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Abstract

Accurately prediction of tumor control and toxicities in radiation therapy faces many uncertainties. 

Besides inter-patient variability in the response to radiation, there are also dosimetric uncertainties, 

i.e. differences between the dose displayed in a treatment planning system and the dose actually 

delivered to the patient. These uncertainties originate from several sources including imperfect 

knowledge of the patient geometry, approximation in the physics of radiation interaction with 

tissues, and uncertainties in the biological effectiveness of radiation. Generally, uncertainties are 

considered in the treatment planning process by applying margins. In intensity-modulated 

radiotherapy (IMRT), this leads to the planning target volume (PTV) concept. Intensity-modulated 

proton therapy (IMPT) is widely considered as the future of proton therapy. The treatment 

planning methods for IMPT and IMRT are similar and based on mathematical optimization 

techniques for both modalities. However, the PTV concept has fundamental limitations in IMPT. 

Therefore, researchers have developed robust optimization methods that directly incorporate 

uncertainties into the IMPT optimization problem. In recent years, vendors of commercial 

planning systems have started to implement these methods so that robust IMPT planning becomes 

available in clinical practice. This article summarizes uncertainties in proton therapy and the 

limitations of the PTV concept to deal with them. Subsequently, robust optimization techniques to 

overcome these limitations are reviewed.

1. Uncertainties in proton therapy planning

Treatment planning in proton therapy faces many uncertainties. The first uncertainty in the 

treatment planning chain is target delineation. Delineation of the gross tumor volume (GTV) 

based on CT, MR and PET imaging is challenging, in part because all current imaging 

modalities only visualize surrogates for the presence of tumor, but do not visualize the tumor 

per se. Delineation of the clinical target volume (CTV), which aims to include microscopic 

tumor infiltration into normal tissues faces even larger uncertainty [1] because microscopic 
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tumor cannot be visualized with current imaging techniques. Following target delineation, 

there are also uncertainties in dose prescription. There is variability in tumor radiosensitivity 

between patients as well as heterogeneity within the individual patient’s tumor related to 

genomic and physiologic factors. Concepts of biological target volume have been proposed 

to quantitatively consider tumor heterogeneity based on imaging information but are not 

being used routinely in the clinic [2]. While these uncertainties may be the largest in the 

treatment planning chain, they are not specific to proton therapy and thus not the topic of 

this article. Instead this paper will focus on

• Uncertainties in predicting the physical dose distribution. Here we focus on the 

particle therapy specific problem of range uncertainty.

• Uncertainties in predicting the biological dose distribution, i.e. the uncertainty in 

predicting the distribution of RBE-weighted dose.

1.1 Physics uncertainties in proton therapy

Under the term physics uncertainties, we summarize all uncertainties in predicting the 

physical dose distribution delivered to the patient. Most physical uncertainties originate from 

an imperfect patient model. The most important input to treatment planning is the planning 

CT image, which has several limitations. First, the planning CT is only a snapshot of 

possible patient geometries which may not be reproducible in day-to-day treatment due to 

setup uncertainty, inter-fraction and intra-fraction organ motion. Second, the Hounsfield 

numbers obtained from the planning CT, which from a physics perspective display photon 

attenuation coefficients, are an imperfect input for dose calculation algorithms. Not only is 

there statistical noise in CT images, but there are systematic uncertainties because there is no 

well-defined relationship between Hounsfield numbers and tissue properties. Most 

prominently, uncertainty in the conversion of Hounsfield numbers to stopping power for 

proton beams represents a type of uncertainty that is unique for charged particle 

radiotherapy.

Besides uncertainties that arise from an imperfect patient model, additional approximations 

are being made. For example, pencil beam algorithms are being applied because of their 

computational efficiency at the cost of lower accuracy compared to Monte Carlo methods. 

Many of these uncertainties lead to errors in predicting the range of protons in a patient and 

thus the location of the distal dose fall-off. These can be on the order of several mm in water 

equivalent path length caused by the conversion from CT image to tissue properties, 

underestimation of scattering by analytical algorithms, and interfaces from low to high 

density tissues parallel to the beam affecting scattering [3, 4]. The impact of uncertainties 

related to imaging, setup, or dose calculation algorithms in proton therapy has been 

extensively studied [5–7]. Consequently, an additional range margin needs to be considered 

in proton therapy to ensure tumor coverage [8].

Treatment planners have long been aware of uncertainties in proton therapy planning and 

delivery, and consequently devised heuristics to ensure that tumor dose prescriptions and 

organ dose constraints are fulfilled despite errors in planning and delivery. Examples of such 

methods are:
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• Choice of beam directions. Typically, it may be possible to minimize potential 

impact of range uncertainties by using a larger number of beam directions. In 

addition, carefully selecting beam angles not to go through regions of day-to-day 

anatomical variations or region with large anatomical density variations results in 

more robust plans.

• In treatment planning for passively scattered proton therapy, range and 

modulation of the spread-out Bragg peak is increased to account for range 

uncertainty. Widening of the aperture and compensator smearing is used to 

account for setup uncertainty. [9, 10]

Pencil beam scanning is gradually replacing passively scattered proton therapy [11, 12]. 

IMPT is seen as the future of proton therapy by many researchers and practitioners. IMPT 

uses treatment planning methods that are very similar to those used in IMRT planning [13]. 

For both modalities, clinical planning goals are formulated mathematically in terms of 

objective functions. Subsequently, mathematical optimization algorithms are used to 

determine pencil beam intensities that minimize the objective function value and, in that 

sense, best meet the planning goals.

At first glance it may appear logical to also use the same concept for handling uncertainty. 

Delivery uncertainties in IMRT are typically considered by a margin used to create a 

Planning Target Volume (PTV) or, in the case of moving targets, an Internal Target Volume 

(ITV). These margin assignments depend on the treatment site and tumor location although 

general recipes have been suggested [14]. However, the PTV concept has significant 

limitations and shortcomings in IMPT [7, 15]. The fundamental assumption behind the PTV 

concept is that the shape of the dose distribution is largely unaltered by the underlying 

changes of the patient geometry. Hence, it is assumed that, as long as the CTV moves within 

the boundaries of the PTV, and the PTV is irradiated to the prescribed dose, then the CTV is 

guaranteed to receive the prescribed dose. While this is an acceptable assumption in IMRT, 

it is no longer valid for protons.

This issue is illustrated in figures 1a and 2a for an ependymoma patient, in whom the target 

contains parts of the brainstem. The treatment plan consists of 3 coplanar beams and was 

created using conventional IMPT planning aiming at a prescription dose of 50 Gy physical 

dose (corresponding to 55 Gy(RBE) for a constant RBE of 1.1). 5% overdose was allowed in 

those parts of the CTV that do not overlay the brainstem. Additional planning objectives 

were conformity as well as minimizing dose to the brainstem and the surrounding healthy 

tissues. A 2 mm CTV to PTV margin was added for IMPT planning. Figure 1a shows the 

dose distribution (right panel) as well as the contributions of the 3 individual fields. Figure 

2a shows the deviation from the prescription dose for the nominal scenario (no range error), 

a range overshoot scenario, and a range undershoot scenario. Range errors where modeled 

by upscaling and downscaling the Hounsfield numbers of the planning CT by 4.6%. Figure 

2a illustrates that range errors do not simply lead to underdose at the edge of the CTV that 

could be compensated for by larger margins. Instead, range errors lead to hot spots and cold 

spots inside the target volume. The reason becomes apparent in figure 1a. A range error 

leads to a relative shift of the dose contributions, which consequently do not add up to the 

planned homogeneous target dose. For a range undershoot, an over-proportionate amount of 
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dose is shifted back into the CTV. This leads to hot spots, which may be undesirable in those 

parts of the CTV that contain critical normal tissues such as the brainstem. For a range 

overshoot, an over-proportionate amount of dose is shifted out of the CTV, which causes 

cold spots in the CTV. The cause of such degradations of the dose distribution lies in the 

steep dose gradients in the dose contributions of individual fields. These are not influenced 

by adding larger margins, illustrating the need for new approaches to account for 

uncertainty.

In addition to this fundamental limitation, there are other shortcomings of the PTV concept 

in IMPT. For example, range uncertainties may vary across beam directions depending on 

depth of the target and the traversed tissue. However, IMPT optimizes all beam directions 

simultaneously based on their cumulative dose. Hence a joint target volume must be defined 

with limited possibilities to define beam specific margins.

The single field uniform dose (SFUD) technique is a widely-used heuristic to counteract the 

problem related to steep dose gradients in individual fields and dose degradation due to 

misalignment of beams [10]. SFUD treatments typically yield more robust plans than IMPT 

treatments with highly modulated fields. However, the use of a PTV together with SFUD 

still has several limitations. SFUD treatments sacrifice some of IMPT's potential to yield 

optimal plan quality in terms of OAR sparing, conformity, and minimization of integral 

normal tissue dose. Especially for complex shaped target volumes that wrap around OARs, 

SFUD treatments may lead to high doses delivered to OARs.

Numerous efforts are underway to reduce range uncertainties. For instance, image-guided 

radiation therapy, improved patient immobilization, adaptive planning techniques, and 

Monte Carlo based dose calculations are being developed. While these efforts may reduce 

required margins, there will always remain residual uncertainties.

1.2 Biological uncertainties

An additional uncertainty unique to heavy charged particle therapy stems from the 

assumption that the difference in biological effect between protons and photons is a 

constant, i.e. the Relative Biological Effectiveness (RBE) is defined as 1.1. The majority of 

measured RBE values use clonogenic cell survival in vitro as the endpoint. The relevance of 

these for clinical endpoints, particularly for normal tissue toxicities, is unclear. Nevertheless, 

cell survival experiments suggest that the RBE is not constant but increases towards the end 

of range [16]. It is generally assumed that the RBE increase with depth reflects an increase 

of RBE with linear energy transfer (LET). Therefore, most RBE models describe RBE as a 

function of dose, LET, and tissue specific parameters.

The distribution of LET in the target volume is typically not homogeneous even if the 

physical dose distribution is homogeneous, especially for highly modulated fields in IMPT. 

Therefore, LET dependence of RBE means that a homogeneous physical dose distribution 

corresponds to an inhomogeneous RBE-weighted dose distribution. Furthermore, large 

uncertainty in RBE models (i.e. how exactly RBE depends on dose, LET, and tissue 

parameters) causes substantial uncertainty in RBE-weighted dose.
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Most proton RBE models are derived from the linear-quadratic cell survival model and use 

the α/β-ratio as tissue specific parameters [17–20]. It is assumed that tissues with low α/β 
show a larger increase of RBE with LET compared to tissues with high α/β. These models 

have in common that they effectively describe an approximately linear increase of RBE with 

LET. Hence, the biological dose b (i.e. RBE-weighted dose) can to first approximation be 

written as

b = RBE · d = (c1 + c2LET) · d

Here, c1 and c2 are parameters, which are uncertain, and which may depend on tissue type 

and prescription dose level. This equation contains the case of a constant RBE of 1.1, 

corresponding to the parameter values c1 =1.1 and c2 = 0.

The above equation suggests that the product of LET and dose (LET × dose), multiplied by a 

constant c2, can be interpreted as the biological extra dose that can be attributed to high LET. 

In current practice, the physical dose distribution is the only physical quantity to characterize 

the quality of a treatment plan. In proton therapy, the product of LET and dose can be used 

as a second physical quantity to characterize a treatment plan. One advantage of using LET 

× dose as a surrogate for RBE is that it’s a pure physical quantity. It can be calculated quite 

accurately based on the treatment plan information [21] and does not depend on RBE model 

parameters. A quantitative interpretation of LET × dose requires scaling with the parameter 

c2, which is highly uncertain. Nevertheless, it is an indicator for local increase or decrease of 

RBE-weighted dose.

Figure 3a shows the distribution of LET × dose, scaled by c2 = 0.04 µm/keV, for the 

treatment plan in figure 1a. This parameter value yields an RBE of 1.1 in the center of 5 cm 

spread out Bragg beak for c1 = 0. The figure illustrates that high LET × dose is 

predominantly observed at the edge of the target and that comparatively low values are 

observed in the center. In particular, high values of LET × dose are observed in the part of 

the brainstem that overlaps with the CTV. Hence, uncertainty in the knowledge on how 

much RBE increases with LET (parameter c2) bears the risk that normal tissues within or 

near the target volume are overdosed biologically even though physical dose constraints are 

fulfilled. Likewise, regions of very low LET in the tumor may correspond to regions where 

RBE is lower than 1.1 so that these parts of the target receive a dose lower than intended.

This result shown in figure 2a is again explained by considering the dose contributions of 

individual fields in figure 1a. The regions of high LET × dose correspond to regions where 

most of the dose is delivered using the Bragg peak rather than the entrance region of the 

beam. Similar to the case of range uncertainty, it is clear that this problem cannot be 

resolved by applying margins. Instead, LET or RBE effects must be included into IMPT 

treatment plan optimization directly.

Note that, because RBE increases with depth of a proton beam, RBE uncertainties are also a 

type of range uncertainties [19]. However, while local physical range errors as described in 

section 1.1 can be positive or negative, RBE related range errors are positive (i.e. increase 
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the range relative to the planned range) if RBE values at the end of range are higher than 1.1 

[16].

Potential variations in RBE are typically not considered in proton therapy planning although 

treatment planners may avoid certain beam angles due to concerns in RBE variations. This is 

particularly true if a normal tissue close to the distal dose fall-off has a maximum tolerance 

dose (such as the brainstem, spinal cord, or optic pathway).

2. Robust optimization for physical uncertainties

Instead of using margins and heuristics like SFUD, range or setup uncertainties can be 

accounted for in IMPT planning in a robust optimization framework [15, 22–29]. Robust 

optimization methods incorporate uncertainty directly into the treatment plan optimization 

problem for IMPT. Thereby, robust IMPT optimization methods can overcome shortcomings 

of the PTV concept and improve plan quality compared to margin based planning [30].

2.1 Conventional IMPT planning

To explain the idea of robust optimization, we first recall that IMPT planning is performed 

with the help of mathematical optimization algorithms. To that end, IMPT planning is 

formulated as a mathematical optimization problem, which means that clinical planning 

goals are translated into a mathematical description of what a good treatment plan is. This is 

done by defining an objective function f(d), a function of the dose distribution d which has a 

small value for good treatment plans and large values for bad treatment plans. IMPT 

planning is then performed by algorithms that find the pencil beam intensities that minimize 

the objective function f [10]. Formally, this is written as

minimizex f (d)

subject to di = ∑ j Dijx j
x j ≥ 0

where di is the dose in voxel i, xj is the fluence of pencil beam j and Dij denotes the dose 

contribution of pencil beam j to voxel i.

2.2 Robust IMPT planning

In this formulation of the IMPT planning problem, geometric uncertainty is modeled as 

uncertainty in the dose-influence matrix Dij. Typically, it is assumed that the treatment 

machine can accurately deliver the treatment plan as specified by the pencil beam intensities 

xj, ie. xj is not uncertain. However, it is uncertain what dose distribution the treatment plan 

yields in the patient. The easiest approach to model uncertainty is to assume that different 

dose-influence matrices Dij
s  may apply. Here, s is an index of possible error scenarios. For 

example, range uncertainty can be modeled via an overshoot and an undershoot scenario. 

The dose-influence matrix for an overshoot scenario can be calculated by downscaling of the 

Hounsfield numbers in the planning CT, such that all protons penetrate further into the 

patient compared to the original planning CT.

Unkelbach and Paganetti Page 6

Semin Radiat Oncol. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The next question is how a set of error scenarios can be incorporated into IMPT planning. In 

the robust IMPT planning literature, two approaches predominate: the probabilistic approach 

and the worst-case approach.

The probabilistic approach [15, 24], also referred to as stochastic programming in the 

optimization literature, minimizes a weighted sum of objective functions evaluated for all 

error scenarios. Formally this can be written as

minimizex ∑s ps f (ds)

subject to di
s = ∑ j Dij

s x j
x j ≥ 0

Here, ps represent importance weights for the error scenarios. Typically, a high weight is 

given to likely scenarios and a small weight to error scenarios that are considered possible 

but unlikely to occur. The probabilistic approach aims to find a treatment plan that yields a 

good treatment plan for all scenarios, ie. for all possible dose distributions ds, the objective 

function value f (ds) should be small. The relative importance of different scenarios can be 

controlled by ps.

The worst-case approach [26], also referred to as minimax optimization, minimizes the 

maximum of objective functions, taken over all error scenarios. Formally this can be written 

as

minimizex maxs f (ds)

subject to di
s = ∑ j Dij

s x j
x j ≥ 0

Hence, the worst-case approach determines the IMPT plan that is as good as possible for the 

worst error scenario.

There exist several variations of the worst-case approach to robust planning. In many cases, 

the objective function is a sum of contributions from individual voxels. Let us assume that 

the objective function is given by f (ds) = ∑i f i(di
s). In the worst-case method originally 

suggested in [25], the worst case is determined on a voxel-by-voxel basis rather than for the 

composite objective function.

minimizex ∑imax
s

( f i(di
s))

subject to di
s = ∑ j Dij

s x j
x j ≥ 0

A typical situation is that fi is given by quadratic penalty functions for underdosing in the 

tumor and overdosing in OARs with maximum dose constraints. The method can then be 
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interpreted as optimization of the worst-case dose distribution, where the worst case dose 

distribution contains, voxel-by-voxel, the worst dose than may occur for any error scenario 

(i.e. the lowest dose in the tumor and the highest dose in OARs).

2.3 Illustration of robust optimization for range uncertainty

Below we illustrate robust planning using the probabilistic approach for the ependymoma 

patient shown in figure 1. Robust IMPT planning is based on the CTV only and no PTV 

margin is used. For this example, only range uncertainty is considered and is modeled via 

three scenarios:

1. nominal scenario, i.e. no range error;

2. range overshoot, modeled by downscaling the Hounsfield numbers by 4.66%;

3. range undershoot, modeled by upscaling the Hounsfield numbers by 4.66%;

The weights ps were chosen as 0.5 for the nominal scenario and 0.25 for the overshoot and 

undershoot scenario. This simple model is sufficient to demonstrate the main effects of 

robust optimization to make IMPT plans more resilient to range errors. It is most illustrative 

to analyze the dose distributions that the three fields contribute (Figure 1b), and compare 

these to the conventional IMPT plan (Figure 1a).

• Robust planning for range uncertainty avoids dose gradients in beam direction in 

the dose contributions of individual beams. As a consequence, shifting these dose 

distributions along the incident beam direction has only a moderate impact on the 

dose distribution in the patient.

• Robust planning for range uncertainty automatically extends the irradiated region 

distal to the target volume, i.e. it automatically generates the appropriate margin 

necessary to achieve target coverage for the assumed range error without the 

need to manually define PTV margins.

• Robust planning avoids placing the distal edge of a pencil beam in front of 

OARs. Instead, the lateral falloff is used to shape the dose distribution in the 

region where OAR and target abut.

Figure 2b demonstrates that the treatment plan obtained through robust planning is indeed 

more resilient to range errors compare to the conventional plan. Despite range undershoot or 

overshoot, a homogenous dose distribution is delivered to the CTV.

2.4 State of research

Robust IMPT optimization has been investigated almost exclusively for range and setup 

uncertainty. The published methods can be categorized into the probabilistic approach [15, 

24] and different flavors of the worst-case approach: the composite worst case [26], the 

objective-wise worst case [23], and the voxel-wise worst case [22, 25]. Since robust 

planning techniques for IMPT were first investigated, the question whether one method is 

generally superior has been discussed. The probabilistic approach optimizes the average plan 

quality. It is possible that a plan does not achieve the desired dose quality for the worst 

scenario, for example in situations where a large number of scenarios are modeled. On the 
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other hand, the minimax approach optimizes the plan for the worst case only and has no 

incentive to improve plan quality for more likely scenarios. It was shown that some methods 

do yield undesirable results in specific situations [31], but there is no comprehensive 

evidence that one method is generally superior. To first approximation, all methods achieve 

the features of robust plans described above if used adequately.

Most prior works have used a small set of discrete range and setup errors to model 

uncertainty [22, 25, 26] or sampled errors from a Gaussian distribution [24]. More recently, 

researchers developed improved methods to quantify dose uncertainty. Bangert et al [32] 

developed analytical methods to calculate expectation value and variance of the dose 

distribution for Gaussian range and setup errors without relying on sampling. Perko et al 

[33] used a technique called polynomial chaos expansion to develop a parameterized model 

of the dose distribution as a function of range and setup errors.

3. Robustness of IMPT plans against biological uncertainties

Robustness against geometric uncertainty is usually understood as ensuring that range or 

setup errors do not lead to overdosing of OARs or underdosing in the target. A similar 

notion of robustness can be applied to uncertainty in RBE. In that sense, a robust plan is one 

that does not cause overdosing of OARs if the RBE is higher than expected, or underdosing 

of the target if RBE is lower than expected. However, at this stage, there is no commonly 

agreed notion of robustness against RBE uncertainty.

High LET in critical structures within or near the target volume may potentially lead to 

higher RBE-weighted doses, and thereby increase the risk of side effects. However, it has 

been demonstrated that LET distributions can typically be modified while maintaining target 

prescriptions and normal tissue constraints [34–37] in terms of physical dose. An IMPT 

planning method to make IMPT plans more robust against this risk was recently suggested 

[37]. In this method, an IMPT plan is initially optimized based on physical dose (or 

equivalently, based on a constant RBE of 1.1). In a second step, the treatment plan is re-

optimized regarding the LET distribution with the goal of avoiding high LET in critical 

structures within or near the target volume. During the second step, the physical dose 

distribution is constrained to remain close to the initial treatment plan obtained in the first 

step. It was shown that LET hotspots in OARs can typically be avoided by accepting very 

small degradations of the physical dose distribution. This method is illustrated in figure 1c 

and 3b. Here, the LET based re-optimization step is applied to the conventional IMPT plan 

shown in figure 1a. We enforced the constraint that target coverage and conformity do not 

worsen, while we allow a small increase of 3% in the brainstem gEUD and the mean dose in 

the normal tissue. The LET re-optimization step aims at minimizing the product of LET and 

dose (LET × dose) in the brainstem. The resulting LET × dose distribution is shown in figure 

3b, which illustrates that high LET is now avoided inside the brainstem. Figure 1c shows 

how the treatment plan is modified. The LET re-optimized plan avoids pencil beams incident 

from the left (right side of the image) that stop in the brainstem. Instead, the fluence of 

pencil beams incident from the right (left side of the image) is increased, which deliver dose 

to the part of the target overlaying the brainstem via the entrance region of the beam.
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Some authors have suggested performing IMPT treatment plan optimization based on RBE-

weighted dose [38, 39]. In this case, IMPT planning is performed by evaluating the objective 

function f for biological dose rather than physical dose as in conventional IMPT planning. 

For the simplified linear RBE model considered above (and analogously for any other RBE 

model), this can formally be written as

minimizex f (b)

subject to bi = c1di + c2Lidi

di = ∑ j Dijx j

Li = 1
di

∑ j LijDijx j

x j ≥ 0

Here Lij is the dose-averaged LET in voxel i for the dose contribution of pencil beam j, and 

Li is the LET in voxel i averaged over all pencil beams. However, due to uncertainty in the 

RBE model (in this case mostly in the parameter c2) this approach is typically considered 

insufficient and is not applied in practice. RBE-based IMPT planning in this pure form 

would yield treatment plans that are highly non-robust with respect to uncertainties in the 

RBE model parameters. This can best be illustrated for the case of target coverage. Suppose 

an objective function to minimize target underdose, such as the standard quadratic penalty 

function, is evaluated for RBE-weighted dose. This would yield treatment plans that lower 

the physical dose compared to conventional plans in those parts of the target where the LET 

is high - based on the assumption that RBE is higher than 1.1 in these regions. Consequently, 

these regions would be underdosed if the increase of RBE with LET was less than assumed 

in the RBE model.

This problem can potentially be addressed by applying robust optimization techniques to 

RBE-based IMPT planning. Whereas physical dose uncertainty corresponds to uncertainty 

in the dose-deposition matrix Dij, uncertainty in the biological dose corresponds to 

uncertainty in the RBE model parameters. Assuming that different sets of RBE model 

parameters (c1
s , c2

s) may apply, the stochastic programming approach applied to this situation 

would solve the IMPT planning problem

minimizex ∑s ps f (bs)

subject to bi
s = c1

sdi + c2
sLidi

di = ∑ j Dijx j

Li = 1
di

∑ j LijDijx j

x j ≥ 0

To our knowledge, a formal application of robust optimization or stochastic programming to 

handle RBE uncertainties has not been demonstrated yet.
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4. Discussion

Robust planning in commercial planning systems

Robust planning methods have initially been investigated as a method to incorporate organ 

motion and setup uncertainty in IMRT planning [40–45]. Only a few years later, similar 

concepts were applied to handling range und setup errors in IMPT. The fundamental 

limitations of the PTV concept in IMPT as described in section 1.1 led to the first 

implementations of robust planning methods in commercial TPS. Today, several vendors 

provide robust planning for proton therapy. Interestingly, these implementations cover all 

three methods described in section 2.2. Raystation provided the first commercial solution 

and has an implementation of the composite worst-case method; Pinnacle uses the 

probabilistic approach; and Eclipse follows the voxel-wise worst case method. Robust 

optimization methods for range and setup uncertainty should allow the transition from a 

research topic to a methodology that is available in clinical practice. This will give a broader 

group of practitioners the ability to evaluate these methods and develop practical guidelines 

on how to best use them.

Treatment plan evaluation for IMPT

The fundamental assumption behind the PTV concept is that, as long as the CTV moves 

within the boundaries of the PTV, and the PTV is irradiated to the prescribed dose, then the 

CTV is guaranteed to receive the prescribed dose. The assumption is not generally valid for 

IMPT because misalignment of the dose contributions for highly modulated fields may 

cause dose degradation anywhere inside the target volume. As a consequence, treatment plan 

evaluation for IMPT (especially for highly modulated fields) should explicitly consider the 

dose distributions evaluated for a set of range and setup errors. Most planning systems now 

have the capability to perform this in a convenient manner.

Robust planning for biological uncertainties

Robust planning methods to address RBE uncertainties are less developed than robust 

planning methods for physical uncertainty. A possible next step towards that goal may be to 

use the product of LET and dose as a second quantity (besides physical dose) to evaluate and 

create a treatment plan. LET × dose has several advantages in that regard:

• It is a well defined physical quantity that (unlike RBE) does not depend on any 

model parameters. Monte-Carlo dose calculation algorithms yield LET × dose at 

almost no additional computational cost, and also pencil beam algorithms can 

provide sufficient approximations.

• LET × dose can to first approximation be interpreted as a measure of the 

biological extra dose that comes for elevated LET, up to the scaling factor c2. 

Hence, LET × dose is more accessible to a quantitative interpretation compared 

to LET itself.

• From a technical perspective, LET × dose has the advantage that it is a linear 

function of pencil beam fluence. Therefore, the same optimization algorithms 

that are well established for physical dose optimization can be applied.
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Figure 1. 
IMPT plans for an ependymoma patient in whom the target volume involves parts of the 

brainstem. The patient is treated with 3 posterior oblique beams. Pencil beams of 

approximately 3–5 mm sigma are assumed, corresponding to the latest generation of proton 

therapy machines. Shown is the dose distribution (right panel) and the dose contributions of 

the 3 beams. (a) conventional IMPT plan created based on a 2 mm CTV to PTV expansion. 

(b) robustly optimized plan accounting for range uncertainty. (c) LET re-optimized plan 

obtained after minimizing LET × dose in the brainstem while constraining the dose 

distribution to remain close to the conventional plan.
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Figure 2. 
Robustness analysis of the treatment plans in figure 1a and 1b. Shown is the overdose and 

underdose in percent of the prescription dose for the nominal scenario (no range error), 

range overshoot, and range undershoot.
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Figure 3. 
Distribution of the product of LET and dose (LET × dose) for (a) the conventional IMPT 

plan in figure 1a and (b) the LET re-optimized plan in figure 1c.
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