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Positional fluctuations of an atom in a protein can be described as motion in an effective local energy
minimum created by the surrounding protein atoms. The dependence of atomic fluctuations on both
temperature (T ) and pressure (P) has been used to probe the nature of these minima, which are generally
described as harmonic in experiments such as x-ray crystallography and neutron scattering. Here, a
quasiharmonic analysis method is presented in which the P-T dependence of atomic fluctuations is in
terms of an intrinsic isobaric thermal expansivity αP and an intrinsic isothermal compressibility κT .
The method is tested on previously reported mean-square displacements from P-T molecular dynamics
simulations of lysozyme, which were interpreted to have a pressure-independent dynamical transition
Tg near 200 K and a change in the pressure dependence near 480 MPa. Our quasiharmonic analysis
of the same data shows that the P-T dependence can be described in terms of αP and κT where below
Tg, the temperature dependence is frozen at the Tg value. In addition, the purported transition at
480 MPa is reinterpreted as a consequence of the pressure dependence of Tg and the quasiharmonic
frequencies. The former also indicates that barrier heights between substates are pressure dependent
in these data. Furthermore, the insights gained from this quasiharmonic analysis, which was of the
energy landscape near the native state of a protein, suggest that similar analyses of other simulations
may be useful in understanding such phenomena as pressure-induced protein unfolding. Published
by AIP Publishing. https://doi.org/10.1063/1.5003823

I. INTRODUCTION

The concept of an energy landscape has been useful in
describing a variety of phenomena in proteins, including pro-
tein function and folding.1,2 The structure of a folded protein
from an X-ray crystallographic or nuclear magnetic resonance
(NMR) solution structure determination can be considered to
be a minimum in this rough landscape. Conformational tran-
sitions from this minimum to other local minima may occur:
nearby conformations may correspond to states important for
protein function, while farther ones may correspond to folding
intermediates. The landscape has often been explored by using
temperature variations of the system,3 which vary the thermal
energy and the system volume via thermal expansivity. More
recently, variations in pressure have also been used,4,5 which
affects only the system volume via the compressibility. Pres-
sure could change the shape or depth of minima or the distance
or barriers between minima.

While the energy landscape is a multidimensional poten-
tial energy surface dependent on the coordinates of all atoms in
the system, another useful concept is the local effective poten-
tial energy minimum in which a given atom fluctuates. In a
given conformational state, the potential energy well is cre-
ated by the neighboring atoms and can be characterized by the
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average position of the atom in that state and the mean-square
fluctuations about that position. For instance, the temperature
factors used in X-ray crystallographic refinement of struc-
tures arise in part from thermal fluctuations about an average
position and thus can assess the width of the minimum. In
addition, the mean-square displacements from neutron scat-
tering studies can also be related to the mean-square fluctu-
ations. In proteins, this local energy minimum is generally
assumed to be an isotropic harmonic three-dimensional well
although anisotropic and even anharmonic wells can be con-
sidered. In fact, an increasing number of protein structures in
the Protein Data Bank6 (PDB) report anisotropic temperature
factors.

The potential energy surface corresponding to a given con-
formational state of a protein is rough, with multiple local
minima corresponding to many substates within the confor-
mational state. Most atoms can be considered to fluctuate in a
single energy minimum on a short enough time scale, although
sometimes transitions to other local minima may occur via pro-
cesses such as dihedral angle transitions.7,8 On longer time
scales, the motions of a given atom couple to an increas-
ing number of atoms, resulting in “collective motions”9 that
can be considered as phonons in a normal mode approxima-
tion. Interestingly, the frequency distribution demonstrates a
quadratic Debye behavior characteristic of acoustic phonons
even at wavelengths significantly smaller than the size of the
protein (i.e., time scales as low as ∼1 ps), apparently because
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the protein and solvent behave as a continuum due to the
similarities in the weak interactions within the protein and
between the protein and solvent.3 On longer time scales, these
collective motions can also give rise to transitions to other sub-
states. Interestingly, a dynamical transition has been observed
in atomic fluctuations of protein atoms at a transition tempera-
ture Tg ∼ 200 K, which has been likened to the glass transition
of the protein.10–12 Below Tg, the interpretation is that ther-
mal energy is insufficient to make transitions so atoms get
trapped in a single substate, which corresponds to an underly-
ing potential energy minimum. On the other hand, above Tg,
the interpretation is that thermal fluctuations cause transitions
between different substates within the same conformational
state. However, proteins are not typical glass-forming systems
and thus do not necessarily follow typical glass behavior. In
fact, a perhaps non-intuitive behavior of proteins is that they
unfold at high pressure. This has been explained as the result
of hydration of the interior of the protein, which results in a
lower system volume since water molecules can fill voids in
the folded protein.

To describe more complex motion, at least two types
of deviation from strictly harmonic behavior can be consid-
ered.13,14 In a quasiharmonic approximation, individual atoms
are considered to move in harmonic potentials but expan-
sion or contraction of the system due to pressure or tem-
perature changes are accounted for since they change the
available space for a given atom created by its neighbors.
Thus, the frequencies vary with volume, an approach used
extensively for problems in condensed matter and materi-
als physics.13,14 In a full anharmonic treatment, individual
atoms are considered to move within energy basins that are
anharmonic in shape, which leads to additional frequency
changes with temperature than expected from volume changes
alone. Thus, the frequencies are dependent on both volume
and temperature. In the case of solids, the anharmonic con-
tributions arise from complex phonon-phonon interactions.15

On the other hand, the total anharmonic contribution at a
given pressure and temperature can be determined experi-
mentally from appropriate measurements and thermodynamic
relations.13

The approach of understanding how volume changes
affect the frequencies apparently has not yet been applied
to understanding the vibrational dynamics of biological
molecules. Such a treatment may be useful because the com-
plex dynamics of proteins described above even in one con-
formation state demonstrates the breakdown of a simple har-
monic description of behavior of the component atoms. For
instance, the nonlinear temperature dependence of the temper-
ature factors above Tg

12 and comparisons of quasiharmonic
modes calculated from molecular dynamics simulations at
room temperature with those from normal modes analysis9

suggest that the force constants are changing with tempera-
ture. In addition, the protein dynamical transition has been
attributed to solvent-driven activation of anharmonic dynam-
ics above Tg

16,17 and the observation of transitional behavior
of positional distributions from protein simulations at room
temperature shows that the fluctuations can be considerably
anharmonic.7 In particular, since transitions between sub-
states appear to occur above Tg, which should increase the

volume, a quasiharmonic approximation appears warranted
for understanding the effects of temperature and pressure on
fluctuations.

Examining atomic fluctuations in molecular dynamics
simulations of biological macromolecules under pressure can
provide information about their energy landscape. For exam-
ple, Meinhold et al.5 used both pressure and temperature
to explore the energy landscape of hen egg white lysozyme
(HEWL) in water using molecular dynamics (MD) simulations
at pressures between 0.1 and 1000 MPa and at temperatures
from 20 to 320 K. Experimentally, HEWL reversibly dena-
tures above 350 MPa or below 260 K on the hour time scale
to an unfolded state that appears to be quite different from
high temperature or chemical denaturant unfolded states.18

However, since the simulations were heated, pressurized, and
equilibrated from the energy minimized NMR structure in less
than 1 ns and the total length of each simulation was 1 ns,
none of the simulations can be expected to be in the ther-
modynamically favored state. Instead, they probe the energy
landscape near the native state. In these studies, the reported
data are the time-dependent mean-square displacements d2(τ)
of hydrogen atoms, which were chosen in part because they
can be measured directly in neutron scattering experiments.
Meinhold et al.5 have shown that the dynamics of protein
hydrogen atoms are a good measure of the dynamics of all
protein atoms. d2(τ = 1 ps)|P increased linearly with tempera-
ture below Tg ≈ 200 K and nonlinearly at a higher rate above
Tg, which was ascribed to the protein dynamical transition.
Since Tg appeared to be independent of pressure, they con-
cluded that the barrier height between potential energy minima
was independent of pressure. In addition, an effective envi-
ronmental force constant, keff, for the underlying harmonic
potential was obtained from d2(τ = 1 ps)|T g from the linear
regime below Tg. Interestingly, keff was found to increase
linearly with pressure below 480 MPa and linearly but at a
slower rate above 480 MPa, which was attributed to a qual-
itative change in the pressure response of the protein energy
landscape.

Here, a method for analyzing atomic fluctuations in
macromolecules is presented, which utilizes the quasihar-
monic approximation in which the underlying modes are
assumed to have frequencies that vary with volume. The
approach is suited for macromolecules with rough potential
energy landscapes with regions corresponding to defined con-
formational states, such as proteins. Assuming that each atom
of the protein moves in a local effective potential created by
its neighboring atoms, the protein is described as a classical
Einstein-type model of a solid where the atoms are indepen-
dent harmonic oscillators with identical quasiharmonic fre-
quencies. The temperature and pressure dependence of the
average atomic fluctuations of the protein are thus described
in terms of an intrinsic isobaric thermal expansivity αP and
an intrinsic isothermal compressibility κT , respectively. These
are intrinsic properties of the protein, independent of direct
solvent effects. To illustrate the applicability and utility of this
approach, the HEWL simulation data from Meinhold et al.5 are
reexamined using our quasiharmonic analysis. Although the
analysis of mean-square fluctuations of protein heavy atoms
would be ideal, Meinhold et al.5 report only mean-square
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displacements of hydrogen atoms, which are shown to be
a good measure of the dynamics of all protein atoms. The
approach leads to reassessment of the prior conclusions,
namely, pressure independent barrier heights between local
minima and a transition in the pressure response of the energy
surface. Notably, we find the purported transition at 480 MPa
can be interpreted as a consequence of the pressure depen-
dences of Tg and of the quasiharmonic frequencies. The former
also indicates that barrier heights between local minima are
pressure dependent. More broadly, this type of quasiharmonic
analysis of computer simulation of proteins may be useful in
understanding phenomena such as pressure-induced protein
unfolding. Although more proteins need to be examined, the
results here suggest that while pressure might be expected to
reduce fluctuations by compressive effects on a single substate,
it may also favor transitions to other substates and thus enhance
fluctuations. Since these other substates can include more sol-
vated conformations, these transitions may ultimately lead to
unfolding.

II. THEORETICAL METHODS
A. Quasiharmonicity and anharmonicity

Deviations from a purely harmonic system with a force
constant k and volume and temperature independent frequen-
cies can be described as quasiharmonic or anharmonic. For-
mally, a quasiharmonic system has vibrational frequencies that
vary only because the effective available space changes as the
material expands or contracts with pressure and/or tempera-
ture14 so that frequencies vary directly only with volume. In
addition, an anharmonic system has vibrational frequencies
that are dependent on both volume and temperature.14

Generally, a potential energy minimum can be described
by a volume and temperature dependent effective force con-
stant k(V,T ) defined as

dk(V , T ) =

(
∂k
∂V

)
T

dV +

(
∂k
∂T

)
V

dT (1)

or, in terms of pressures and temperatures, as

dk(P, T ) =

(
∂k
∂P

)
T

dP +

(
∂k
∂T

)
P

dT , (2)
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)
T
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(
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)
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(
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P
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(
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)
T

(
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P

+

(
∂k
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)
V

. (4)

In Eqs. (3) and (4), a harmonic system has (∂k/∂P)T

= (∂k/∂T )P = 0, a quasiharmonic system has (∂k/∂T )V = 0
so that k(P, T ) = k(V (P, T )), and an anharmonic system has all
non-zero terms. Substituting Eqs. (3) and (4) into Eq. (2), the

quasiharmonic approximation can be written as

dk(P, T ) =

(
∂k
∂V

)
T

(
∂V
∂P

)
T

dP +

(
∂k
∂V

)
T

(
∂V
∂T

)
P

dT . (5)

The quantities in Eq. (5) can be identified with vari-
ous thermodynamic parameters. For instance, the isothermal
compressibility is

κT = −V−1(∂V/∂P)T (6)

and the isobaric thermal expansivity is

αT = V−1(∂V/∂P)P. (7)

The volume dependence of these quantities can be determined
with respect to a reference pressure P0 and a reference tem-
perature T0, and ∆ denotes differences with respect to refer-
ence quantities. The dependence of κT on V can be described
as

κT = κT ,0

(
V (P)
V (P0)

)µ
, (8)

where κT ,0 = κT (P0) and µ is a non-linearity index. Inserting
this into Eq. (6) and integrating, one obtains the Moelwyn-
Hughes isotherm19

V (P)
V (P0)

=
(
1 + µκT ,0∆P

)−1/µ µ , 0. (9)

Similarly, the dependence of αP on V can be described as

αP = αP,0

(
V (T )
V (T0)

)ν
, (10)

where αP ,0 = αP(T0) and ν is another non-linearity index.
Inserting this into Eq. (7) and integrating, one obtains

V (T )
V (T0)

=



exp
(
αP,0∆T

)
ν = 0(

1 − ναP,0∆T
)−1/ν ν , 0

. (11)

[Note that since the fits here are over a very small range of
temperatures, the case of a volume independent αP such that
ν = 0 is explicitly considered in Eq. (11).]

The volume dependence of the force constant can be deter-
mined assuming that the effective force constant gives rise to
phonon modes with frequency ω. Recognizing that ω2 ∝ k,

V
k

(
∂k
∂V

)
T
= −2γT , (12)

where γT is the Grüneisen parameter.14 In addition, the
Grüneisen parameter is related to the non-linearity index µ
for a Debye solid (which also holds for an Einstein solid)
by20

2γT = µ −
1
3 . (13)

Next, substituting Eqs. (9)–(12) into Eq. (5) and integrat-
ing leads to

k(P, T ) =




k0

[
exp(−αP,0∆T )(1 + µκT ,0∆P)1/µ

](µ− 1
3 )

ν = 0, µ , 0

k0

[
(1 − ναP,0∆T )1/ν(1 + µκT ,0∆P)1/µ

](µ− 1
3 )

ν , 0, µ , 0

, (14)
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where k0 = k(P0, T0). Furthermore, if κT is assumed to be
independent of T, κT ,0 = κT (P0, T0) and if αP is assumed
independent of P, αP ,0 = αP(P0, T0).

B. Mean-square displacements

The most direct measure of the effective local potential
from a simulation would be the mean-square atomic fluctua-
tions averaged over all protein atoms. However, the quantity
calculated from the simulations by Meinhold et al.5 is d2(τ)

= 〈[ri(t) − ri(t + τ)]2〉, where ri(t) is the coordinate vector of
atom i at time t, the angle brackets and over bar are the time
and ensemble averages, respectively, of the hydrogen atoms,
and τ = 1 ps.

Assuming that each hydrogen atom can be considered to
be in an effective local harmonic potential subject to Brown-
ian fluctuations, the mean-square displacement can be related

to the mean-square fluctuations σ2 = 〈ri(t)2〉 in the effec-
tive harmonic potential. In particular, assuming the energy
minimum has a spring constant Mω0

2 and γ is the damping
coefficient,

d2(τ) =
〈
rk(t)2

〉
− 2〈rk(t) · rk(t + τ)〉 +

〈
rk(t + τ)2

〉
= 2σ2

[
1 − exp(−γτ/2)

(
cos(ω1τ) +

γ

2ω1
sin(ω1τ)

)]
,

(15)

where ω1
2 = ω0

2 + γ2/4. For the case studied in Meinhold
et al.,5 the factor in large parenthesis in the second equality
averages to zero since the mean-square displacement is aver-
aged over all hydrogen atoms in the protein, which each have
a different phase shift, and the exponential factor is constant.
Thus, the reported d2(τ) → 2σ2 = 6kBT /k, where k is the
average local effective harmonic force constant for a hydro-
gen atom in the protein on a time scale τ so that only motions
with time scales up to τ can contribute to the local effective
harmonic potential. A slight increase in d2(τ) for the hydro-
gen atoms in a protein has been noted between τ = 1 ps and
τ = 10 ps for hydrogens;4 however, it was concluded that the
1 ps time scale is sufficient for probing the energy landscape
near the NMR structure.

C. Fitting procedures

The data used for testing this quasiharmonic analysis are
taken from the MD simulations of HEWL found in the work of
Meinhold et al.,5 which gives details of the simulation meth-
ods and are repeated in the supplementary material. Briefly,
the simulations were performed using the Gromacs suite of
programs21,22 with the all-atom OPLS-AA/L force field.23

The initial structure was 1GXV24 from the PDB,6 which was
solved at 1 atm by NMR. The system was energy minimized,
subsequently heated for 100 ps, and then pressurized and
equilibrated for 600 ps using the extended-ensemble Nosé-
Hoover/Parrinello-Rahman algorithms.25–28 The production
phase of each temperature-pressure value was 1 ns and coor-
dinates were saved at 0.1 ps for analysis. d2(1 ps) are reported
for 0.1 MPa ≤ P ≤ 1000 MPa in 50 MPa intervals and 240
K ≤ T ≤ 320 K in 20 K intervals, which will be referred
to as the “pressure” set, and for 0 K < T ≤ 320 K in 20 K
intervals and P = 0.1, 300, 700, and 1000 MPa, which will
be referred to as the “temperature” set. In addition, k was
reported for 0.1 MPa ≤ P ≤ 1000 MPa in 50 MPa intervals.
To account for differences in the definition of k as well as
significant figures of constants, their data for k were scaled
accordingly using slopes of d2 from the temperature set. The
fits were performed using gnuplot. The goodness of fits for
the parameters were examined via the reduced χ2, which is
the mean-square residuals from the fit against the MD sim-
ulation data divided by the number of degrees of freedom,
so that fits using different numbers of parameters can be
compared.

III. RESULTS

The accuracy and utility of the quasiharmonic analysis
are tested here by reexamining the MD simulation data for
HEWL in the work of Meinhold et al.5 The reference state
is chosen here as P0 = 0.1 MPa and T0 = 298 K, although
results appear independent of the choice of reference state.
Under the assumption that the “glass” transition involves a
smooth (non-discontinuous) transition, the high temperature
data (well above where the glass transition temperature for
proteins is typically found, i.e., T >> 200 K) are first fit assum-
ing a pressure and temperature dependent k and then the low
temperature data (i.e., T << 200 K) are fit assuming that k is
fixed to its value at (P, Tg) by varying Tg.

A. Above the “glass” transition

Above the “glass” transition temperature, the local atomic
fluctuations of the protein are assumed to be close enough
to harmonic so that any anharmonicity may be treated via a
quasiharmonic approximation. In other words, the potential
energy wells have force constants that are pressure and tem-
perature dependent only via volumetric effects so are given
by Eq. (14) in terms of a temperature-independent κT and a
pressure-independent αP, respectively. Substituting Eq. (14)
into Eq. (15), the mean-square displacement d2(P, T ) is given
by

d2(P, T ) =




d2
0

T
T0

[
exp(−αP,0∆T )(1 + µκT ,0∆P)1/µ

]( 1
3−µ)

ν = 0, µ , 0

d2
0

T
T0

[
(1 − ναP,0∆T )1/ν(1 + µκT ,0∆P)1/µ

]( 1
3−µ)

ν , 0, µ , 0

, (16)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-028736
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TABLE I. Fit of d2(P, T ) to MD simulation data. In both cases, ν = 0.

µ Constant Fit value Uncertainty χ2 × 105

0.70 ± 0.10 d0
2 (Å2) 0.494 6 0.002 0 


3.26αP ,0 (K�1) 0.011 25 0.002 9

κT ,0 (MPa�1) 0.001 62 0.000 5

1 d0
2 (Å2) 0.492 4 0.001 5 


3.32αP ,0 (K�1) 0.006 24 0.000 09

κT ,0 (MPa�1) 0.000 82 0.000 01

where d0
2 = d2(P0, T0). The fits in this section utilize the

pressure data set (i.e., 0.1 MPa ≤ P ≤ 1000 MPa at 240 K ≤ T
≤ 320 K) from the HEWL MD simulation.

First, d2(P, T ) calculated using Eq. (16) is fit to the MD
pressure data to find d0

2, αP ,0, κT ,0, µ, and ν assuming ν , 0
(Table S1 of the supplementary material). Since ν is very small
with a very large uncertainty (ν = �0.004 ± 0.104), d2(P, T )
is also fit to find d0

2, αP ,0, κT ,0, and µ assuming ν = 0 (Table I
and Table S2 of the supplementary material). Next, since µ
was found to be close to 1 (i.e., µ = 0.70 ± 0.10), the ideal gas
value, d2(P, T ), calculated using Eq. (18) with µ = 1 is fit to
the MD pressure data to find d0

2, αP ,0, κT ,0, and ν assuming
ν , 0 (Table S3 of the supplementary material). Since ν is still
small (ν = �0.01 ± 0.19), over the small temperature range
examined here, αP appears independent of the volume [ν = 0
in Eq. (9)], although it is likely to depend on the volume over
a larger temperature range. Thus, d2(P, T ) is fit for d0

2, αP ,0,
and κT ,0 assuming µ = 1 and ν = 0 (Table I and Table S4 of
the supplementary material). The above-mentioned results all
show good agreement with the simulation data and differences
between fitting µ or ν and holding them fixed are barely visible
to the eye so figures in the remainder of the main text are
for the µ = 0.7 and ν = 0 case. In particular, d2(P, T ) versus
pressure P at various temperatures shows good agreement with
the simulation data (Fig. 1).

B. Below the glass transition

Although d2(P, T ) calculated from Eq. (16) using parame-
ters fit to the pressure data set, which contains data only at high
temperatures, reproduce the high temperature region, they do
not reproduce the low temperature region (i.e., Fig. S1 of the
supplementary material). The most likely cause is the onset of
glassy behavior. Here, the protein is assumed to exhibit glassy
behavior in the low temperature region as in Meinhold et al.5

so that the thermal fluctuations are assumed to no longer cause
transitions to other substates that lead to volume changes while
pressure still causes volume changes. Thus, the volume below
Tg at constant P is frozen at its Tg value but still is depen-
dent on P with the same values of the parameters as above
Tg and the magnitude of k at a given P becomes frozen at
Tg. In other words, below the “glass” transition temperature,
the local atomic fluctuations of the protein are assumed to be

FIG. 1. Fit of mean-square displacements d2(P, T ) versus pressure P at vari-
ous temperatures calculated with µ = 0.7 andν = 0 using parameters in Table I
compared to MD simulation data.

quasiharmonic with force constants that have a different value
at each pressure but are independent of temperature but
continuous at Tg with the high temperature values.

An important question in general is the possible pres-
sure dependence of Tg, reminiscent of the question of the
pressure dependence of Tg in glass forming materials.29

Meinhold et al.5 concluded from examining their data that Tg

was independent of pressure. However, our approach identifies
the pressure, temperature, and volumes dependences of Tg. For
instance, if Tg is assumed to be independent of pressure, then

Tg(P) = Tg,0. (17)

The pressure dependence of Tg can also be simply described
by a linear equation

Tg(P) = Tg,0 − c∆P, (18)

where Tg,0 is Tg at the reference pressure and c is a constant.
Alternatively, if the volume at P relative to volume at the ref-
erence pressure is given by Eq. (9), Tg at P can be assumed
to occur at the same volume change relative to Tg at the ref-
erence pressure, which is given by Eq. (11). Assuming ν = 0
as indicated by the results in Sec. III A, this implies that Tg is
logarithmically dependent on pressure according to

Tg(P) = Tg,0 −
1

cαP,0
ln(1 + cκT ,0∆P), (19)

where again Tg,0 is Tg at the reference pressure and c is a con-
stant. Since the physical origin of αP ,0 appears to be different
from that of κT ,0 as discussed in Sec. IV, the volume change
associated with pressure that gives rise to changes in Tg with
pressure is not assumed to have the same value of µ.

The mean-square displacements for the glass region (T
< Tg) can then be related to values at Tg by

d2(P, T ) = d2
g (P)

T
Tg(P)

, (20)

where

d2
g (P) =




d2
0

Tg(P)

T0

[
exp(−αP,0(Tg(P) − T0))(1 + µκT ,0∆P)1/µ

]( 1
3−µ)

ν = 0, µ , 0

d2
0

Tg(P)

T0

[
(1 − ναP,0(Tg(P) − T0))1/ν(1 + µκT ,0∆P)1/µ

]( 1
3−µ)

ν , 0, µ , 0

. (21)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-028736
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-028736
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-028736
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-028736
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-028736


125103-6 Rodgers, Hemley, and Ichiye J. Chem. Phys. 147, 125103 (2017)

TABLE II. Fit of Tg to MD simulation data at low temperatures. In both
cases, ν = 0.

Pressure Fit
µ dependence Constant value Uncertainty χ2 × 105

0.70 ± 0.10 Constant Tg (K) 192.8 2.2
}
2.21

Linear Tg,0 (K) 197.2 3.0
}

2.02
c (K/MPa) 0.012 0.006

Logarithmic Tg,0 (K) 199.9 3.1
}

1.78
c 24.8 12.5

1 Constant Tg (K) 193.3 2.3
}
2.33

Linear Tg,0 (K) 197.7 3.1
}

2.14
c (K/MPa) 0.012 0.006

Logarithmic Tg,0 (K) 200.6 3.2
}

1.85
c 40.7 20.4

The values of d0
2, αP ,0, and κT ,0 take on the values from

the high temperature region so that Tg and c are the only
unknowns.

In this section, the parameters in Eq. (21) take on the val-
ues for d0

2, αP ,0, and κT ,0 in Table I. Equations (20) and (21)
using different assumptions for the pressure dependence of Tg

[Eqs. (17)–(19)] are fit to data for 0 K < T ≤ 160 K from the
temperature data set (i.e., 0 K < T ≤ 320 K at P = 0.1, 300,
700, and 1000 MPa) of the MD simulation data for HEWL
to find values for Tg,0 and c. Results for Tg,0 and c for with
error analysis are reported in Table II (further details for µ= 1
and ν = 0 in Table S5 of the supplementary material and for
fitted µ and ν = 0 in Table S6 of the supplementary material).
First, d2(P, T ) is fit assuming that Tg is invariant with respect
to pressure [Eq. (17)]. When the calculated d2(P, T ) is com-
pared to the simulation data over the full range of temperatures
[Fig. 2(a)], the temperature dependence over the entire temper-
ature range is much improved and the predicted Tg,0 = 193 K
is near other results for proteins.10–12 Next, assuming that Tg

varies linearly with pressure [Eq. (18)] or logarithmically with
pressure [Eq. (19)], the calculated d2(P, T ) is compared to the
simulation data, the temperature dependence is also good over
the entire temperature range [shown for Eq. (19) in Fig. 2(b)].
Although difficult to see, logarithmic dependence of Tg gives
the best fit since the reduced χ2 is ∼20% smaller than the con-
stant Tg. Although the uncertainty in the value of c is large
since data for only four values of pressure were used, the vari-
ation in Tg over the pressure range studied here is fairly large,
from 201 K at 0.1 MPa to 191 K at 1000 MPa for µ = 1 and
ν = 0.

FIG. 3. Effective force constant k versus pressure calculated with µ = 0.7 and
ν = 0 using parameters in Table I and either a pressure-independent Tg (blue
line), the linearly pressure-dependent Tg(P) (green line), or the logarithmically
pressure-dependent Tg(P) (red line), compared to MD simulation data for k
(black dots).

C. The shape of the underlying potential

The effects of pressure on the shape of the underlying
potential are also examined via an effective force constant k as
a function of P. As in the work of Meinhold et al.,5 k are calcu-
lated from the displacements below Tg so that the underlying
potential without the contributions of multiple conformational
substates is being examined. Meinhold et al.5 calculated k
using the following equation:

k(P) =
6kB(

∂
〈
d2〉/∂T

)
P

, (22)

where the MD data were fitted for the slope in the denominator.
In addition, by substituting Eqs. (17) and (18), or (19) into
Eq. (21), k can be calculated by

k(P) =
6kBTg (P)

d2
g (P)

. (23)

The effective force constant k calculated using Eq. (23)
with parameters from Tables I and II can be compared to k from
the MD simulation data. The calculated k assuming a pressure-
dependent Tg(P) predict the curvature seen in the simulation k
better than those calculated assuming a pressure-independent
Tg (Fig. 3). Interestingly, when k in Eq. (23) is fit directly to
the simulation data for k (i.e., the black dots in Fig. 3), the
fitted parameters for a pressure-independent Tg or pressure-
dependent Tg(P) (Tables S5 and S6 of the supplementary
material) are similar to those determined by the fit to the tem-
perature data set for d2 described above. In addition, although
the reduced χ2 for fits to k are considerably higher than the

FIG. 2. Mean-square displacement d2(P, T ) versus tem-
perature T at various pressures calculated with µ = 0.7
and ν = 0 using parameters in Table I, which follow Eq.
(16) above Tg and (a) Eqs. (17), (20), and (21) below Tg,
which is independent of pressure, or (b) Eqs. (19)–(21)
below Tg, which varies with pressure, compared to MD
simulation data.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-028736
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-028736
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-028736
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fits to d2, the fits to k from simulation for a pressure-dependent
Tg(P) are also better than a pressure-independent Tg, since
the reduced χ2 is ∼20% smaller (Tables S5 and S6 of the
supplementary material). Thus, a pressure-dependent Tg(P)
is better than a pressure-independent Tg for fitting both the
extensive simulation data for d2 as a function of temperature
at only four pressures, and the extensive simulation data for k
as a function of pressure.

IV. DISCUSSION

We begin with a discussion of how a quasiharmonic anal-
ysis can be used to interpret the physical origins of pressure
and temperature effects on atomic fluctuations in proteins. The
analysis is demonstrated on 1 ps mean-square displacements
of protein hydrogen atoms only and not the surrounding sol-
vent from 1 ns simulations of HEWL at different pressures
and temperatures. Although the dynamics of heavy atoms are
preferred, as pointed out in the Introduction, Meinhold et al.5

have shown that the dynamics of protein hydrogen atoms are a
good measure of the dynamics of all protein atoms and thus the
effective harmonic potential in which they move can be con-
sidered to be created by the protein environment. Thus, αP and
κT found from these simulations are intrinsic to the protein.
In particular, these intrinsic quantities differ from the partial
quantities of proteins in aqueous solutions because the latter
also contains contributions from surface hydration. In addi-
tion, they are limited to a single conformational state since
more motion (i.e., transitions to other conformational states)
will occur on the µs and ms time scales. However, even at the
time scales of these simulations, an increase in the dependence
of the fluctuations on temperature over what can be attributed
to phonon modes of a single substate occurs above ∼200 K,
which indicates that transitions to different substates occur.
Thus, simulations on this time scale appear informative about
dynamics of different substates within a conformational state,
which are described in the quasiharmonic approximation via
larger frequencies. Since the fluctuations are fit well assum-
ing classical Einstein independent harmonic oscillators, these
results indicate that the protein is not behaving like a true liq-
uid above Tg but instead has a well-defined average structure
reminiscent of a solid, consistent with the interpretation of the
observed transition in proteins as a dynamical transition rather
than a true glass-liquid transition.10–12 However, the oscilla-
tors are not truly non-interacting, which may be reflected in
the best fit values of µ = 0.7 and ν = 0, while the ideal gas
values are µ = 1 and ν = �1. In addition, since the assump-
tions that αP is independent of P and κT is independent of T
(see Sec. II) give good agreement with the simulation data,
temperature and pressure effects appear to arise from different
physical processes.

The isobaric thermal expansion coefficient αP is a mea-
sure of the volume changes with temperature at constant pres-
sure. Here, its physical origin is suggested by the dynamical
transition temperature Tg found in the simulation data since
Tg has been attributed in proteins to a minimum temperature
where the thermal energy is sufficient to overcome activation
energies to other substates. Thus, since the fitted value of αP

describes the temperature dependence of the simulation data

for the fluctuations above Tg, it can also be attributed to transi-
tions to other substates. In particular, since αP is positive, the
fluctuations increase not only directly due to temperature but
also due to expansion caused by accessing other substates, in
which an atom moves in a harmonic energy well similar to that
in the underlying potential but with a shifted mean position. In
addition, over the small temperature range examined here, αP

appears independent of volume since ν = ∼0, and examination
of a larger temperature range will be necessary to determine
any volume dependence. However, the lack of dependence of
αP on volume and thus the separation between neighboring
atoms further supports that the physical origin of αP is mainly
due to transitions between substates rather than in the effective
energy wells of one substate.

The isothermal compressibility κT is a measure of the
volume change with pressure at constant temperature. Here,
κT was found to be almost directly proportional to the volume.
More importantly, since the assumption that κT is the same
above and below Tg (i.e., it is independent of the temperature)
gives good agreement with the pressure dependence of the
simulation data, pressure can be interpreted to have the same
effect on the local minimum in the potential energy surface
corresponding to a single substate below Tg as on the local
minima associated with each substate above Tg, assuming the
local minima of each substate are similar. In other words, κT

describes the effects of pressure on the local minima in a given
substate, regardless of which substate. In addition, since κT is
positive, the effect of the increased pressure at this time scale
is apparently to move the neighboring atoms closer, which
narrows the effective energy well for a given atom and thus
increases its k. However, at larger time scales, pressure has
been noted to increase populations of other conformations in
proteins.30

The dependence of Tg on pressure is also informative.
A decreasing Tg with pressure appears to fit the simulation
data for both d2 and k better than a constant Tg. This indi-
cates that the barrier heights between substates are depen-
dent on pressure in this simulation, in disagreement with
Meinhold et al.,5 and in particular, pressure lowers the bar-
riers. However, the scatter in values of d2 in the simulation
data and large uncertainty in c (due in part to having d2

for only four pressures) make the pressure-dependence of Tg

somewhat questionable. In addition, another subtle factor is
that the heating and pressurizing in the HEWL data were for
100 ps and 600 ps, respectively, for each P-T value, and so
slight relaxation due to pressure from the crystal structure may
occur. In relation to this, simulations of dihydrofolate reduc-
tase (DHFR), which were heated and pressurized for 60 ps
each using the Nosé-Hoover25,26 algorithm implemented in
CHARMM,31 actually have the opposite sign for c (Huang,
Rodgers, Hemley, and Ichiye, unpublished results). However,
when the starting structure was equilibrated at a higher pres-
sure (i.e., 220 atm), Tg was lower. Thus, both studies indicate
that the barrier to collective motions may be decreased by high
pressure, but whether it is apparent in the pressure dependence
of Tg from P-T simulations starting from a single structure
equilibrated at one pressure or if the pressure dependence
of Tg,0 from P-T simulations starting from several structures
equilibrated at different pressures may depend on the extent to

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-028736
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which the simulation at a given P-T is allowed to relax to the
pressure.

Regardless, the nonlinear increase with pressure of the
force constant for the underlying potential energy minimum
below Tg observed in the HEWL simulation data appears to
be due to a combination of the pressure-dependent force con-
stant of the underlying potential and the decrease in Tg with
increasing pressure rather than a pressure-induced transition as
suggested by Meinhold et al.5 While the pressure-dependence
of Tg is described here by Eqs. (18) and (19), the exact depen-
dency on pressure is not clear, and the fitted values of c should
not be over-interpreted, given the large uncertainty due to being
fit to data for only four pressures. In addition, the physical ori-
gins of the pressure dependence of Tg are likely not the same
as those for κT and instead may be due to pressure affecting the
separation of the substates from each other, whether mechan-
ically or thermodynamically. If this also occurs for transitions
between conformational states, the analysis presented here
could help explain pressure-induced unfolding.

Finally, at longer time scales than examined here, motions
occur that are better described as transitions to different con-
formational states. Since pressure, in addition to temperature,
is known to affect populations of conformational states,30 αP

and κT are likely to be affected. The dynamics of heavy atoms
from simulations on longer timescales that explore the free
energy surface or simulations that explore more of the poten-
tial energy surface by starting from proteins equilibrated at
different pressures may be more informative about problems
involving transitions to other conformational states, such as
protein unfolding. In particular, results from simulations on a
∼50 ns time scale are intriguing since the fluctuations actually
increase with pressure.32

V. CONCLUSIONS

Atomic fluctuations are important for the structure and
function of proteins and can be determined experimentally
from X-ray and neutron studies or calculated from molec-
ular dynamics simulations. Here, a method for analyzing
atomic fluctuations is developed in which the effective poten-
tial energy well for an atom is described as quasiharmonic
so that volume changes due to temperature and pressure are
separated in terms of an intrinsic αP and κT for the protein.
The applicability of this quasiharmonic analysis is demon-
strated on data from a previous molecular dynamics simula-
tion of HEWL by Meinhold et al.5 In particular, the pressure
and temperature dependence of the picosecond mean-square
displacements of the HEWL simulations is shown here to
be described by a quasiharmonic approximation with a con-
stant αP and a volume dependent κT above Tg. Below Tg,
the calculated displacements agree with the simulation data
assuming that the temperature dependence is frozen at its Tg

value but that the pressure dependence is the same as in the
liquid region. Finally, the nonlinear pressure dependence of
k appears to be due to the changes in Tg and frequencies
with pressure rather than a transition in behavior. A quasihar-
monic analysis can thus lead to a better understanding of the
energy landscapes of complex biomolecules. Indeed, quasihar-
monic analyses of atomic fluctuations from longer time scale

simulations, especially if the solvent is also analyzed, could
be useful in understanding problems such as protein folding.

SUPPLEMENTARY MATERIAL

See supplementary material for more information on the
simulation methods of Meinhold et al.,5 for tables of fits of
mean-square displacements with different assumptions for fit-
ting µ and ν, and for figure of mean-square displacements
versus temperature assuming no glass transition.
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