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Abstract

Drebrin is a family of actin-binding proteins with two known members called drebrin A and E. 

Apart from the ability to stabilize F-actin microfilaments via their actin-binding domains near the 

N-terminus, drebrin also regulates multiple cellular functions due to its unique ability to recruit 

multiple binding partners to a specific cellular domain, such as the seminiferous epithelium during 

the epithelial cycle of spermatogenesis. Recent studies have illustrated the role of drebrin E in the 

testis during spermatogenesis in particular via its ability to recruit branched actin polymerization 

protein known as actin-related protein 3 (Arp3), illustrating its involvement in modifying the 

organization of actin microfilaments at the ectoplasmic specialization (ES) which includes the 

testis-specific anchoring junction at the Sertoli-spermatid (apical ES) interface and at the Sertoli 

cell-cell (basal ES) interface. These data are carefully evaluated in light of other recent findings 

herein regarding the role of drebrin in actin filament organization at the ES. We also provide the 

hypothetical model regarding its involvement in germ cell transport during the epithelial cycle in 

the seminiferous epithelium to support spermatogenesis.
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17.1 Introduction

In the mammalian testes, the functional unit that produces an upward of 200 million sperm 

per day in each man after puberty at ~12–13 years of age versus 40 million sperm per day in 

a male rat by 45-day postpartum (dpp) is the seminiferous tubule via spermatogenesis 

(Johnson et al. 1980; Amann and Howards 1980). Spermatogenesis takes place in the 

seminiferous epithelium that encircles the inner surface of seminiferous tubules which is 

composed of only Sertoli cells and germ cells. The Sertoli cell provides nutritional and 

structural support for germ cell maturation (Xiao et al. 2014; de Kretser and Kerr 1988; 

Bardin et al. 1988). In short, spermatogenesis is comprised of four distinctive phases of 

cellular events, which include (1) self-renewal of undifferentiated spermatogonia and 

proliferation of spermatogonia via mitosis, and their differentiation to type A and type B 
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spermatogonia, (2) transformation of type B spermatogonia to preleptotene spermatocytes 

and progression of spermatocytes to undergo meiosis, (3) postmeiotic differentiation of 

round spermatids to elongated spermatids via spermiogenesis, and (4) the release of sperms 

at spermiation (Schlatt and Ehmcke 2014; O’Donnell et al. 2011; de Kretser and Kerr 1988; 

Ehmcke and Schlatt 2006). Since germ cells in particular spermatids are highly 

differentiated and metabolically quiescent cells, they rely almost exclusively on the Sertoli 

cell for the provision of nutrients, biomolecules, paracrine, and structural supports (Mruk 

and Cheng 2004b; Cheng and Mruk 2002). On the other hand, Sertoli cells by 15–17 dpp 

(day postpartum) in rodents and ~12–13 years of age in humans are differentiated and 

ceased to divide (Orth 1982; Sharpe et al. 2003) so that Sertoli cells support only a relatively 

small population of germ cells and most germ cells undergo apoptosis (Billig et al. 1995) in 

order to maintain a Sertoli/germ cell ratio of ~1:30–1:50 in the seminiferous epithelium in 

rodents (Weber et al. 1983).

In a cross section of the seminiferous tubule, germ cells at different developmental states are 

associated with Sertoli cells in the seminiferous epithelium, displaying a unique pattern of 

Sertoli-germ cell association particularly regarding changes of the spermatid head (e.g., 

acrosome biogenesis) and elongating of the tail which can be divided into 12, 14, and 6 

stages in the mouse, rat, and man, respectively, known as the seminiferous epithelial cycle of 

spermatogenesis (Clermont and Leblond 1955; Amann 2008; Hess and de Franca 2008). For 

example, the release of fully developed elongated spermatids (i.e., spermatozoa) from the 

seminiferous epithelium into the tubule lumen at the luminal edge of the apical compartment 

and blood-testis barrier (BTB) remodeling near the basal compartment both take place 

concurrently at stage VIII of the epithelium cycle in the rat and mouse testis, whereas 

meiosis takes place at stages XIV and XII in the rat and mouse testis, respectively (Parvinen 

1982; Hess and de Franca 2008; Leblond and Clermont 1952; Clermont 1972).

17.2 Actin Cytoskeleton, Ectoplasmic Specialization (ES), and 

Spermatogenesis

While the cellular events that take place in the seminiferous epithelium during the epithelial 

cycle are known for more than six decades (Parvinen 1982; Hess and de Franca 2008; 

Leblond and Clermont 1952; Clermont 1972), molecular mechanism(s) that regulate these 

events remain relatively unknown until recent years. Studies have shown that actin-based 

cytoskeleton is crucial for these events in particular by conferring structural support to 

Sertoli cells, maintaining cell polarity and junction integrity as well as by participating in 

endocytic vesicle-mediated protein trafficking (O’Donnell 2014; Qian et al. 2014; Cheng 

and Mruk 2015; Wong and Cheng 2009). Studies in the past two decades have shown that 

the highly coordinated cellular events that take place in the seminiferous epithelium during 

the epithelial cycle are mediated at the Sertoli cell-cell and Sertoli-germ cell interface, 

relying on rapid restructuring of the unique cell junctions at these sites, such as gap 

junctions (Cheng and Mruk 2010, 2002; Hess and de Franca 2008; Hermo et al. 2010; Mruk 

and Cheng 2004a, b). Interestingly, the most extensive cell junction noted in the testis is the 

actin-rich cell-cell anchoring junction known as ectoplasmic specialization (ES), which is 

found at the Sertoli cell-cell or Sertoli-spermatid interface known as the basal and apical ES, 
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respectively (Cheng and Mruk 2010; Russell and Peterson 1985; Wong et al. 2008a; Yan et 

al. 2007). The ES is typified by the presence of an array of actin microfilament bundles that 

lie perpendicular to the Sertoli cell plasma membrane, which are sandwiched between the 

cisternae of endoplasmic reticulum and the apposing Sertoli-spermatid plasma membranes at 

the apical ES or the apposing Sertoli cell-cell plasma membranes, thereby containing two 

arrays versus one array of actin microfilament bundles at the basal ES, respectively (Fig. 

17.1). In the rat testis, the basal ES is found to coexist with tight junction (TJ) and gap 

junction (GJ), which together with the intermediate filament-based desmosome constitutes 

the BTB (Russell 1979, 1977a; Vogl et al. 2008; Mruk and Cheng 2004a; Wong et al. 

2008b). Due to the presence of the actin microfilament bundles on both sides of the Sertoli 

cells at the basal ES, the BTB is one of the tightest blood-tissue barriers (Cheng and Mruk 

2012; Pelletier 2011; Franca et al. 2012). The BTB also divides the seminiferous epithelium 

into the basal and the apical (adluminal) compartments (Fig. 17.1). Thus, postmeiotic 

spermatid development takes place in a unique microenvironment supported entirely by the 

Sertoli cells known as the adluminal (apical) compartment (Fig. 17.1), which is sequestered 

from the systemic circulation (Cheng and Mruk 2012; Pelletier 2011; Franca et al. 2012). On 

the other hand, apical ES that shares similar ultrastructural features with the basal ES is 

found restrictively at the Sertoli-spermatid (step 8–19 spermatids in the rat testis) interface 

during spermiogenesis (Russell 1977b; Yan et al. 2007; Vogl et al. 2008, 2000). Unlike basal 

ES which coexists with TJ and GJ, when apical ES appears in step 8 spermatids in the rat 

testis, it replaces GJ and desmosome at the Sertoli-spermatid interface, becoming the only 

anchoring device until the release of elongated spermatids at spermiation. Furthermore, there 

is only a single array of actin microfilament bundles restricted to the side of Sertoli cell at 

the apical ES. While the network of actin microfilament bundles at the ES is crucial to 

confer unusual adhesive strength to the BTB and developing spermatids, these 

microfilaments rapidly reorganize during the epithelial cycle to facilitate the transport of 

preleptotene spermatocytes across the BTB at stage VIII as well as the progressive transport 

of developing spermatids across the adluminal compartment so that fully developed 

spermatids (i.e., spermatozoa) can line up near the tubule lumen to prepare for their eventual 

release at spermiation. Studies have shown that the rapid reorganization of these actin 

microfilaments such as their conversion from a bundled to an unbundled/branched 

configuration and vice versa is mediated via the intriguing actions of three classes of 

proteins: (1) the actin-bundling proteins such as Eps8 (also an actin barbed end capping 

protein) (Lie et al. 2009), palladin (also an actin-cross-linking protein) (Qian et al. 2013), 

fascin 1 (Gungor-Ordueri et al. 2014a), plastin 3 (Li et al. 2015c), and ezrin (Gungor-

Ordueri et al. 2014b) versus (2) branched actin polymerization (or nucleation) proteins such 

as the Arp2/3 complex (Lie et al. 2010) and filamin A (Su et al. 2012) and (3) actin 

nucleation proteins that generate long stretches of microfilaments which can be assembled 

into actin bundles such as formin 1 (Li et al. 2015b). These proteins coordinate to regulate 

actin microfilament remodeling at the basal ES and apical ES via their stage-specific and 

spatiotemporal expression, which, in turn, facilitate the transport of preleptotene 

spermatocytes across the BTB and the transport of elongating spermatids across the 

adluminal compartment, respectively. The coordinated efforts of those actin regulatory 

proteins have recently been reviewed (Li et al. 2015a; Cheng and Mruk 2015; Su et al. 

2013). Herein, we focus our discussion on drebrin, a family of proteins known to regulate 
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the action of the Arp2/3 complex which is a barbed end nucleation protein that effectively 

induces branched actin polymerization, thereby converting actin microfilaments from a 

linear to a branched configuration. Thus, actin microfilaments can no longer resume a 

bundled configuration, thereby destabilizing adhesion protein complexes at the Sertoli cell-

cell and/or Sertoli-spermatid interface. These changes also facilitate endocytic vesicle-

mediated protein trafficking events, such as endocytosis, transcytosis, and recycling, 

necessary to reassemble “new” basal ES/BTB and apical ES before or following 

degeneration of the “old” ES.

17.3 Drebrin in the Testis

Drebrin, also known as developmentally regulated brain protein, is an actin-binding protein 

first identified in chicken brain (Shirao and Obata 1985). Drebrin is a growing protein family 

which now contains the embryonic type (E) and the adult type (A) in mammals, both of 

which originate from a single gene (Shirao and Obata 1986; Majoul et al. 2007). As a 

member of the actin-depolymerizing factor homology (ADF-H) domain-containing family 

of actin-binding proteins, drebrin binds to actin microfilaments. It alters the helical twist of 

actin filaments, stabilizes their structures, and strengthens their stiffness (Sharma et al. 2011; 

Mikati et al. 2013). The coiled-coil (CC) domain and the helical (hel) domain of drebrin, 

besides the N-terminal ADF-H domain, also contribute to its intrinsic actin-binding activity 

(Fig. 17.2) (see also Fig. 1.3 in Chap. 1) (Hayashi et al. 1999; Worth et al. 2013; Xu and 

Stamnes 2006). Multiple binding partners have been identified for drebrin to date (Table 

17.1). The drebrin-based protein complex is known to stabilize F-actin, modifies 

microfilament structure, or moderates the interactions of other actin-binding proteins with 

actin microfilaments. For instance, drebrin binds to afadin to connect F-actin to nectin-based 

integral membrane proteins (Rehm et al. 2013). It competes with tropomyosin for F-actin 

binding and inhibits actin-binding and cross-linking activity of α-actinin (Ishikawa et al. 

1994). Furthermore, drebrin is a negative regulator of HIV entry into epithelial cell, as well 

as HIV-mediated cell fusion by regulating F-actin rearrangement (Gordon-Alonso et al. 

2013), and it is also a critical player in glioma cell invasiveness (Terakawa et al. 2013). In 

addition, although drebrin knockout mice were viable, abnormalities were observed in 

cortical neurons, mainly associating with dendritic spines (Table 17.2). While drebrin A and 

E isoforms are both detected in the brain, only drebrin E is found in the rat testis, and it is 

predominantly expressed by Sertoli cells instead of germ cells (Li et al. 2011). In Sertoli 

cells cultured in vitro with an established functional TJ-permeability barrier, drebrin E is 

localized in cell cytoplasm as well as near the cell surface, co-localizing with F-actin (Li et 

al. 2011). In adult rat testes, drebrin E displays a restrictive, but stage-specific, localization 

at the ES during the epithelial cycle and co-localizes with F-actin both at the apical ES and 

the basal ES/BTB. At the apical ES, drebrin E is first detected at stage V, surrounding the 

entire head of elongating spermatids; and by stage VII, its localization is shifted mostly to 

the concave (ventral) side of the spermatid head, co-localizing with two other actin 

regulatory proteins: actin barbed end capping and bundling protein Eps8 and branched actin 

nucleation protein Arp3 (Li et al. 2011). However, by stage VIII of the epithelium cycle, 

drebrin E is downregulated considerably (Li et al. 2011). Drebrin E appears to regulate actin 

organization in the testis via its association with Apr3 with high affinity, but not Eps8, 
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playing a role in branched actin polymerization. Interestingly, when adult rats were treated 

with adjudin, a male contraceptive known to induce exfoliation of germ cells in particular 

elongating/elongated spermatids from the epithelium (Grima et al. 2001; Cheng et al. 2005; 

Mruk et al. 2006), the localization of drebrin E was grossly affected (Li et al. 2011), similar 

to Arp3 (Lie et al. 2010) and Eps8 (Lie et al. 2009) following adjudin treatment. This 

mislocalization and downregulation of drebrin E alongside with Arp3 and Eps8 thus perturb 

the proper organization of F-actin at the apical ES, thereby causing a disruption of spermatid 

adhesion that leads to premature spermatid release (Cheng et al. 2011). Drebrin may also be 

involved in the crosstalk between actin-based and microtubule-based cytoskeleton. For 

instance, drebrin A was shown to interact directly and specifically with microtubule (MT) 

end-binding protein 3 (EB3) in growth cone filopodia, and this interaction induces the 

formation of MT-containing filopodia (Geraldo et al. 2008). Moreover, drebrin A, which is 

highly concentrated in dendritic spines (Kojima and Shirao 2007; Ferhat 2012), facilitates 

the entry of MT into dendritic spines following its overexpression in neurons cultured in 

vitro, resembling the phenotype following an increase in the concentration of stabilized F-

actin filaments in neurons (Merriam et al. 2013). Interestingly, a mis-localization of Arp3 

and a considerable surge in Arp3/N-WASP interaction were detected following the 

knockdown of EB1, a plus-end-binding protein of MT, in Sertoli cells with an established 

TJ-permeability barrier, thereby impeding MT organization as well as proper organization of 

actin microfilaments of ES at the cell-cell interface to maintain the barrier function (Tang et 

al. 2015). This finding illustrates that EB1, a close cousin of EB3, is involved in both MT 

and F-actin regulations. Taken together, these data suggest that drebrin E may be involved in 

regulating MT dynamics via its interaction with Arp3 and EB1 in Sertoli cells, which will 

need further verification in future investigation.

17.4 Drebrin E and Ectoplasmic Specialization (ES) Dynamics

Apical ES is a hybrid atypical adherens junction because this cell-cell anchoring junction is 

constituted by proteins that are found in AJ (e.g., nectins, afadins, N-cadherin), TJ (e.g., 

JAM-C, CAR), gap junction (e.g., Cx43), and focal adhesion complex (e.g., α6β1-integrin, 

laminin-α3, laminin-β3, laminin-γ3, FAK) in other epithelia, illustrating it is composed of 

proteins more than just components of adherens junctions (Wong et al. 2008a; Cheng and 

Mruk 2010). In the rat testis, the stage-specific and spatiotemporal expression of drebrin E at 

the apical ES resembles that of Arp3 (Li et al. 2011). Arp3 is a component of the Arp2/3 

protein complex which when activated by N-WASP upstream triggers barbed end actin 

nucleation (Weaver et al. 2003), causing branched actin polymerization on preexisting actin 

filaments. This thus converts existing actin microfilaments from a linear to a branched 

configuration, destabilizing adhesion protein complexes at the site, facilitating endocytic 

vesicle-mediated protein trafficking events (Cheng and Mruk 2011). During the epithelial 

cycle, Arp3 expresses predominantly at the apical ES in stage VII tubules, mostly at the 

concave side of the head of step 19 spermatids (Lie et al. 2010), converting the site into an 

ultrastructure known as apical tubulobulbar complex (TBC) (Vogl et al. 2013), which is also 

the site where endocytic vesicle-mediated trafficking takes place extensively including 

protein endocytosis, transcytosis, and recycling so that “old” apical ES proteins can be 

recycled to assemble “new” apical ES when step 8 spermatids arise at stage VIII of the 
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cycle. However, at stage VIII when spermiation takes place and the apical ES undergoes 

degeneration, Arp3 becomes downregulated considerably and diminished to an almost 

undetectable level (Lie et al. 2010). Drebrin E, besides expresses similarly to Arp3 

spatiotemporally during the epithelial cycle, also has high affinity to bind to Arp3, 

illustrating that drebrin E may recruit Arp3 to the ES to induce F-actin reorganization and to 

alter apical ES dynamics to facilitate spermiation. It has been reported that AJ integrity in 

endothelial cells is stabilized by drebrin since the knockdown of drebrin by RNAi in human 

umbilical vein endothelial cell (HUVEC), an endothelial cell line, leads to impairment of 

endothelial cell-cell junctions by causing mis-localization of afadin, thereby impeding the 

localization of nectin-2 and nectin-3 at the cell-cell interface (Rehm et al. 2013). It is of 

interest to note that treatment of Sertoli cells with a functional TJ barrier in vitro with TNFα 
and TGFβ3 that downregulates drebrin E expression also increases structural interaction 

between drebrin E and Arp3 (Li et al. 2011), illustrating an increase in the intrinsic branched 

actin polymerization activity. This observation is important since it suggests that cytokines 

may be playing a role in regulating F-actin organization. Studies have shown that TNFα and 

TGFβ3 as well as their specific receptors are expressed stage-specifically during the 

epithelial cycle as reviewed (Li et al. 2009), and they also work in concert with testosterone 

to regulate endocytic vesicle-mediated protein trafficking events at the basal ES (Yan et al. 

2008; Xia et al. 2009). These findings seemingly suggest that drebrin E may also be 

involved in apical ES endocytic function. This notion is supported by findings of a recent 

report that drebrin E knockdown by RNAi in Coca2 cells caused mis-localization of apical 

proteins involved in directing recycling vesicles for lysosome-mediated protein degradation 

(Vacca et al. 2014), illustrating the involvement of drebrin E in degradation function of 

lysosomes via its effects on endocytic vesicle-mediated protein trafficking in intestine 

epithelial cells. In summary, drebrin E serves as a platform to recruit actin regulatory 

proteins such as Arp3 to the apical ES for actin remodeling. It also participates in the 

endocytic vesicle-mediated trafficking events to confer plasma membrane plasticity, 

accommodate changes in spermatid shape, promote germ cell transport, and induce junction 

restructuring.

17.5 Drebrin, Cofilin, and the Arp2/3 Complex and F-actin Organization

Actin depolymerization factor (ADF, also known as destrin)/cofilin is a family of actin-

binding proteins composed of destrin, cofilin-1 (in non-muscle cells, also known as n-

cofilin), and cofilin-2 (in muscle cells) (Bowman et al. 2000; Shirao and Gonzalez-Billault 

2013). Cofilin has the intrinsic activity to sever and disassemble/depolymerize actin 

microfilaments, creating new filament fragments with both barbed (+) and pointed (−) ends, 

so that the Arp2/3 complex can induce branched actin polymerization at the barbed end, also 

the fast growing end of an actin filament (Ichetovkin et al. 2002), which is essential for rapid 

turnover of F-actin in mammalian cells for microfilament remodeling (De La Cruz and 

Gardel 2015; Ohashi 2015; Rust 2015; Bernstein and Bamburg 2010), including Sertoli cells 

in response to changes in cellular environment in the epithelium during the epithelial cycle. 

Cofilin also depolymerizes actin monomers from the pointed (−) end of an existing 

microfilament, which can be recycled to the barbed (+) end for actin nucleation by working 

in concert with the Arp2/3 complex (Condeelis 2001; DesMarais et al. 2004) to rapidly 
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create a network of branched actin filaments. Studies in synaptic biology have also shown 

that ADF/cofilin is working in close contact with drebrin for the formation of dendritic spine 

from dendritic filopodia, involving both actin filaments and microtubules (Shirao and 

Gonzalez-Billault 2013). This is analogous to Sertoli cells establishing close contacts with 

developing spermatids during spermiogenesis, such as the establishment of apical ES to 

confer spermatid transport. In short, emerging evidence has suggested that drebrin is playing 

a crucial role in mediating changes in the organization of F-actin in specific cellular 

structures, such as the ES, by working in concert with cofilin and the Arp2/3 complex to 

modify F-actin organization. For instance, drebrin has been shown to oppose the ability of 

cofilin to promote actin severing and depolymerization through competitive binding to F-

actin and vice versa (Zhao et al. 2006; Grintsevich and Reisler 2014). Additionally, drebrin 

also contains an ADF homology domain (Lappalainen et al. 1998; Shirao 1995; Kojima et 

al. 1993; Shirao et al. 1988), making it structurally related to the cofilin. In fact, besides 

drebrin E (Li et al. 2011), cofilin-1 is a component of the apical ES in the rat testis, 

restrictively expressed at the concave side of the spermatid head at late stage VII–stage VIII 

of the epithelial cycle in an ultrastructure called apical tubulobulbar complex (TBC) 

(Guttman et al. 2004) which is also the site where extensive endocytic vesicle-mediated 

protein trafficking takes place due to the appearance of multiple giant endocytic vesicles 

(Vogl et al. 2013, 2014). Thus, it is conceivable that a disruption of cofilin-1 function at the 

apical ES/apical TBC would impede spermatogenesis. It is of interest to note that knockout 

of the cofilin-1 gene in mice leads to embryonic lethality (Gurniak et al. 2005). For instance, 

cofilin-1 mutant embryos had defects in neural crest-derived tissues, lacking actin 

microfilament bundles in neural crest cells, thereby impairing neural crest cell migration 

which thus impedes neural development, causing embryonic lethality (Gurniak et al. 2005). 

As such, the function of cofilin-1 in spermatogenesis is not known. Studies have shown that 

cofilin can be inactivated via phosphorylation on its Ser-3 residue by LIM kinases (LIMKs, 

Lin-11/Isl-1/Mec-3 kinases), namely, LIMK1 and LIMK2 (Takahashi et al. 2003), or 

reactivated via dephosphorylation at Ser-3 residue by phosphatases such as Slingshot (SSH 

encoded by the Ssh gene) which is a family of phosphatases known to dephosphorylate 

ADF/cofilin, thereby modulating cofilin function (Niwa et al. 2002). In this context, it is of 

interest to note that LIMK2 is known to be expressed predominantly by germ cells in the 

mouse (Takahashi et al. 2002), whereas LIMK1 is expressed in the rat testis (Lui et al. 

2003). Furthermore, LIMK1 is working in concert with ROCK upstream and β2-integrin at 

the apical ES to regulate spermatid adhesion in the testis (Lui et al. 2003). However, the role 

of LIMK1 and LIMK2 in cofilin-1 activation in the testis remains unexplored. Interestingly, 

LIMK1-deficient mice developed normally and were fertile except displaying abnormalities 

in hippocampal dendritic spine structure (Meng et al. 2002). On the other hand, the testis of 

LIMK2-deficient mice when all three LIMK2 isoforms were disrupted was reduced by 20% 

at 2–4 months of age by weight, and >50% of the tubules were devoid of spermatids 

(including round, elongating, and elongated spermatids) with fewer spermatocytes and had 

signs of germ cell apoptosis and necrosis (Takahashi et al. 2002, 2003), illustrating a gross 

disruption of spermatogenesis. However, these mice remain fertile (Takahashi et al. 2002) 

since it is noted that rodents remain fertile even with a decline of 90% of spermatogenetic 

outputs (Robaire 2003). Interestingly, Ssh-3 KO mice were fertile and healthy (Kousaka et 

al. 2008). However, it remains to be assessed if the triple KO of the three Slingshot 
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phosphatases SSH1, SSH2, and SSH3 which are found in mammalian tissues (Ohta et al. 

2003) would affect spermatogenesis in particular spermiogenesis and ES function. Since 

specific KO of cofilin-1 in podocytes (also known as glomerular visceral epithelial cells) in 

the kidney was recently found to cause failure in selective filtration barrier function (Garg et 

al. 2010), thus, it is noteworthy to examine the phenotype of the Sertoli cell-specific KO of 

cofilin-1 vs. triple KO of Ssh-1, Ssh-2, and Ssh-3 in mice.

17.6 Drebrin E, Cofilin-1, the Arp2/3 Complex, and Spermiation

Based on such intimate functional and structural relationship between drebrin, cofilin, and 

the Arp2/3 complex as briefly discussed herein, we propose a hypothetical model depicted in 

Fig. 17.3, illustrating their likely involvement in actin remodeling at the apical ES. In brief, 

at stage VII, the expression of drebrin E at the apical ES, mostly at the concave side of 

spermatid heads known as apical TBC, is robust and intense, which diminishes somewhat by 

stages late VII–early VIII and considerably weakened in stage VIII when spermiation begins 

to take place (Li et al. 2011). On the other hand, cofilin-1 is intensely expressed at the apical 

ES/apical TBC in late stage VII–stage VIII tubules at the same site (Guttman et al. 2004) to 

confer endocytic vesicle-mediated protein trafficking events including endocytosis, 

transcytosis, and recycling to facilitate recycling of the “old” apical ES proteins (e.g., β1-

integrin, laminins, nectin-2, nectin-3, afadin) for the assembly of “new” apical ES when step 

8 spermatids arise at stage VIII of the cycle. However, cofilin-1 remains considerably 

expressed at the apical ES (Guttman et al. 2004) when drebrin E (Li et al. 2011) and Arp3 

(Lie et al. 2010) are virtually not expressed at stage VIII. This downregulation of drebrin E 

is necessary since both drebrin E and cofilin-1 competes to bind onto the actin 

microfilaments at the same site (Zhao et al. 2006; Grintsevich and Reisler 2014). Thus, 

cofilin-1 further severs and depolymerizes actin microfilaments at the apical ES, causing 

truncation of actin microfilaments, preparing the eventual release of fully developed 

spermatids (i.e., spermatozoa) at spermiation, possibly in conjunction with the action of 

MMP-2 (Siu and Cheng 2004). It is obvious that the model depicted in Fig. 17.3 will be 

updated as more data are available in future years.

17.7 Drebrin E and BTB Remodeling During the Epithelial Cycle

The BTB is one of the tightest blood-tissue barriers in the mammalian body. However, 

unlike other tissue barriers such as the blood-brain barrier and the blood-retina barrier 

(Cheng 2012), the BTB undergoes extensive remodeling during the epithelial cycle to 

accommodate the transport of germ cells of >40-μm in diameter across the barrier. For 

instance, preleptotene spermatocytes derived from type B spermatogonia that first appear in 

stage VII tubules and are connected in clones by intercellular bridges must be transported 

across the BTB at stage VIII, so that spermatocytes can be prepared for meiosis that takes 

place in stage XIV tubules in the rat testis (Xiao et al. 2014; Parvinen 1982; Leblond and 

Clermont 1952). Thus, extensive junction restructuring including actin- and MT-based 

cytoskeleton reorganization is required to accommodate these events. Drebrin is known to be 

associated with cell junctions in a number of epithelial cells (e.g., MDBK cells (Madin and 

Darby bovine kidney epithelial cells) and A431 cells (human epithelial carcinoma cells) in 

which drebrin is localized to actin microfilament bundles at the cell-cell contact sites at AJ 
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(Peitsch et al. 1999, 2001; Keon et al. 2000). Drebrin also binds to the C-terminal 

cytoplasmic domain of connexin 43, involving in the maintenance of gap junction function 

(Butkevich et al. 2004). In the rat testis, drebrin E is also found at the basal ES, a testis-

specific AJ which also coexists with GJ, at the BTB based on studies by 

immunohistochemistry and immunofluorescence analysis (Li et al. 2011). Drebrin E is 

highly expressed at the BTB at stages IV–V of the epithelial cycle, but it diminishes 

somewhat at stage VII and considerably weakened by stage VIII (Li et al. 2011), coinciding 

with the restructuring of BTB. This apparent downregulation is necessary for the transport of 

preleptotene spermatocytes across the barrier. It is of interest to note that the expression of 

Arp3 at the basal ES/BTB is most intensely in stage VIII tubules (Lie et al. 2010). Since 

drebrin E binds to the same site as cofilin-1 in the actin microfilament and their binding is 

thus mutually exclusive (Zhao et al. 2006; Grintsevich and Reisler 2014), the transient 

downregulation of drebrin E at stage VIII may be necessary to facilitate cofilin-1 to exert its 

actin severing/depolymerization intrinsic activity on the actin microfilaments at the basal ES. 

These changes thus lead to the formation of more truncated actin microfilaments at the site, 

in conjunction with a robust expression of Arp3 at the BTB in stage VIIl tubules (Lie et al. 

2010), thus enhancing branched actin polymerization, thereby converting the F-actin 

network from a bundled to a branched/unbundled configuration. These changes, in turn, 

facilitate endocytic vesicle-mediated protein trafficking events so that BTB proteins (e.g., 

occludin, ZO-1, N-cadherin, β-catenin) from the “old” BTB located at the apical region of 

the preleptotene spermatocytes can undergo endocytosis, transcytosis, and recycling for the 

assembly of the “new” BTB behind these germ cells under transport at the barrier (Fig. 

17.4). Other biomolecules, such as cytokines (e.g., TGF-βs, TNF-α) and testosterone and/or 

its receptor which are known to modulate endocytic vesicle-mediated protein trafficking 

events (Yan et al. 2008; Xia et al. 2009), are also involved in BTB remodeling as depicted in 

Fig. 17.4.

17.8 Future Perspectives and Concluding Remarks

Based on recent advances in the field, we conclude that drebrin plays an important role in 

regulating both apical ES and basal ES/BTB in the testis. Drebrin is also crucial for the 

transport of germ cells across the BTB and the seminiferous epithelium during the epithelial 

cycle as noted in both Figs. 17.3 and 17.4. However, many open questions remain 

unanswered. Since the intrinsic actin-binding capacity of drebrin is modulated by its 

phosphorylation and dephosphorylation, the kinases, phosphatases, and other signaling 

molecule(s) that are involved in drebrin activation at the ES remain to be identified. Studies 

in recent years have shown that cyclin-dependent kinase 5 (Cdk5)-p35, a Ser/Thr protein 

kinase, can phosphorylate drebrin to modulate neuronal migration (Tanabe et al. 2014). 

Phosphatase and tensin homolog (PTEN), a known binding partner of drebrin (Table 17.1), 

was also shown to dephosphorylate drebrin at Ser-647 in the brain to regulate neuronal 

activity (Kreis et al. 2013). It will be of interest to determine if these proteins or other testis-

specific kinases and phosphatases would play a role in modulating the function of drebrin. 

Furthermore, fascin 1, an actin filament-bundling protein in the testis, is a component of 

apical ES (Gungor-Ordueri et al. 2014a). Interestingly, its stage-specific expression pattern 

in the seminiferous epithelium closely mimics drebrin E in which fascin 1 is predominantly 
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expressed at the apical ES at stage VII but quickly diminishes by stage VIII (Gungor-

Ordueri et al. 2014a). An earlier study has reported that the actin-bundling activity of fascin 

can be inhibited by drebrin in filopodia (Sasaki et al. 1996). Is it possible that drebrin E 

modulates or fine-tunes the actin-bundling activity of fascin 1 at the apical ES? Also, what 

are the phenotypes following an inactivation of drebrin E in the testis? Additionally, the 

physiological relationship of drebrin and cofilin-1 in the testis will need to be better defined. 

These questions need to be addressed in future studies.
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Fig. 17.1. 
Morphological features and relative location of the actin-rich ES in the seminiferous 

epithelium of adult rat testes. (a) A schematic drawing of the cross section of a seminiferous 

tubule, illustrating the blood-testis barrier (BTB) that physically divides the seminiferous 

epithelium into the basal and the adluminal (apical) compartments. Preleptotene 

spermatocytes derived from type B spermatogonia at stage VII must be transported across 

the immunological barrier at stage VIII of the epithelial cycle. The BTB integrity is 

maintained by different cell adhesion complexes of the TJ (e.g., occludin-ZO-1), basal ES 

(e.g., N-cadherin-β-catenin), and gap junction (e.g., connexin 43/plakofilin-2) which all use 

actin microfilaments for their attachment, as well as the desmosome (e.g., desmoglein-2/

desmocollin-2) which uses vimentin-based intermediate filaments for attachment. 

Developing spermatids (steps 8–19) in the adluminal compartment remain attached to the 

Sertoli cell via apical ES by unique adhesion protein complexes such as nectin-afadin and 

laminin-integrin, of which nectin-3 and laminin-α3β3γ3 are specific to spermatids, whereas 

necin-2 can be found in both Sertoli cells and spermatids, and α6β1-integrin is Sertoli cell-

specific. The typical feature of the ES is the actin microfilament bundles that lie 

perpendicular to the Sertoli cell plasma membrane, and they are sandwiched between 

cisternae of endoplasmic reticulum and the apposing plasma membrane of the adjacent 

Sertoli cells called basal ES vs. Sertoli-spermatid called apical ES. These actin 

microfilament bundles thus confer the ES its unusual adhesive strength to support Sertoli 

cell adhesion at the BTB and the spermatid adhesion at the ES during spermiogenesis. (b) 

These two micrographs illustrate the typical cell-cell interactions between different germ 

cells and Sertoli cells at stage V (left panel) and stage VII (right panel) of the epithelial 
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cycle. For instance in stage V, elongating spermatids (step 17) are found deep inside the base 

of the adluminal compartment, almost touching the Sertoli cell nucleus (SC), whereas at 

stage VII, elongated spermatids (step 19) begin to line up near the tubule lumen to prepare 

for their release into the tubule lumen at stage VIII of the cycle. Scale bar, 60 μm. 

Abbreviations: B-SG type B spermatogonium, ES elongating/elongated spermatid, PLS 
preleptotene spermatocyte, PMC peritubular myoid cell, PS pachytene spermatocyte, RS 
round spermatid, SC Sertoli cell
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Fig. 17.2. 
Functional domains in drebrin. Different functional domains along the polypeptide sequence 

of drebrin, applicable to both drebrin A and drebrin E, are shown herein, except that in 

drebrin A, there is a drebrin A-specific region located behind the helical domain. Drebrin 

contains an actin-depolymerizing factor homology (ADF-H) domain, a coiled-coil domain 

(CC), a helical domain (Hel), as well as a large domain called the blue box which are all 

capable of interacting with F-actin via their corresponding actin-interaction domain, 

conferring drebrin its actin-binding protein ability (Worth et al. 2013; Majoul et al. 2007). In 

addition, spikar is shown to bind to the ADF-H domain (Yamazaki et al. 2014). Drebrin also 

contains a proline-rich (PP) domain known to bind profilin (Mammoto et al. 1998), afadin 

(Rehm et al. 2013), and possibly Arp3 (Li et al. 2011). There are also two homer-binding 

motifs near the C-terminus that interact with cupidin/homer2 (Shiraishi-Yamaguchi et al. 

2009) and also an SH2-binding motif. There are two putative phosphorylation sites in 

drebrin: Ser-142 and Ser-647. Cdk5 is the kinase known to phosphorylate drebrin at Ser-142 

(Worth et al. 2013). PTEN is known to dephosphorylate Ser-647 in drebrin A (Kreis et al. 

2013), which corresponds to Ser-601 in drebrin E based on sequence homology alignment 

analysis
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Fig. 17.3. 
A hypothetical model regarding the involvement of drebrin E in the remodeling of the apical 

ES to facilitate the release of sperms at spermiation. In stage VII tubules, such as the one 

shown on the left panel, the apical ES is supported by the actin microfilament bundles, 

which are likely maintained through an upregulation of actin-bundling proteins such as 

Eps8, ezrin, and palladin that confer the actin microfilaments their bundled configuration, 

which in turn support the functionality of adhesion protein complexes at the site. However, 

at late stage VII, at the concave (ventral) side of the spermatid head, an upregulation of 

drebrin E begins to occur (Li et al. 2011). This thus recruits more Arp3 to the site via the 

high affinity of drebrin E to Arp3 as shown in the testis (Li et al. 2011), so that the intrinsic 

branched actin polymerization activity of the Arp2/3 complex converts actin microfilaments 

from a bundled to an unbundled/branched configuration, promoting endocytic vesicle-

mediated trafficking events, creating a transient ultrastructure known as apical TBC 

(tubulobulbar complex) (Vogl et al. 2013), referring to the aggregates of numerous endocytic 

vesicles readily visible by fluorescence microscopy. The events of endocytosis, transcytosis, 

and recycling are necessary to recycle apical ES proteins (e.g., integrins, nectins, laminins) 

from the “old” apical ES to assemble “new” apical ES when step 8 spermatids develop from 

step 7 arise at stage VIII of the epithelial cycle without requiring de novo synthesis of all the 

apical ES and pertinent proteins such as peripheral adaptors. This event of actin 
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microfilament reorganization becomes more widespread at stage VIII when virtually all the 

actin microfilament bundles are replaced by unbundled/branched actin microfilaments to 

facilitate the release of sperm at spermiation. These changes are also assisted by a 

downregulation of actin-bundling proteins at the site such as Eps8, ezrin, and palladin, as 

well as an upregulation of cofilin-1 which cleaves actin microfilaments into shorter 

fragments to facilitate the breakdown of cell adhesion function conferred by adhesion 

protein complexes. Collectively, these changes lead to apical ES degeneration to coordinate 

spermiation
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Fig. 17.4. 
A hypothetical model regarding the involvement of drebrin E in the remodeling of the BTB 

to facilitate the transport of preleptotene spermatocytes across immunological barrier. At 

stage VII, the BTB is intact which is supported by the actin microfilament bundles at the 

basal ES due to the upregulation of actin-bundling proteins such as Eps8, palladin, ezrin, 

plastin 3, and others (see left panel). However, preleptotene spermatocytes transformed from 

type B spermatogonia at stage VII begin to be transported across the immunological barrier 

at late stage VII. In late stage VII–early stage VIII, an upregulation of drebrin E recruits 

Arp3 to the site, so that the intrinsic branched actin polymerization activity of the Arp3 

converts actin microfilaments from a bundled to an unbundled/branched configuration; this 

is also associated with a surge of cofilin-1 which further assists the breakdown of actin 

microfilaments coupled with a downregulation on the expression of actin-bundling proteins 

such as Eps8, palladin, ezrin, and plastin 3. These changes thus promote endocytic vesicle-

mediated protein trafficking events including endocytosis, transcytosis, and recycling. Thus, 

“old” BTB above the preleptotene spermatocytes can be transcytosed and recycled to 

assemble “new” BTB below these spermatocytes to maintain the BTB integrity while 

preleptotene spermatocytes are being transported across the barrier
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Table 17.1

Binding partners of drebrin

Arp3 Rat Sertoli cells Recruitment of Arp3 by drebrin E at the 
Sertoli cell BTB that induces actin 
branching, converting actin 
microfilaments in Sertoli cells from a 
bundled to unbundled/branched 
configuration that facilitates endocytic 
vesicle-mediated protein trafficking

n.d. in neither Arp3 nor 
drebrin E

Li et al. (2011)

Afadin HUVEC Afadin serves as a linker between 
drebrin and nectins in adherens junction

PR domain in drebrin; 
PR1 and PR2 regions in 
afadin

Rehm et al. 
(2013)

Connexin 43 Vero cells; mouse astrocytes Drebrin acts as a linker between 
connexin 43 and submembranous actin 
cytoskeleton

n.d. in drebrin; C-
terminal region (amino 
acids 234–382) in Cx43

Butkevich et al. 
(2004)

EB3 Rat cortical neurons Binding of drebrin to EB3 regulates 
interaction between F-actin and 
microtubules to support growth cone 
formation and neuritogenesis

n.d. in drebrin; 3 amino 
acid inserts in EB3 that 
are not found in EB1

Geraldo et al. 
(2008)

Spikar Rat hippocampal neurons Extranuclear spikar (a drebrin-binding 
protein in the brain) accumulation 
mediated by drebrin that increases 
dendritic spine density

N-terminal region (amino 
acids 1–134) in drebrin; 
N-terminal region (amino 
acids 88–376) in spikar

Yamazaki et al. 
(2014)

PTEN Rat hippocampal or cortical 
neurons

PTEN negatively regulates S647-
phosphorylation of drebrin via 
dephosphorylation

n.d. in drebrin; C2 
domain (amino acids 
182–354) in PTEN

Kreis et al. 
(2013)

Profilin Rat brain Drebrin likely regulates actin 
microfilament via its interaction with 
profilin

Likely PR domain in 
drebrin; n.d. in profilin

Mammoto et al. 
(1998)

Cupidin/Homer2 Mouse cerebella; rat 
hippocampal neurons

Deletion of Cdc42-binding region of 
cupidin disturbs dendritic drebrin 
distribution in hippocampal neurons

Homer-binding motifs at 
the C-terminus of 
drebrin; N-terminal 
EVH-1 domain in 
cupidin/homer2

Shiraishi-
Yamaguchi et al. 
(2009)

a
This Table is not intended to be exhaustive; the binding partners of drebrin that are selected herein represent those that are found in the testis, or 

their function is consistent with regulation of spermatogenesis based on our current understanding in the field. However, studies are needed to 
confirm if many of these proteins are indeed putative binding partners of drebrin in the testis since there are few studies in the literature that explore 
the role of drebrin in spermatogenesis. n.d. not determined, HUVEC human umbilical vein endothelial cells, PR domain proline-rich domain, EB3 
end-binding protein 3, PTEN phosphatase and tensin homolog
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Table 17.2

Function of drebrin which is assessed based on studies using genetic models

Drebrin A Global knockout Drebrin A-specific KO (drebrin E remained functional in 
these KO mice) led to a loss of homeostatic synaptic 
plasticity (HSP) at excitatory synapses of adult cerebral 
cortex, illustrating drebrin A may be involved in 
Alzheimer’s disease pathogenesis

Cre-Lox P recombination Aoki et al. 
(2009)

Drebrins A 
and E

Global knockout Total drebrin KO led to a decrease in the number of 
neurotransmitter receptors, impaired dendritic spine 
morphogenesis, and reduced memory-related synaptic 
plasticity in the hippocampus

Cre-Lox P recombination Jung et al. 
(2015)

Drebrin A Global knockout An impairment of context-dependent fear learning in adult 
drebrin A KO mice, suggesting a role of drebrin A in 
cognitive function

Cre-Lox P recombination Kojima et al. 
(2010)

KO knockout
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