above the 75th percentile. The latter quartile-based cut-off points have been used 

extensively in AL studies (Juster et al. 2010; Seeman et al. 1997). More extreme 

distribution-based cut-off points (10th and 90th percentiles) were explored because recent 

research demonstrated that impacts of environmental stressors on some health effect 

biomarkers are strongest among individuals who were already at risk and had extreme 

biomarker values at baseline (Bind et al. 2016). AL indices were calculated for both sets of 

dichotomization cutoff points and both sets of biomarkers (including 15 and 18 biomarkers) 

for a total of four AL indices.

2.6. Statistical data analysis

Statistical analysis was conducted using SAS version 9.4 (SAS Institute, Cary, NC) 

software. Regression analyses of associations between vegetated land cover and AL, 

individual biomarkers and previously diagnosed diseases were conducted using generalized 

additive models (SAS procedure GAM), which is a common approach in analysis of 

geographic distributions of health outcomes (Clements et al. 2005). The AL data were 

analyzed using models for Poisson-distributed outcomes while data on individual 

biomarkers and diseases were analyzed using models for binomial outcomes.

To control for spatial autocorrelation, these regression models included a two dimensional 

spline smoothing function of geographic coordinates as described previously (Dormann et 

al. 2007; Webster et al. 2006). Splines were fitted using the “spline2” function in the SAS 

procedure GAM, which is based on the penalized least squares method. It computes a thin-

plate flexible surface approximating spatial variation of the parameter of interest. The 
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default approach was to use the generalized cross validation (GSV) option to automatically 

select the degrees of freedom which determines the amount of smoothing or flexibility of the 

thin plate. In several models for individual biomarkers, the number of degrees of freedom 

had to be constrained to enable model convergence.

All regression models involving vegetated land cover data also included census group block-

level average housing unit density (square root transformed to achieve normality) as a 

covariate. Age was modelled as a continuous variable for biomarkers which are 

monotonously associated with age, or as a categorical variable for U-shaped or inversely U-

shaped associations and included in all regression models for biomarkers and AL. Other 

covariates were selected using a step-wise selection (bidirectional elimination) procedure for 

each vegetated land cover weighting scheme and then combined to produce a common set of 

covariates for all regression models involving a specific outcome variable. In addition to the 

core covariates listed above, other covariates considered were gender, race, education, 

smoking status and BMI. Stratified analyses by age, gender, race, obesity status and city of 

residence were conducted using the same set of covariates as analysis of the entire dataset 

minus the stratification variable. Regression models for diseases did not include biomarkers 

as covariates because biomarkers may be intermediate endpoints between exposure to 

vegetation and prevention of disease. Spatial autocorrelation in model residuals was 

analyzed using the Moran’s I tests and variogram plots (SAS procedure VARIOGRAM). 

Only results of models with non-significant Moran’s I test statistics were accepted.

Results of regression analysis were expressed as multiplicative change in the outcome per 

interquartile range (IQR) increase in proportion of vegetated land cover. In addition, 

regression analysis of AL was conducted with vegetated land cover modelled as an ordinal 

variable with categories corresponding to tertiles of vegetated land cover distribution. 

Associations between biomarkers and diseases were analyzed using general linear models 

(SAS procedure GENMOD); these models did not include vegetated land cover data.

3. Results

3.1. Descriptive statistics

Complete high resolution land cover data for 500 m radius around the residence was 

available for 206 individuals residing at 173 unique street addresses. Of these, 148 were 

addresses with one study participant per address. The remaining 25 street addresses with two 

to four study participants per address (58 individuals total) were mainly apartment buildings.

The age of study participants ranged from 18 to 85 years (mean 37.4 years, median 33 

years); 66.0% of participants were women (Table 3). Women were overrepresented due to 

their greater willingness to participate in this study. For regression analysis, race and 

ethnicity data were combined to produce a binary variable defined as non-Hispanic Whites 

(53.7%) vs. all others.

Education data were dichotomized as four-year college degree and above (51.5%) vs. all 

others. This relatively high level of education reflected the composition of source 

communities. Approximately half of study participants (51%) lived in Durham (U.S. Census 

Egorov et al. Page 8

Environ Res. Author manuscript; available in PMC 2018 October 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Bureau estimates 258,000 residents in 2015; 47% of adults had a bachelor’s degree or higher 

education), 29% lived in Chapel Hill (city with a large university campus; 59,000 residents, 

74% of adults had at least a bachelor’s degree), 11% lived in Carrboro (town adjacent to 

Chapel Hill; 21,000 residents, 68% of adults had at least bachelor’s degree) and 9% lived in 

other towns in the Durham-Chapel Hill metropolitan area. Predominant types of housing in 

the study population were detached single family homes, townhouses and low-rise apartment 

buildings.

BMI data indicated that 28.6% of study participants were obese according to the World 

Health Organization’s definition (BMI ≥ 30.0 kg/m2). The 90th percentile of BMI 

distribution in this sample corresponded to 36.8 kg/m2. The prevalence of current smoking 

was 27.7%.

Allergy was the most common health condition reported by 51.9% of participants followed 

by previously diagnosed depression, asthma, arthritis, IBS and diabetes. These six diseases 

were analyzed for associations with vegetated land cover. Data on other self-reported 

diseases were not included in regression analysis due to the small numbers of cases. For 

regression analysis, self-reported health status was dichotomized as excellent or very good 

(68.4%) vs. good, fair or poor.

Descriptive statistics for variability in average or weighted vegetated land cover near 

residences by weighting scheme are presented in Table 4. Variability was the greatest for 

average vegetated land cover within 50 m radius around residence (weighting scheme 1) 

ranging from 6.0% to 99.8%, with IQR of 25.8%, and the smallest for average vegetated 

land cover within the 500 m radius (weighting scheme 7), ranging from 36.9% to 95.2%, 

IQR 15.0%. Average housing unit density at a census block-group level ranged from 0.08 to 

11.2 (median 1.53) housing units per acre or 0.20 to 27.7 (median 3.78) housing units per 

hectare.

Summary statistics on individual biomarkers are presented in Table 5. While the total sample 

size was 206 individuals, sample sizes for analysis of individual biomarkers ranged from 

115 to 204. Reduced sample sizes for some biomarkers were due to insufficient saliva or 

serum sample volumes which did not allow for all biomarker tests. Pairwise Kendall 

correlation coefficients τ among dichotomized biomarkers ranged from −0.14 to 0.54, with 

the strongest correlations between CRP and SAA (τ = 0.54) and between ICAM-1 and 

VCAM-1 (τ = 0.44).

AL indices involving all 18 biomarkers (AL1 for the 10th and 90th percentile-based 

dichotomization cut-off points, and AL3 for 25th and 75th percentile cut-offs) were available 

for a subset of 80 individuals while AL2 and AL4 indices based on 15 serological 

biomarkers were available for additional 106 individuals for a total of 186 individuals. The 

80 individuals with data on all 18 biomarkers did not differ significantly from the other 106 

individuals regarding age, gender, education, and prevalence of obesity (not shown). For all 

four AL indices, the minimum value was zero; the maximum values were seven for AL 1, 

nine for AL 2 and AL 3, and eleven for AL 4.

Egorov et al. Page 9

Environ Res. Author manuscript; available in PMC 2018 October 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



3.2. Associations between residential vegetated land cover and individual dichotomized 
biomarkers

Regression analysis results for biomarkers dichotomized at the 10th or 90th percentile are 

presented in Table 6 while results for biomarkers dichotomized at the 25th or 75th percentiles 

are presented in Supplementary Table 1. Effect estimates smaller than one mean that 

individuals with greater vegetated land cover near their residences were less likely to have a 

potentially unhealthy value of a certain biomarker. Columns in these two tables correspond 

to the seven weighting schemes for vegetated land cover described in Table 1. Adjusted odds 

ratio (aOR) estimates are for an IQR increase in weighted vegetated land cover (IQR data 

are shown in Table 4). Covariates used in all regression models for each outcome are listed 

in footnotes for Table 6 and Supplementary Table 1. For each outcome variable, the same set 

of covariates was used in all regression models with different land cover weighting schemes 

and dichotomization cut-offs.

General conclusions based on these two sets of dichotomization cut-off points are largely 

consistent. All statistically significant associations of vegetated land cover with AL and 

individual biomarkers are in the direction consistent with beneficial health effects. For most 

biomarkers, however, using quartile-based cut-off points produced smaller effect estimates 

compared to analysis using 10th and 90th percentile cut-off points.

Results of regression analysis of all biomarkers using the vegetated land cover weighting 

scheme 5 (exponential decay with λ = 0.0025) are shown in Figure 1 (for 10th and 90th 

percentile-based cut-offs) and Supplementary Figure 1 (for 25th and 75th percentile-based 

cutoffs). As in Table 6 and Supplementary Table 1, effect estimates less than one indicate a 

beneficial effects of vegetated land cover. For example, Figure 1 shows that greater 

vegetated land cover was associated with reduced adjusted odds of having high (above the 

90th percentile) α-amylase in saliva and low (below the 10th percentile) DHEA in serum; 

both are considered beneficial effects. While Figure 1 shows eight statistically significant 

associations, only five effect estimates are statistically significant in Supplementary Figure 

1.

Overall, ten biomarkers were statistically significantly (p < 0.05) associated with vegetated 

land cover in at least one weighting scheme (Table 6). Models using weighting schemes 5 

(exponential decay with λ = 0.0025) and 6 (equal weights) produced statistically significant 

effect estimates for eight biomarkers each. In models using weighting scheme 5, increased 

vegetated land cover was linked with reduced aOR of having a low (below the 10th 

percentile) level of serum norepinephrine, dopamine, and DHEA, as well as reduced aOR of 

having a high (above the 90th percentile) level of α–amylase in saliva, and epinephrine, 

fibrinogen, IL-8, and VCAM-1 in serum. Models using weighting scheme 6 produced 

similar results except the effect estimate for DHEA was no longer significant while the 

effect estimate for HDL became statistically significant. Models using weighting schemes 1 

and 2 produced significant associations for five biomarkers each, while models using 

weighting schemes 3, 4, and 7 produced significant associations for seven biomarkers each. 

For biomarkers dichotomized at 10th or 90th percentile, the strongest average adjusted effect 

of an IQR increase in vegetated land on all biomarkers was produced by models using the 
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vegetated land cover weighting scheme 5 (on average, 34.4% reduction in the odds of having 

a potentially unhealthy biomarker value).

Age was positively and monotonously associated with most biomarkers. As associations 

between age and LDL, HDL and IL-6 were non-linear, age was entered as a categorical 

variable in regression models for these biomarkers (see footnotes for Table 6 and 

Supplementary Table 1). Greater BMI was associated with increased odds of having 

potentially unhealthy values of many biomarkers. Low educational attainment and minority 

status were also associated with elevated odds of having potentially unhealthy values of 

several biomarkers.

3.3. Associations between residential vegetated land cover and allostatic load

All four AL indices were significantly inversely associated with vegetated land cover in all 

regression models using seven vegetated land cover weighting schemes (Table 6 and 

Supplementary Table 1). All seven effect estimates for AL2 index based on 15 biomarkers 

and 10th/90th percentile dichotomization cut-off points were highly significant with p < 

0.0001. Figure 2 shows adjusted effect estimates with 95% confidence intervals for four AL 

indices and seven vegetated land cover weighting schemes. All effect estimates for AL1 and 

AL2 indices (based on biomarkers dichotomized at 10th or 90th percentiles) were larger than 

corresponding effect estimates for AL3 and AL4 indices (based on biomarkers dichotomized 

at 25th or 75th percentiles).

Results of analysis using an ordinal variable with categories corresponding to tertiles of 

vegetated land cover distribution for the weighting scheme 5 (exponential decay with λ = 

0.0025) show consistent monotonous declines in all four AL indices in the 2nd and 3rd 

tertiles of vegetated land cover compared to the 1st tertile (Figure 3). Adjusted effect 

estimates for the 3rd tertile were statistically significant for all four AL indices while 

adjusted effect estimates for the 2nd tertile were substantially smaller.

In analyses stratified by gender, race, city of residence (Durham vs. all others), education 

and obesity status, associations between vegetated land cover and AL2 index values were 

consistent and statistically significant (p < 0.05) in all strata; analysis of interaction effects 

showed that interactions of these factors with vegetated land cover were not significant 

(Supplementary Table 2).

3.4. Associations between residential vegetated land cover and diseases

There were no significant effects of vegetated land cover on obesity (BMI > 30 kg/m2), 

allergy, asthma, diabetes, IBS, and self-reported health status (Table 6). While the effect 

estimates for diabetes were large (from 45% to 61% reduction per IQR increase in green 

space), confidence intervals were very wide, possibly due to the small sample size (only nine 

individuals reported having diabetes).

Only previously diagnosed depression was significantly inversely associated with vegetated 

land cover. The results of regression analysis of vegetated land cover vs. previously 

diagnosed depression by 50 m annuli demonstrate a decline of beneficial effects of 

vegetation on the odds of depression with distance from residence (Figure 4). The effect 
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estimates remain rather constant within the first four annuli (0 – 200 m from the residence) 

and then decline steadily with the smallest effects observed for the 450–500 m annulus.

3.5. Association between previously diagnosed depression, and biomarkers and allostatic 
load

As data were collected on only previously-diagnosed depression, and most individuals with 

previous depression might not be depressed at the time of data collection, past depression 

was modelled as a predictor, and biomarkers or AL as outcomes. Individuals who reported 

previously diagnosed depression had significantly increased odds of having low dopamine 

compared to controls: aORs were 5.3 (2.0; 14.3) and 2.9 (1.3; 6.4) for dopamine below 10th 

percentile and below 25th percentile of the sample distribution, respectively, adjusting for 

age, gender, race, education, smoking, BMI and housing unit density. Associations between 

previously diagnosed depression and odds of having low norepinephrine were short of 

statistical significance: aORs were 2.0 (0.7; 6.1) and 1.7 (0.7; 3.9) for norepinephrine below 

10th and 25th percentiles respectively. Other biomarkers were not associated with depression 

(not shown).

Previously diagnosed depression was also significantly associated with a greater AL2 index 

values (15 biomarkers dichotomized at 10th and 90th percentile), while associations with 

other AL indices were short of being significant. Adjusted multiplicative effects of 

previously diagnosed depression on mean AL were: 1.4 (1.0; 2.1) for AL1; 1.3 (1.0; 1.7) for 

AL2; 1.1 (0.8; 1.4) for AL3; and 1.0 (0.9; 1.2) for AL4. Consistent with the pattern observed 

for associations between vegetated land cover and biomarkers and AL, the effects of 

depression were greater for AL1 and AL2 indices based on biomarkers dichotomized at 10th 

or 90th percentiles.

4. Discussion

4.1. Main findings

To our knowledge, this is the first epidemiological study to apply a composite biomarker-

based measure of physiological dysregulation known as AL to assess sub-clinical health 

effects of residential vegetated land cover. Biomarkers of immune, neuroendocrine, and 

metabolic functions, and AL indices based on these biomarkers were analyzed in this study 

in combination with 1 m resolution land cover data from US EPA’s mapping and analysis 

tool, the EnviroAtlas. The results demonstrated highly significant associations between 

greater vegetated land cover and reduced AL in adults.

Greater residential vegetated land cover was also significantly associated (p < 0.05) with 

reduced adjusted odds of potentially unhealthy levels of several individual biomarkers. In 

generalized additive regression models using biomarkers dichotomized at 10th or 90th 

percentiles, and vegetated land cover weighting scheme based on exponential decay with 

distance from residence (exponential distribution with λ = 0.0025), greater vegetated land 

cover was significantly associated with reduced adjusted odds of having high levels of 

epinephrine, IL-8, fibrinogen and VCAM-1 in serum, and α-amylase in saliva, and low 
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levels of norepinephrine, DHEA, and dopamine in serum. All of these associations were in 

the direction consistent with reduced physiological dysregulation and improved health.

The inverse associations between vegetated land cover and AL, as well as beneficial effects 

on individual biomarkers, are consistent with previously observed associations between 

greater exposure to urban green spaces and reduced mortality (Gascon et al. 2016; James et 

al. 2016). Previous studies have demonstrated that AL is associated with increased risk of 

mortality (Borrell et al. 2010; Cohen et al. 2014; Hwang et al. 2014; Milot et al. 2014). Low 

levels of the sex hormone precursor DHEA have been linked to elevated risk of mortality in 

the general population (Ohlsson et al. 2010; Ohlsson et al. 2015); high levels of fibrinogen 

have also been shown to be predictive of increased mortality (Barron et al. 2015). Finally, 

depression, which was inversely associated with vegetated land cover in this study, has also 

been linked to mortality risk elevated by 40 – 70%, according to different estimates 

(Chesney et al. 2014; Laursen et al. 2016; Walker et al. 2015).

The results of this study also corroborate results of previous research demonstrating stress-

alleviating and mental health-promoting effects of residential vegetated land cover and urban 

green spaces (Alcock et al. 2014; Beyer et al. 2014; Nieuwenhuijsen et al. 2017), including 

reduced risk of depression (Reklaitiene et al. 2014) and reduced consumption of 

antidepressants (Taylor et al. 2015). In previous studies, chronic stress has been linked with 

greater AL (McEwen 2002) as well as reduced levels of DHEA (Maninger et al. 2009). Low 

norepinephrine is known to be associated with depression (Moret and Briley 2011); low 

dopamine also has a role in the pathophysiology of depression (Dunlop and Nemeroff 2007; 

Kapur and Mann 1992). Salivary α-amylase is a biomarker of the sympathetic nervous 

system reflecting stress-mediated effects (Nater and Rohleder 2009).

Similarly, the observed effects of vegetated land cover on biomarkers are consistent with 

previously reported protective effects of urban green spaces on type 2 diabetes (Astell-Burt 

et al. 2014), CVD (Tamosiunas et al. 2014), and mortality due to CVD (Gascon et al. 2016). 

Previous research has demonstrated that type 2 diabetes and its progression are associated 

with elevated fibrinogen (Barazzoni et al. 2000), CRP (Evrin et al. 2005), and VCAM-1 

(Tousoulis et al. 2013), the latter also being linked to vascular impairment in diabetes 

patients. High levels of vascular injury biomarkers including VCAM-1 are also associated 

with increased risk of coronary artery disease and other CVDs (Demerath et al. 2001; Evrin 

et al. 2005; Johnson et al. 2004; Koenig et al. 1999; Zakynthinos and Pappa 2009). Elevated 

fibrinogen is a known predictor of CVD (Kaptoge et al. 2012; Kunutsor et al. 2016). Low 

levels of DHEA are predictive of coronary heart disease (Tivesten et al. 2014) while elevated 

IL-8 is predictive of all-cause mortality in patients with acute coronary syndrome 

(Cavusoglu et al. 2015).

The results of this study are consistent with alleviation of chronic stress leading to 

prevention of systemic physiological dysregulation and affecting a broad set of biomarkers 

of metabolic, immune and neuroendocrine functions. The similar findings produced using 

AL indices based on a full set and a subset of biomarkers are also consistent with previous 

research demonstrating that AL, as a measure of physiological dysregulation, is robust to 

changes in the composition of component biomarkers (Cohen et al. 2015).

Egorov et al. Page 13

Environ Res. Author manuscript; available in PMC 2018 October 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Most biomarkers applied in this study have been used in previous research on AL. Among 

several new biomarkers of chronic stress, which have not been used in previous AL research, 

three biomarkers, VCAM-1, fibrinogen, and α-amylase, were significantly associated with 

vegetated land cover in the direction suggesting potential health benefits.

4.2. Potential pathway to health

The results of analysis using various distance-dependent weighting schemes to assess 

exposure to vegetation suggest that its effects on AL and individual biomarkers tend to 

decline quickly with distance from residence. The rapid decline of the effects of vegetation 

with distance from residence and the lack of association between vegetated land cover and 

obesity suggest that psychological relaxation and stress alleviation were dominant pathways 

to improved health in this population. Viewing vegetation, spending time outdoors near 

home, gardening and similar activities could be behavioral mediators of the observed effects.

Exposure to diverse microorganisms in soil might also be an important pathway leading to 

improved mental health. Recent studies demonstrated that exposure to pathogens and 

commensal microorganisms in soil can improve immunoregulation and lead to improved 

mental health and resilience to stress (Lowry et al. 2016; Reber et al. 2016). These recent 

findings are consistent with research demonstrating health benefits of gardening (Clatworthy 

et al. 2013; Van Den Berg and Custers 2010). It has also been shown that urban vegetation 

influences the composition of airborne bacteria (Mhuireach et al. 2016) suggesting another 

potential pathway leading to the health benefits observed in the present study. Reduced 

levels of traffic-related air pollutants could be another pathway contributing to the observed 

beneficial health effects. Previous research has demonstrated that trees and other vegetation 

along streets can serve as a barrier reducing exposure to air pollutants (Brantley et al. 2014; 

Tong et al. 2016). It has also been shown that exposure to common air pollutants in urban air 

is associated with increased levels of biomarkers of inflammation and endothelial function 

(Bind et al. 2012; Hajat et al. 2015), which were measured in the present study.

4.3. Approaches to estimating allostatic load

This study used the most common approach to estimating AL based on the count of 

biomarkers that fall within a range of potentially unhealthy values. Other approaches to 

estimating AL are based on analysis of continuous biomarker data. A basic alternative 

approach includes using z-scores of continuous biomarker values representing their 

deviations from the sample means (Juster et al. 2010). A more complex approach is based on 

a multi-dimensional generalization of the concept of statistical distance in standard 

deviations from the mean known as the Mahalanobis distance. This measure shows how 

unlikely is a given combination of biomarker values taking in account covariance among 

biomarkers (Cohen et al. 2013). The approaches based on continuous biomarkers do not take 

into account the direction of deviation from the center assuming that any deviation is 

indicative of physiological distress.

Many previous studies of AL used 25th or 75th percentiles of biomarker distribution as cut-

off points for dichotomizing individual biomarkers (Juster et al. 2010; Seeman et al. 1997). 

In this study, the observed effects of vegetation near residence on AL indices based on 
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biomarkers dichotomized at 10th or 90th percentile were of larger magnitude compared to 

AL indices based on biomarkers dichotomized at 25th or 75th percentile cut-offs. Similar 

patterns were observed for a majority of individual biomarkers. Recent research 

demonstrated that exposure to environmental factors may have stronger effects on the values 

of certain biomarkers in individuals who already had elevated levels of these biomarkers 

(Bind et al. 2016). Conversely, exposure to health-promoting environmental factors, such as 

vegetation near residences, can have stronger beneficial effects in vulnerable individuals 

influencing the tail of biomarker distribution associated with health risks. This may explain 

the pattern of associations in the present study with stronger effects on biomarkers 

dichotomized at more extreme percentiles. Although confidence intervals for the 10th/90th 

percentile dichotomized biomarkers and corresponding AL indices were wider due to greater 

random effects, using 10th/90th percentiles or, perhaps, even more extreme cut-off points for 

dichotomization may be warranted, especially in larger studies.

4.4. Approaches to modelling residential vegetated land cover

In this study, the application of 1 m resolution EnviroAtlas data based on aerial photography 

enabled a very precise characterization of vegetated land cover within narrow distance 

intervals from residences. This is a substantial improvement over many previously 

conducted studies of urban vegetation and health, which relied on lower resolution land 

cover or Normalized Difference Vegetation Index (NDVI) data (WHO 2016).

Distributed lag models have been used in environmental research to analyze temporal lagged 

effect, such as lagged associations between episodes of exposure to pathogens and outbreaks 

of infections (Egorov et al. 2003; Naumova and Macneill 2008). This approach has also 

been applied in analysis of spatial associations between built environment and health (Baek 

et al. 2016). The use of high resolution land cover data in the present study enabled detailed 

analysis of effects with distance from the residence using 50 m wide annuli. The results 

demonstrated that the effects of vegetation decline gradually with distance from the 

residence within the 500 m radius.

In most cases, regression models using distance-weighted estimates of vegetated land cover 

produced stronger and more significant associations with AL and individual biomarkers, and 

better measures of model fit compared to models using average vegetated land cover within 

500 m of residence. The former models assume that the importance of each square meter of 

area covered with vegetation declines with distance from the residence. For example, the 

exponential decay weighting scheme 4 (weights from exponential distribution with λ = 

0.005) assigned a 22.1% weight to 0 – 50 m distance from the residence and a 2.3% weight 

to the 450 – 500 m annulus. As the area of the latter annulus is 19 times larger, this model 

assumes that 1 m2 of vegetated land cover within the first 50 m has an approximately 180 

times greater contribution to health than a similar 1 m2 of vegetation within the 450 – 500 m 

annulus. In contrast, estimates of the average vegetated land cover within 500 m of residence 

are based on the assumption that each square meter of vegetation within 500 m from 

residence is equally important. In other words, the 450 – 500 m annulus with the largest area 

contributes 19 times more to the mean than the smallest 0 – 50 m annulus.
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4.5. Limitations of the study

This cross-sectional study employed a brief questionnaire which did not include questions 

on lifestyle and activities potentially affecting exposure to and contact with vegetation near 

residences. As with any cross-sectional observational study, the observed associations could 

be affected, one way or another, by unmeasured confounding factors, which are correlated 

with vegetated land cover and linked with improved health. Further research involving more 

detailed behavioral and socioeconomic data is needed to confirm the results of this study and 

to provide information on behavioral factors mediating effects of residential vegetated land 

cover on health.

This exploratory study involved adults only. Therefore, the findings are not applicable to 

children. Approximately two-thirds of study participants were women reflecting the 

nonrandom sampling procedure, which was favored by women. Reflecting the source 

population in the Durham-Chapel Hill, NC metropolitan area, the study participants were 

better educated on average than the general adult US population. However, stratified analysis 

demonstrated consistent beneficial effects of vegetated land cover in men and women, and in 

individuals with and without bachelor’s degree suggesting that the findings are generalizable 

to the general adult US population living in similar geographic conditions.

While this study demonstrated several statistically significant (p < 0.05) associations 

between vegetated land cover and individual biomarkers, some of the observed significant 

effects could be due to type 1 errors (false positive findings due to random sampling effects). 

However, all significant associations were in the direction indicative of beneficial health 

effects; this suggests that these findings are consistent with the underlying patterns in the 

population.

Previous research demonstrated that improved access to urban green spaces is associated 

with improved diurnal salivary cortisol patterns, and reduced hypocortisolemia (Roe et al. 

2013; Thompson et al. 2012). Due to logistical reasons, this study did not include the 

salivary cortisol biomarker. Data collection involved only one saliva sample from each 

participant, which precluded analysis of diurnal patterns. While most samples were collected 

in the morning, exact time intervals since waking up were not recorded, which precluded 

analysis of morning peak levels. These limitations made analysis of salivary cortisol data 

uninformative. Instead, the study employed salivary α-amylase, which has been used 

extensively in research on health effects of chronic stress as a potential alternative to cortisol 

(Cozma et al. 2017).

Urine sampling and physical examinations were not conducted. Therefore, urinary 

biomarkers, such as urinary epinephrine and norepinephrine, as well as blood pressure and 

pulse rate measures which have been applied in previous AL studies (Juster et al. 2010) were 

not available in this study.

While this study showed that residential vegetated land cover was inversely associated with 

previously diagnosed depression, the relatively small sample size did not support analysis of 

potential associations with less prevalent chronic diseases such as diabetes and 

cardiovascular disease. The lack of significant effects of vegetated land cover on allergy and 
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asthma in this study does not necessarily suggest that beneficial or detrimental effects do not 

exist in certain sub-populations. Previous birth cohort studies demonstrated significant 

detrimental as well as significant beneficial effects of residential greenness on allergic 

rhinitis in different areas and countries (Fuertes et al. 2014; Fuertes et al. 2016). While 

greater exposure to pollen in greener areas can have detrimental effects in allergic 

individuals, it has also been shown that reduced contacts with natural environments in 

childhood may adversely affect the human microbiome leading to increased risk of allergic 

sensitization (Hanski et al. 2012). Further studies involving children are needed to provide 

information on the potential links between urban green spaces and allergy.

This project employed an exposure metric based on total vegetated land cover including 

trees and grass. While the observed effect of total vegetated land cover on AL was very 

strong, further research is needed to identify the types of vegetation or landscape features 

that have the strongest beneficial health effects and to characterize main pathways to health. 

Finally, data on the duration of residence at present address, and on previous residences of 

study participants, were not collected. Thus, long-term exposure to residential vegetation 

could not be characterized precisely for some study participants. Further research on green 

space and health effect biomarkers should include analysis of residential history data.

5. Conclusions

The results of this study demonstrate beneficial effects of residential vegetated land cover on 

AL and individual biomarkers, and are consistent with previously observed health benefits 

of exposure to urban vegetation and urban green spaces, including reduced levels of chronic 

stress, improved mental health, reduced risk of type 2 diabetes, CVD and premature 

mortality. Application of health effect biomarkers can help to elucidate biological 

mechanisms of health benefits of urban vegetation. It also enables in-depth analysis of 

common sub-clinical beneficial health effects in epidemiological studies involving extensive 

data collection on a relatively small number of participants.
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AL allostatic load

BMI body mass index

CL confidence Limits

CRP C-reactive protein

DHEA dehydroepiandrosterone

HDL high density lipoprotein

IBS irritable bowel syndrome

ICAM-1 intercellular adhesion molecule 1

IL interleukin

IQR interquartile range

LDL low density lipoprotein

pctl percentile

SAA serum amyloid A

TNF tumor necrosis factor

US EPA United States Environmental Protection Agency

VCAM-1 vascular cell adhesion protein 1
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Highlights

• Greater vegetated land cover near residence is linked with reduced allostatic 

load.

• Greater vegetated land cover is linked with healthier levels of stress 

biomarkers.

• Greater vegetated land cover is linked with reduced odds of previous 

depression.

• Psychological relaxation and stress relief are likely pathways to improved 

health.
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Fig. 1. 
Adjusted ORs of potentially unhealthy biomarker values with 95% confidence limits per 

IQR increase in residential vegetated land cover (weighting scheme 5 based on exponential 

decay with λ = 0.0025), plotted on a logarithmic scale. Biomarkers dichotomized at 10th 

percentile (< 10 pctl) or 90th percentile (> 90 pctl) of their distributions.

Egorov et al. Page 26

Environ Res. Author manuscript; available in PMC 2018 October 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Fig. 2. 
Adjusted multiplicative changes in mean AL indices with 95% confidence limits per IQR 

increase in residential vegetated land cover plotted on a logarithmic scale. AL1: 18 

biomarkers dichotomized at 10th or 90th percentile; AL2: 15 biomarkers dichotomized at 

10th or 90th percentile; AL3: 18 biomarkers dichotomized at 25th or 75th percentile; AL4: 15 

biomarkers dichotomized at 25th or 75th percentile. Vegetated land cover weighting schemes 

are: 1 – average within 50 m radius, 2 to 5 – weights from exponential decay functions with 

lambda (L) parameter from 0.02 to 0.0025, 6 – equal weights of 0.1 assigned to all 50 m 

annuli; and 7 – average within 500 m.
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Fig. 3. 
Adjusted multiplicative changes in mean allostatic load (AL) indices with 95% confidence 

limits by tertiles of residential vegetated land cover (vegetated land cover weighting scheme 

5 based on exponential decay with λ = 0.0025), plotted on a logarithmic scale. AL1: 18 

biomarkers dichotomized at 10th or 90th percentile; AL2: 15 biomarkers dichotomized at 

10th or 90th percentile; AL3: 18 biomarkers dichotomized at 25th or 75th percentile; AL4: 15 

biomarkers dichotomized at 25th or 75th percentile.
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Fig. 4. 
Adjusted ORs of previously diagnosed depression with 95% confidence intervals per IQR 

increase in residential vegetated land cover by distance from residence intervals (annuli), 

plotted on a logarithmic scale.
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Table 3

Demographic, socioeconomic and health characteristics of the study population.

Variable Category Number Mean or percent

Age (years) 206 37.4

Gender Males 70 34.0%

Females 136 66.0%

Race White 117 56.8%

African American 75 36.4%

American Indian or Alaska Native 1 0.5%

Asian or Pacific Islander 4 1.9%

Other 8 3.9%

Ethnicity Hispanic 13 6.3%

Education Did not graduate high school 13 6.3%

High school graduate 32 15.5%

Some college, no degree 40 19.4%

Associate degree 15 7.3%

Bachelor’s degree 60 29.1%

Post baccalaureate degree 46 22.3%

Ever lived on a farm 37 18.0%

Water from private well 24 11.7%

Current smoker 57 27.7%

BMI category Obese 59 28.6%

Overweight 55 26.7%

Normal weight 89 43.2%

Underweight 3 1.3%

Self-reported health Excellent 49 23.8%

Very good 92 44.7%

Good 51 24.8%

Fair 13 6.3%

Poor 0 0.0%

Previously diagnosed with:

Allergy (any) 107 51.9%

Depression 47 22.8%

Asthma 25 12.1%

Arthritis 20 9.7%

IBS 13 6.3%

Diabetes 9 4.4%

Ulcers 8 3.9%

Cancer 4 1.9%

Liver disease 2 1.0%

Heart disease 1 0.5%

Chronic obstructive pulmonary disease (COPD) 0 0.0%
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Variable Category Number Mean or percent

Kidney disease 0 0.0%
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