
REGULAR ARTICLE

Complement C5 but not C3 is expendable for tissue factor activation
by cofactor-independent antiphospholipid antibodies

Nadine Müller-Calleja,1-3,* Svenja Ritter,1,2,* Anne Hollerbach,1,2 Tanja Falter,1,2 Karl J. Lackner,2 and Wolfram Ruf1,3

1Center for Thrombosis and Hemostasis and 2Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany; and
3Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA

Key Points

•Cofactor-independent
aPLs cause PDI- and
complement-dependent
monocyte TF activation.

•C3, but not C5, is
required for TF activation
and aPL-induced
thrombosis.

The complement and coagulation cascades interact at multiple levels in thrombosis and

inflammatory diseases. In venous thrombosis, complement factor 3 (C3) is crucial for platelet

and tissue factor (TF) procoagulant activation dependent on protein disulfide isomerase

(PDI). Furthermore, C5 selectively contributes to the exposure of leukocyte procoagulant

phosphatidylserine (PS), which is a prerequisite for rapid activation of monocyte TF and

fibrin formation in thrombosis. Here, we show that monoclonal cofactor-independent

antiphospholipidantibodies (aPLs) rapidly activateTFonmyelomonocytic cells. TFactivation

is blocked by PDI inhibitor and an anti-TF antibody interfering with PDI binding to TF,

and requires C3 but unexpectedly not C5. Other prothrombotic, complement-fixing

antibodies, for example, antithymocyte globulin, typically induce TF activation dependent

on C5b-7–mediated PS exposure on the outer membrane of monocytes. We show that

aPLs directly induce procoagulant PS exposure independent of C5. Accordingly, mice

deficient in C3, but not mice deficient in C5, are protected from in vivo thrombus formation

induced by cofactor-independent aPLs. Only immunoglobulin G (IgG) fractions with

cofactor-independent anticardiolipin reactivity from patients with antiphospholipid

syndrome (APS) induce complement-independent monocyte PS exposure and PDI-

dependent TF activation. Neither a humanmonoclonal aPL directed against b2-glycoprotein

I (b2GPI) nor patient IgG with selective reactivity to b2GPI rapidly activated monocyte TF.

These results indicate that inhibitors of PDI and TF, but not necessarily clinically available

drugs targeting C5, have therapeutic benefit in preventing thrombosis associated with

APS caused by pathogenic aPLs primarily reactive with lipid, independent of b2GPI.

Introduction

The complement system not only cooperates with hemostasis in host defense, but plays increasingly
recognized roles in thrombosis and the coagulopathy in sepsis.1,2 Complement activation following
binding of antithymocyte globulin (ATG) contributes to rapidly converting tissue factor (TF) expressed by
myelomonocytic cells to a procoagulant form.3 In this context, the complement-fixing antibodies trigger
complement factor 3 (C3)–dependent thiol-disulfide exchange involving cell surface protein disulfide
isomerase (PDI) and C5b-C7 membrane insertion leading to procoagulant phosphatidylserine (PS)
exposure and TF activation.4 Complement activation also plays a pivotal role in TF-dependent venous
thrombus development in the mouse,5 but complement contributions to other settings of thrombosis
remain incompletely understood.
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The antiphospholipid syndrome (APS) causes thrombosis, but
pathogenic effects of antiphospholipid antibodies (aPLs) frequently
also involve activation of the complement cascade. Although aPLs
are known to induce TF transcription in myelomonocytic cells,6-9 it is
an open question whether aPLs, through complement fixation, also
rapidly induce cell surface TF activation, as previously elucidated
for the thrombosis-promoting ATG applied clinically in stem cell
therapy.3 Fetal loss by aPLs is reduced in complement- and C5a
receptor–deficient mice, indicating that complement triggers leuko-
cyte activation during pregnancy complications.10,11 The aPL
cofactor b2 glycoprotein-I (b2GPI) has complement regulatory
activity,12 and prothrombotic effects of b2GPI-reactive aPLs cause
endothelial activation and thrombophilia dependent on C5 and
C6.13-16 In part, the prothrombotic effects of cofactor-dependent
aPLs involve C5a receptors,17 but b2GPI-reactive antibodies also
activate platelets18 and require low-density lipoprotein receptor–
related protein 8 (LRP8) for thrombosis induction in vivo.19 Although
there are anecdotal reports that C5 inhibition can improve thrombotic
complications in catastrophic APS in patients with cardiolipin- and
b2GPI-reactive aPLs,20,21 the role of complement in thrombosis
caused by b2GPI-independent aPLs22 remains unclear.

Methods

Antibodies and inhibitors

We used C3 inhibitor compstatin (Tocris); PDI inhibitor 16F16,
Acridine Orange, Rhodamine B (Sigma); Annexin V–fluorescein
isothiocyanate (FITC) (BD Biosciences); ATG (a gift from Florian
Langer, II. Medical Clinic and Polyclinic, University Medical Center
Eppendorf, Hamburg, Germany); anti-TF 10H1023; anti-TF 21E1024;
and isotype-matched control produced in-house.24 Anti-C5 antibody
eculizumab was obtained from Alexion. The human monoclonal aPLs
HL5B, RR7F, HL7G, and rJGG9 were characterized previously25-29

and compared with immunoglobulin G (IgG) control antibody isolated
from a healthy donor. F(ab9)2 fragments of HL5B were generated with
the F(ab9)2 Preparation kit (ThermoFisher). IgG fractions from APS
patients were isolated as described.29 Briefly, IgG fractions from 20
APS patients were isolated by protein G affinity chromatography.
Cofactor-independent aPLs were detected on enzyme-linked immuno-
sorbent assay (ELISA) plates coatedwith cardiolipin dissolved in ethanol
and blocked with 1% Tween 20. To assess the effect of cofactors in this
ELISA format, 1% b2GPI or 10% human serum was added to the
incubation buffer. Binding to b2GPI was analyzed in commercially
available ELISA plates (AESKU Diagnostics, Wendelsheim, Germany).
All antibody preparations had ,0.1 endotoxin units per mL.

Mice

Lrp82/2mice30 on a C57BL/6-129S6 mixed genetic background (The
Jackson Laboratory) were backcrossed for 8 generations into the
C57BL/6J background and compared with wild-type (wt) mice derived
from littermates obtained during the backcrossing. C3- and C5-deficient
animals and controls were obtained from The Jackson Laboratory, as
previously described.5 All animal procedures were approved by the local
committee on legislation on protection of animals (23177-07/G14-1-
043; Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, Germany).

Cell isolation and clotting assay

Mouse spleen monocytes were selected with the CD115 MicroBead
kit (Miltenyi). Human MonoMac1 (MM1) cells were maintained as
described.31 Cells in serum-free medium were exposed to aPLs with

indicated inhibitors for 10 to 15 minutes at 37°C followed by 1:1
(volume-to-volume ratio) mixing with normal human or mouse, or C3- or
C5-deficient, plasma for 10 minutes at 37°C. The anti-human TF
antibody 10H10 was either incubated with cells during stimulation with
aPLs or, as a control for inhibition of fully activated TF, added to plasma
prior to recalcification. Clotting times after recalcification were recorded
in a KC4 coagulation analyzer (Amelung, Lemgo, Germany) and
converted into procoagulant activity (PCA) units based on a standard
curve of TF (Innovin; Siemens, Marburg, Germany). Cells were similarly
activated for 10 minutes in the presence of autologous serum and
stained with Annexin V–FITC to quantify cell surface PS exposure.

Phospholipid-free FXa-generation assay with

soluble TF

The regulation of TF by PDI was analyzed in a phospholipid-free,
solution-phase assay of TF–factor VIIa (FVIIa)-mediated FX
activation, as described previously.32 Briefly, FXa generation by
soluble TF with a leucine zipper domain (2 nM), FVIIa (2 nM), PDI
(20 nM), and FX (100) in the absence or presence of anti-TF 10H10
(100 mg/mL) was determined in N-2-hydroxyethylpiperazine-N9-2-
ethanesulfonic acid (HEPES)-buffered saline, 2 mM Ca21, 1 mM
Mg21 at 37°C, and FXa levels in EDTA-quenched samples were
measured with chromogenic substrate Spectrozyme FXa.

Inferior vena cava thrombosis model

aPL-amplified thrombus development was evaluated as described.22

Briefly, aPL HL5B (1 mg) was injected via jugular catheter into 8- to
12-week-old male mice 1 hour before flow reduction in the inferior
vena cava induced by ligation over a transiently positioned spacer
(0.26 mm). Rhodamine B–labeled platelets and 100 mL of 50 mg/mL
Acridine Orange to label leukocytes were infused for imaging of
thrombus formation by high-speed fluorescence video microscopy
(BX51WI; Olympus).

Statistics

GraphPad Prism 7 software was used for group comparisons with
1-way analysis of variance (ANOVA) and multicomparison correc-
tion (Dunnett).

Results

aPLs induce PS exposure and TF activation

independent of C5

Monocyte TF procoagulant activity is rapidly induced dependent on
PDI and complement by complement-fixing ATG used for preventing
allograft rejection.3 We confirmed that ATG also upregulated the
TF procoagulant activity of CD115-selected mouse spleen cells
(Figure 1A). In addition, TF activity was induced by the cofactor-
independent aPLs HL5B and RR7F.31 Consistent with prior data
obtained with ATG, TF activation by aPLs was prevented by the PDI
inhibitor 16F16 and the C3 inhibitor compstatin (Figure 1A).
Experiments with human monocytic MM1 cells confirmed these results
(data not shown). ATG activation of human TF requires thiol-disulfide
exchange involving PDI and C5-dependent exposure of procoagulant
PS mediated by membrane insertion of the C5b-C7 complex.3 As
expected from this study, TF activation by ATG was prevented when
mouse monocytes were stimulated in the presence of C3- or C5-
deficient plasma. However, aPLs induced TF procoagulant activity
normally in C5-deficient, but not C3-deficient, plasma (Figure 1B).
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To better understand this distinct property of aPLs, we measured
cell surface PS exposure by annexin 5 staining. Consistent with
prior data, PS exposure by ATG required C3 and C5, but aPLs
caused PS externalization independent of PDI and complement
activation (Figure 1C-D). Note that the aPL HL5B F(ab9)2 fragment
devoid of the complement-fixing Fc portion induced PS exposure,
but failed to upregulate TF procoagulant activity. These data
indicate that cofactor-independent aPLs can bypass the require-
ment for C5-dependent membrane perturbation, but nevertheless
require C3 for PDI-dependent TF activation.

We next evaluated whether rapid TF activation and PS exposure is a
general property of aPLs. HL7G has dual reactivity with cardiolipin
and b2GPI, whereas rJGG9 is only reactive with b2GPI.29 HL7G,
but not JGG9, induced PS exposure and complement- and PDI-
dependent TF activation (Figure 2A-B). Thus, anticardiolipin reactivity
appears to be required and sufficient to rapidly induce TF activity on
monocytic cells.

We have recently shown that PS exposure on extracellular vesicles
released from macrophages is not sufficient for TF prothrombotic
activity and that only PDI1 vesicles promote fibrin strand formation
in a flow system.33 PDI is involved in a thiol-disulfide exchange
that switches TF between coagulation and cell signaling.34 In
addition, PDI through its chaperone function enhances TF activity
involving TF residues Lys149 and Asp150, which are located in a
flexible region of the TF C-terminal domain.32 This region of TF is not
directly involved in the interaction with FVIIa or FX,35-37 but Lys149

and Asp150 are in the center of the epitope recognized by anti-TF
10H10.38 Although this antibody typically shows no appreciable
inhibition of TF procoagulant activity, it inhibits the prothrombotic
activity of TF on PDI1 extracellular vesicles in flowing blood.33 As
shown in Figure 2C, anti-TF 10H10 had no effect on FXa
generation in the established soluble TF assay,32 but it reduced
PDI enhanced TF-FVIIa activity, as previously observed with TF1

and PDI1 extracellular vesicles.33
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Figure 1. aPLs induce TF activation and PS exposure. (A) CD115-selected spleen cells were stimulated for 15 minutes at 37°C with IgG (500 ng/mL), cofactor-

independent aPLs HL5B, HL5B F(ab)2 (100 ng/mL) or RR7F (500 ng/mL), or ATG (100 mg/mL). aPLs were either added alone or together with C3 inhibitor compstatin

(50 mM), PDI inhibitor 16F16 (2 mM), anti-TF antibody 21E10, or isotype rat IgG2a control (5 mg/mL). Cell-associated PCA was subsequently measured by single-stage

clotting assay. (B) CD115-selected cells from the indicated knockout strains were exposed to antibodies as in panel A in plasma from wt, C32/2, C52/2, or Lrp82/2 mice as

indicated and clotting times were determined. (C) Murine monocytes were stimulated with antibody and inhibitors in autologous plasma as indicated for 10 minutes. Samples were

analyzed for PS exposure (Annexin V–FITC binding) using flow cytometry. (D) Murine monocytes were stimulated with antibody in plasma from wt, C32/2, C52/2, or Lrp82/2 as

indicated. PS exposure was determined as in panel C. Data in panels A and C are shown as mean 6 standard deviation (SD). Data in panels B and D are shown as median,

interquartile range, and range; n 5 6; *P , .001. One-way ANOVA followed by the Dunnett multiple-comparison test. MFI, mean fluorescence intensity; unst., unstimulated.
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We hypothesized that 10H10 might interfere with PDI interaction with
TF during activation by aPLs on monocytes. Note that addition of anti-
TF 10H10 after aPL stimulation had no effect on TF procoagulant
activity (Figure 2D), consistent with the previously documented
inhibitory properties of the antibody toward fully active TF. We
therefore pretreated cells with anti-TF 10H10 prior to aPL exposure.
The antibody prevented cardiolipin-reactive aPLs from rapidly inducing
TF activity on monocytic MM1 cells (Figure 2E), but did not influence
PS exposure (Figure 2F). We next addressed whether inhibition
of complement C5 activation with eculizumab interfered with TF
activation. Although the inhibitory anti-C5 blocked TF activation by
ATG as previously shown,3 it did not prevent TF activation by aPLs
(Figure 2G). Thus, PDI and the thiol-disulfide exchange associated with
C3 conversion downstream of aPLs contribute to rapid induction of full
monocyte TF activity independent of C5b-7–induced PS exposure.

Thrombosis induction by cofactor-independent aPLs

requires C3, but not C5

Prior studies showed that aPL affinity isolated on b2GPI induces
thrombosis,18 but the cross-reactivity of these antibodies with

cardiolipin was not assessed. In addition, LRP8 is a crucial cellular
receptor for the pathogenic effects of cofactor-dependent aPLs.19

Rapid activation of monocyte TF by cofactor-independent aPL
HL5B was unaltered in Lrp82/2 mice compared with controls
(Figure 1B). We therefore tested the response of aPL-amplified
venous thrombus development and showed that cofactor-
independent aPLs induced thrombosis efficiently in Lrp8-deficient
mice (Figure 3), confirming that LRP8 is not involved in signaling
induced by these aPLs.29 We next analyzed the contributions of
C3 and C5 in this TF-dependent flow restriction model of venous
thrombus development.22 Accelerated thrombus formation fol-
lowing infusion of aPL HL5B was prevented in C3-deficient, but
not in C5-deficient, mice (Figure 3). We have previously shown
that myeloid cell TF-dependent fibrin formation following flow
restriction of the vena cava requires both C3 and C5.5 The present
findings show that the pathogenic effects of aPLs can also bypass
in vivo the crucial role of C5 in myeloid cell TF activation.

To evaluate the relevance of these findings in patients, we analyzed
previously characterized IgG fractions from 20 patients with APS.29

Isolated IgG from 11 patients had properties similar to HL5B and
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Figure 2. Prevention of PDI-dependent TF activation by anti-TF 10H10. (A) CD115-selected spleen cells were stimulated for 15 minutes at 37°C with IgG control (1 mg/mL),

anti-b2GPI antibody rJGG9 (1 mg/mL), or HL7G (100 ng/mL) either alone or together with indicated inhibitors (using concentrations given in Figure 1). Cell-associated PCA was

subsequently measured by single-stage clotting assay. (B) Murine monocytes were stimulated with antibody and inhibitors in autologous plasma, as indicated, for 10 minutes. Samples

were analyzed for PS exposure (Annexin V–FITC binding) by flow cytometry. n 5 6; *P , .002; 1-way ANOVA followed by the Dunnett multiple-comparison test. (C) Effect of 10H10

(100 mg/mL) on PDI enhanced FXa generation by soluble TF (sTF)-FVIIa. Data are shown as mean 6 SD; *P 5 .004; **P 5 .006; 1-way ANOVA followed by the Dunnett multiple-

comparison test. (D) Single-stage clotting assay of human MM1 cells. 10H10 was added 15 minutes after aPL stimulation, that is, directly before recalcification. Data are shown as

mean 6 SD; n 5 6; *P # .001; 1-way ANOVA followed by the Dunnett multiple-comparison test. (E) Single-stage clotting assay of human MM1 cells stimulated with monoclonal aPLs

or ATG for 15 minutes at 37°C either with or without preincubation of 50 mg/mL 10H10. (F) MM1 cells were stimulated as indicated and PS exposure (Annexin V–FITC binding) was

measured using flow cytometry. (G) Single-stage clotting assay of human MM1 cells cultured in 10% human serum. Anti-C5 antibody eculizumab (100 mg/mL) was added 5 minutes

before HL5B (100 ng/mL) or ATG (100 mg/mL). Data are shown as mean 6 SD; n 5 6; *P # .001; 1-way ANOVA followed by the Dunnett multiple-comparison test.
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bound to cardiolipin in a cofactor-independent manner, but not to
b2GPI.29 These aPLs induced rapid activation of TF (Figure 4A).
Whereas TF activation was prevented by the C3 inhibitor compstatin
and a PDI inhibitor, PS exposure was induced by patient IgG
independent of complement activation and PDI (Figure 4B). IgG
fractions from 2 patients showed reactivity similar to the monoclonal
antibody rJGG9 and bound only to b2GPI, but not to cardiolipin in the
absence of b2GPI. These IgG fractions induced neither TF activity nor
PS exposure (Figure 4). The remaining 7 patient IgG fractions had dual
reactivity with cardiolipin and b2GPI and, as seen with monoclonal

antibody HL7G, efficiently induced both PS surface exposure and TF
activity, which required C3 and PDI.

Discussion

Understanding the pathomechanisms of aPL-induced thrombosis
is essential for tailored antithrombotic therapy of APS patients. To
date, aPLs directed against b2GPI are considered most important
for APS pathogenesis. Several mechanisms including LRP8-
dependent platelet activation and inhibition of endothelial nitric
oxide synthase39-41 have been implicated in anti-b2GPI–mediated
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pathology. We have shown that cofactor-independent anticardiolipin
aPLs, which have long been regarded as nonpathogenic, induce
thrombosis in a mouse model.20 These aPLs can directly induce TF
transcription and protein expression in myelomonocytic cells de-
pendent on endosomal reactive oxygen species production.6,22,31

We here show that these antibodies also promote rapid activation of
preexisting TF on monocytes and delineate that this pathway is
dependent on C3 activation and PDI (Figure 5).

In vivo, we show that cofactor-independent aPLs indeed promote
thrombus formation independent of LRP8, which is crucial for
thrombosis induction by b2GPI-reactive aPLs.39,40 In addition, we
show that the diagnostic reactivity with cardiolipin is sufficient
to predict rapid induction of TF activity and that aPL reactivity
with b2GPI alone is not sufficient to induce this prothrombotic
pathway. Although these conclusions are based primarily on well-
characterized monoclonal aPLs,25 we confirmed with polyclonal
patient IgG fractions that cardiolipin binding is required for PDI- and
complement-dependent TF activation.

The role of PDI in regulating TF prothrombotic activity has been
documented by in vitro and in vivo studies.3,5,24,33,34,42,43 Complement
activation is known to produce thiol-disulfide exchange on cell
surfaces,3 but PDI also regulates TF through chaperone activity that
enhances TF-FVIIa affinity and FX turnover.32 With a monoclonal
antibody that inhibits PDI chaperone effects on TF, we provide
evidence that PDI is required for completing the activation of TF in
response to aPL-induced complement activation. This finding suggests
a novel therapeutic modality specifically to block TF activation on
monocytes without interfering with the hemostatic activities of TF. Of
note, this antibody has previously been shown to prevent aPL-induced
pregnancy loss in a humanized TF mouse model.44

These data provide new insights into underlying mechanisms by
which cofactor-independent aPLs trigger thrombosis. We demon-
strate that aPLs uniquely induce PS exposure independent of

complement action on myelomonocytic cells in vitro and that
thrombosis development is independent of C5 in vivo. The presented
data also show that antibody blockade of C5 is ineffective in blocking
aPL-mediated TF activation, whereas this approved therapeutic
strategy effectively prevented the effect of other complement-fixing
antibodies. Thus, targeting C5 directly may not be uniformly beneficial
in all APS patients, but one may expect a potential therapeutic benefit
of targeting TF or PDI, including its chaperone activity, for thrombosis
prophylaxis in this disease.
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