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Abstract

Dynamic ensembles hold great promise in advancing RNA-targeted drug discovery. Here, we 

subjected the transactivation response element (TAR) RNA from human immunodeficiency virus 

type-1 to experimental high-throughput screening against ~100,000 drug-like small molecules. 

Results were augmented with 170 known TAR-binding molecules and used to generate sub-

libraries optimized for evaluating enrichment when virtually screening (VS) a dynamic ensemble 

of TAR determined by combining NMR spectroscopy data and molecular dynamics (MD) 

simulations. Ensemble-based VS scores molecules with an area under the receiver operator 

characteristic curve of ~0.85-0.94 and with ~40-75% of all hits falling within the top 2% of scored 

molecules. The enrichment decreased significantly for ensembles generated from the same MD 

simulations without input NMR data and for other control ensembles. The results demonstrate that 

experimentally determined RNA ensembles can significantly enrich libraries with true hits, and 

that the degree of enrichment is dependent on the accuracy of the ensemble.
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INTRODUCTION

The discovery of regulatory non-coding RNAs (ncRNAs) has been accompanied by a 

growing interest in targeting RNA using small molecules for therapeutics development1–5. 
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Small molecules enjoy favorable pharmacological properties and do not suffer from delivery 

limitations inherent to oligonucleotide-based therapeutics5. However, targeting RNA with 

small molecules comes with a unique set of challenges. Most ncRNAs are non-enzymatic, 

making it difficult to directly screen for inhibitors. High-throughput screening (HTS) assays 

targeting RNA often yield hits with low specificity, unfavorable pharmacological properties, 

and/or poor activity in cell-based assays. Additionally, libraries used in HTS are biased to 

compounds that bind the deep hydrophobic pockets of proteins, not the polar and solvent 

exposed pockets typical of RNA targets. Rational approaches to identify small molecules 

that bind specific RNA secondary structures have had some success6, but achieving the 

desired selectivity and efficacy is difficult given the prevalence of similar secondary 

structural motifs across the transcriptome.

Structure-based approaches such as computational docking7,8 potentially provide a powerful 

means to broadly pre-screen compound libraries and generate sub-libraries enriched with 

diverse compounds that selectively bind the unique pockets of ncRNAs. However, applying 

virtual screening (VS) to RNA drug targets is complicated by the high flexibility of RNA 

and its propensity to undergo large conformational changes upon small molecule binding9. 

Several approaches have been developed to address protein flexibility including ‘soft 

docking’10, methods that vary side chain rotamers11, and induced-fit docking12. 

Unfortunately, none of these approaches can treat the large conformational changes 

accompanying RNA recognition while maintaining the high computational efficiency needed 

for VS applications. An alternative approach treats the receptor as an ensemble of many 

conformations each of which is subjected to VS13–15(reviewed in 7,8). However, the force 

fields used in molecular dynamics (MD) simulations to generate ensembles of 

conformations remain underdeveloped and poorly tested for RNA16,17. Because of this, and 

the much higher flexibility of RNA16,17, there is a greater risk of including artifactual 

conformations in the ensemble that are rarely sampled in solution, leading to false positives 

in VS18–20. There is also a greater risk of not sampling conformers with favorable binding 

pockets because of RNA’s more rugged energy landscape and high propensity for kinetic 

traps21, thus increasing the likelihood of false negatives.

Recent approaches that combine experimental data with computational methods are making 

it possible to determine ensembles of proteins and nucleic acids at atomic resolution22–26. 

Interestingly, ensembles of the apo-state determined using these hybrid approaches often 

include conformations similar to those observed for the biomolecule when bound to cognate 

partners23–25. Inspired by these discoveries, we9 and others27,28 have carried out ensemble 

based VS (EBVS) using experimentally informed ensembles. The utility of this approach in 

targeting RNA was demonstrated in a prospective study9 utilizing an ensemble of the 

transactivation response element (TAR) RNA from human immunodeficiency virus type-1 

(HIV-1) (Fig. 1a). The ensemble was determined using two sets of NMR residual dipolar 

coupling (RDC) data29,30 to guide selection of conformations from a pool generated using 

MD simulations23. RDCs depend on the orientation of bond vectors in a biomolecule 

relative to a molecule-fixed alignment frame and are sensitive to internal motions spanning a 

broad range of timescales (picosecond-to-millisecond)29,30. The top 57 scoring small 

molecules out of a screen of 51,000 compounds included six molecules that bind TAR in 
vitro. These include the first example of a small molecule that binds an RNA apical loop and 
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an aminoglycoside that binds TAR with high selectivity, inhibiting HIV replication (IC50∼20 

μM) in an indicator cell line9.

A critical evaluation of VS requires retrospective studies that test the ability of docking to 

discriminate between known hits and non-hits31. Such studies are routine in protein 

applications but have been scarce for RNA. Thus far, no study has evaluated the utility of 

experimentally informed RNA ensembles in enriching true hits using EBVS. In addition, 

most RNA studies employ non-hits that are not experimentally verified but rather selected 

using decoy-generation approaches developed for proteins that have not been validated for 

RNA32–34. Here, we generated a rich dataset by subjecting HIV-1 TAR to experimental HTS 

against ~100,000 drug-like organic molecules (Fig. 1b). This represents one of the largest 

RNA-small molecule screens reported to date. After augmenting the ~100,000 compound 

library with 170 known TAR binders, we generated experimentally validated datasets of hits 

and non-hits optimized for testing VS, following the general protocol used to generate the 

database of useful (docking) decoys enhanced (DUD-E) in protein applications31. The 

results demonstrate that experimentally determined RNA ensembles significantly enrich 

libraries with true hits and that the degree of enrichment is dependent on the accuracy of the 

ensemble.

RESULTS

Experimental high-throughput screening to identify TAR hits and non-hits

Using a Tat peptide displacement assay we subjected HIV-1 TAR (Fig. 1a) to experimental 

HTS against ~100,000 drug-like molecules following the workflow shown in Figure 1b 

(details in Methods). The library was initially tested in a primary screen employing single 

point measurements and 260-fold excess small molecule. The 2,812 primary screen hits 

were subjected to a secondary confirmation screen employing triplicate measurements. The 

267 confirmed hits were tested in dose response assays yielding 17 hits with competitive 

doses to displace 50% of Tat peptide (CD50) values < 100 μM. These compounds were 

repurchased and re-tested for TAR binding using the displacement assay and NMR chemical 

shift mapping experiments. This yielded six confirmed hits (Table 1 and Supplementary Fig. 

1) and identified three false positives (see Methods and Supplementary Fig. 2). To limit false 

negatives, we re-tested 56 non-hits with chemical similarity to the hits using dose response 

assays and NMR experiments. This resulted in the identification of one additional hit (Table 

1 and Supplementary Fig. 1) and confirmation of many non-hits with high chemical 

similarity to our hits (examples in Supplementary Fig. 3). The fact that small structural 

changes can ablate binding is consistent with the hit molecules making specific interactions 

with TAR.

To test for false negatives, we re-tested 10 non-hits that score in the top 5% of EBVS using 

NMR. Four molecules were identified that bind TAR, including an aminoglycoside which 

was missed in HTS due to insolubility in DMSO, a weak binder that does not satisfy our hit 

criteria, and two compounds whose binding affinities could not be verified due to 

fluorescence interference effects (see Methods and Supplementary Fig. 4). These 

compounds were removed from the VS libraries to avoid biasing results. These results 
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highlight potential weaknesses in experimental HTS and provide a blind test for EBVS to 

identify TAR binders.

Overall, HTS yielded seven hits, which represent two novel classes of RNA binding small 

molecules (Table 1). Five of the hit molecules share an anthraquinone scaffold while the 

other two have napthyl and quinazoline cores. The anthraquinone molecules show selectivity 

relative to tRNA (Table 1) and insignificant activity in a microRNA screen (Dr. A.L. Garner 

University of Michigan, personal communication). Of particular relevance to this study, the 

HTS yielded 103,349 experimentally verified non-hits that can be used as decoys to test the 

performance of EBVS.

Building small molecule libraries for EBVS evaluation

The HTS library was augmented with 170 diverse small molecules reported in the literature 

to bind TAR with dissociation or inhibition constants that satisfy our hit criteria (See 

Supplementary Note 1 and Supplementary Table 1). The hits include derivatives of beta-

carboline, quinolone, diphenylfuran, nucleosides, aminoglycosides, and many others as well 

as 36 molecules with demonstrated activity in cell (or cell-extract) based assays. To avoid 

bias and maximize chemical diversity, the 177 hits were clustered based on Bemis-Murcko 

atomic frameworks and the compound with highest affinity selected as a representative of 

each scaffold. This resulted in the “Full” library consisting of 78 hits (19 with cell-based 

activity) and 103,349 non-hits.

The chemical properties of hits and non-hits in the Full library are markedly different (Fig. 

1c). On average, the hits, which include several aminoglycosides, have larger molecular 

weight, charge, number of rotatable bonds, hydrogen bond donors and acceptors as well as 

lower LogP values. Similar differences between RNA binders and compound libraries used 

in HTS have been noted previously35. Such differences can lead to artificial enrichment in 

VS by biasing docking scores for hits versus non-hits based solely on differences in 1D 

chemical properties and not 3D structure complimentarity31,36. We therefore generated two 

additional property-matched libraries that provide a more stringent test for docking-based 

enrichment (see Supplementary Note 1). A “Filtered” library containing 26 hits (8 with cell-

based activity) and 102,307 non-hits was generated by omitting small molecules with outlier 

chemical properties (Fig. 1c and Supplementary Fig. 5). An “Optimized” library containing 

14 hits (5 with cell-based activity) and 637 non-hits was generated following the general 

protocol for decoy generation used in the DUD-E31 for protein applications where a set 

number of property-matched and topologically distinct non-hits are selected for each hit 

(Fig. 1c, Supplementary Fig. 5, and Supplementary Fig. 6a-b). Together, the three small 

molecule libraries provide the means to robustly evaluate the performance of VS against 

TAR RNA.

Ensemble based virtual screening

EBVS was carried out against a recently reported RDC informed dynamic ensemble 

(E0,4rdc) of HIV-1 TAR RNA (Fig. 2a)24. The ensemble contains twenty unique and equally 

populated (5% each) conformations24. Compared to the previous TAR ensemble used in 

VS9,23 (see E1,2rdc below), this ensemble was determined using four rather than two sets of 
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RDCs17 and a longer MD simulation (8.2 μs versus 80 ns) to generate the starting pool of 

TAR conformations24. The TAR ensemble displays a high degree of flexibility; the pairwise 

RMSD between any two conformations is >1.9 Å and on average 5.9 Å. This substantially 

exceeds the flexibility of most protein targets, presenting a significant challenge to docking 

based approaches.

Each small molecule was docked against every TAR conformer using Internal Coordinate 

Mechanics (ICM)37. Each small molecule was assigned a docking score corresponding to 

the best score across the 20 conformers, a Boltzmann-weighted average score, or an 

arithmetic average score (see Methods). The global enrichment of true binders was assessed 

based on the area under the curve (AUC) of a receiver operator characteristic (ROC) curve, 

with AUC=1.0 representing perfect enrichment and AUC=0.5 representing random selection 

of hits and non-hits. For the Full library, optimal enrichment was obtained using the 

Boltzmann average or best score, whereas the arithmetic average yielded slightly better 

enrichment for the Filtered and Optimized libraries (Supplementary Fig. 6c). The Full 

library had larger variation in enrichment across scoring approaches because it contains 

molecules with highly varied docking scores across conformers. In what follows, we use the 

Boltzmann average score for the Full library and arithmetic average score for both Filtered 

and Optimized libraries. Results for all scoring approaches and for including all hits without 

clustering are presented in Figure 2b and Supplementary Figure 6c.

EBVS globally enriches the Full library with ROC AUC=0.88 and 42% of hits are identified 

after screening only 2% of non-hits (ROC(2%)=42%) (Fig. 2b). This corresponds to a hit rate 

of 1.6% as compared to 0.075% when screening the entire library, and an enrichment factor 

EF(2%)=21. Similar levels of enrichment were obtained for the Filtered (ROC AUC= 0.85 

and ROC(2%)= 50%) and Optimized (ROC AUC=0.90 and ROC(2%)=57%) libraries (Fig. 

2b). EBVS significantly enriches hits with cell-based activity with ROC AUC=0.91-0.94 and 

ROC(2%)=40-75% (Fig. 2b). This performance is comparable to best-case results when 

docking to known bound structures of proteins38–40.

The enrichment was lower for individual TAR conformers derived from the ensemble and 

decreased further for single conformers randomly selected from the MD pool (Fig. 2c and 

Supplementary Fig. 7a). Docking against the lowest energy NOE-based structure of free 

TAR (PDB 1ANR)41 generally performed better than other single conformers, but 

consistently worse than EBVS (Fig. 2c and Supplementary Fig. 7a). Enrichment was also 

lower for an NMR structure of tRNA (PDB 1EHZ)42 compared to the TAR ensemble (Fig. 

2c and Supplementary Fig. 7a). The TAR binders, including those with cell activity, had 

higher scores on average for docking against tRNA compared to TAR suggesting that VS 

would have identified these as selective TAR binders (Supplementary Table 2). The similar 

level of enrichment observed across the three libraries when VS the ensemble, single 

conformers, or tRNA argues against significant artificial enrichment in the Full library.

Enrichment depends on ensemble size

On average, enrichment decreased when using smaller sub-ensembles derived from the full 

N=20 ensemble, reaching a minimum at N=1 (Fig. 3a and Supplementary Fig. 7b). This is 

despite the fact that increasing the ensemble size increases the risk of including artifactual 
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conformations that can lead to false positives18–20. The N=20 TAR ensemble represents the 

smallest ensemble that satisfies the RDC data, with smaller ensembles failing to reproduce 

the RDCs to within experimental uncertainty24. Accordingly, the sub-ensembles have 

diminishing accuracy as measured based on their agreement with the four RDC datasets 

(RDC RMSD) (Fig. 3b). Consequently, enrichment decreases on average with increasing 

RDC RMSD (Fig. 3c). Similar trends were observed for all libraries and for other ensembles 

(See below and Supplementary Fig. 7c-d). These results show that all 20 conformations 

contribute to the high enrichment observed for TAR and suggest a correlation between 

enrichment and ensemble accuracy.

Although all conformations contribute to enrichment, some conformers are predicted to be 

more or less preferentially bound across the Full library (Supplementary Fig. 8a) and the 

preferences are different for hit molecules relative to the Full library (Supplementary Fig 

8b). Interestingly, conformer 5, which most resembles a known ligand-bound TAR 

conformation, yields the lowest docking score for many molecules across the Full library but 

is favored by a smaller percentage of hit molecules, suggesting a favorable but non-selective 

binding pocket (Supplementary Fig. 8b). Conformers 8, 10, and 17, which also most 

resemble known ligand-bound TAR conformations, yield the best docking score for more 

hits than non-hits although conformer 17 is also often selected by false positive hits (top 2% 

scored non-hits) (Supplementary Fig.8b).

Hyper-enriching sub-ensembles, which exhibit higher enrichment than the N=20 parent 

ensemble, tend to be enriched in conformers that score highly for hits compared to the Full 

library, such as conformer 2 (Supplementary Fig. 8c). On the other hand, conformers, such 

as conformers 5 and 15, that are not favored by hit molecules relative to the library are found 

in fewer hyper-enriching ensembles. Despite small variations, most conformers are not 

significantly under- (<20%) or overrepresented (>80%) in hyper-enriching ensembles, 

supporting that all conformers contribute to enrichment. Taken together, these results 

highlight how a given conformer can contribute positively to enrichment when placed within 

an appropriate sub-ensemble even though it may have poor enrichment when considered in 

isolation or in a different ensemble context.

Enrichment depends on ensemble accuracy

We carried out EBVS on six additional N=20 TAR ensembles with varying degrees of 

accuracy as assessed by RDC RMSD (Fig. 3d). E0,4rdc, determined using four sets of RDCs 

and an MD generated pool (MD0), predicts the four RDC data sets with an optimal 

RMSD=4.0 Hz. Three additional ensembles were generated from the same MD pool by 

randomly selecting conformations (E0,ran), clustering the MD pool by heavy atom RMSD 

(E0,clus), or by selecting an ensemble that poorly satisfies the RDCs (E0,anti). These 

ensembles predict RDCs with less favorable RMSDs of 10.4 Hz, 9.0 Hz, and 16.2 Hz, 

respectively. Additionally, we examined a previously reported TAR ensemble (E1,2rdc; 

RMSD=7.2 Hz) determined using two sets of RDCs and a different MD pool (MD1)23 as 

well as a corresponding control ensemble (E1,ran; RMSD=11.0 Hz) obtained by randomly 

selecting 20 conformations from the MD1 pool. Finally, we examined the NOE-based 

bundle of HIV-1 TAR structures (ENOE; RMSD=8.6 Hz)41. Note that the high RDC RMSD 
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observed for ENOE is not surprising considering that NOE-derived distance restraints are 

orthogonal to RDC-derived orientational restraints and that the bundle of structures is not a 

statistical ensemble but rather a collection of single structures that satisfy the experimental 

constraints.

As shown in Figure 3e, Supplementary Fig. 9a and Table 2, E0,4rdc, which best satisfies the 

RDCs, robustly yields the highest enrichment across the three libraries whereas E0,anti, 

which least satisfies the RDCs, generally yields the lowest enrichment. The enrichment 

observed for the remaining ensembles falls between these extremes, and is generally better 

for the two experimentally informed ensembles (E1,2rdc and ENOE). The three purely 

computational ensembles (E0,ran, E0,clus and E1,ran) show significant variations in 

enrichment, highlighting the risks of generating ensembles without experimental input. 

E0,ran and E0,clus have very similar RDC RMSDs but E0,clus consistently yields higher 

enrichment, showing that RDC RMSD is not the only predictor of enrichment. This is not 

surprising considering that RDCs are insensitive to translational aspects of RNA structure 

that are likely important for predicting binding and that multiple degenerate ensembles can 

satisfy a given set of RDCs43.

Differences in docking scores and binding pockets help explain the different enrichment 

levels observed across different ensembles (Fig. 3f and Supplementary Fig. 9b). The 

difference in scores between hits and non-hits is greater for E0,4rdc relative to other 

ensembles. The average scores of hits for E0,4rdc are lower than most other ensembles, 

consistent with formation of optimal pockets. E1,2rdc and E1,ran have comparatively lower 

average scores for non-hits increasing the likelihood of false positives. Conformers in these 

ensembles tend to have larger binding pockets relative to other ensembles (Supplementary 

Fig. 9c). The average scores for E0,ran and E0,anti are significantly elevated for both hits and 

non-hits and correspondingly they have smaller binding pockets on average (Fig. 3f and 

Supplementary Fig. 9b-c). All other ensembles had similar binding pocket sizes and 

accessibility, indicating that enrichment is not determined only by these gross binding 

pocket features (Supplementary Fig. 9c).

Enrichment correlates to overlap with ligand-bound conformations

We examined how well the different ensembles encompass six previously determined NMR 

structures of ligand-bound TAR (acetylpromazine (1LVJ)44, rbt550 (1UTS)45, rbt203 

(1UUD)46, rbt205 (1UUI)46, neomycin B (1QD3)47, and arginine (1ARJ)48). First, we 

focused on the relative orientation of TAR helices, which is an important determinant of 

RNA binding pockets49 and is the least well modeled aspect of TAR in MD simulations16. 

The average inter-helical orientation has also been independently validated for three ligand-

bound TAR conformations based on order tensor analysis of RDCs for arginine50, 

acetylpromazine51, and neomycin B51. However, these RDC studies also highlighted 

uncertainty in the NOE-based structures due to deviations in the local geometry and/or 

unaccounted flexibility (Supplementary Note 2 and Supplementary Fig. 10a).

Overall, ensembles that best overlap with the ligand-bound conformations showed the best 

EBVS enrichment (Fig. 4a). As noted previously24, E0,4rdc encompasses the six ligand-

bound TAR inter-helical conformations despite a very broad MD0 pool. In contrast, E0,anti, 
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which shows the weakest enrichment, shows the poorest overlap with the ligand-bound 

conformations. Interestingly, E0,clus, which shows better enrichment than either E0,anti or 

E0,ran, shows the most significant overlap among the three computational ensembles. The 

MD1 pool has a different spread of inter-helical angles than MD0 that does not overlap as 

well with the ligand-bound conformations. The ensembles derived from MD1 (E1,2rdc, 

E1,ran, and ENOE) all show intermediate overlap with the ligand-bound conformations.

Excluding neomycin B, the average inter-helical conformations predicted by EBVS against 

E0,4rdc is within error of the NMR structures for four out of five molecules and all five bend 

angles are within error (Fig. 4b). In contrast, only two structures are within error for EBVS 

against E0,ran (Supplementary Fig. 10b). In the case of neomycin B, docking prefers a 

conformer that differs considerably from the NMR structure. Here, the larger size of 

neomycin B likely contributes to greater uncertainty in the docking predictions as is 

observed in benchmark studies (Fig. 5 and Ref 52).

Comparison of ligand-bound poses reveals that, with the exception of neomycin B, EBVS 

correctly places the ligands within or near the RNA binding pocket defined by the NOE-

based NMR structure. A more quantitative comparison is complicated by many factors, 

including the fact that EBVS predicts an ensemble of bound conformations not a single 

structure, differences in NMR and EBVS predicted RNA structures that complicate 

alignment, and by evidence for uncertainty in local aspects of the NOE-based NMR 

structure50 which may arise from the dynamic nature of these complexes (Supplementary 

Note 2 and Supplementary Fig. 10a). Notwithstanding the above complications, we 

compared the EBVS predicted ligand poses with the NMR structures.

We first carried out benchmark studies by re-docking known RNA ligand-bound structures 

(Supplementary Table 3) and computing the ligand RMSD between the re-docked pose and 

original NMR structure. For X-ray structures of RNA bound to ligands with less than 11 

rotatable bonds (Nflex<11), we obtained a success rate of 72% for an RMSD cutoff of 2.5 Å 

(Fig. 5a). However, the success rate dropped significantly for NMR structures or molecules 

with Nflex>11 (Fig. 5a). These results highlight the fact that our docking protocol is able to 

recapitulate bound poses when the structure is well-defined and the molecule is not highly 

flexible.

To compare EBVS predicted ligand poses to the NMR structures, we computed the ligand 

RMSD after superimposing structures using both the RNA binding pocket and ligand (see 

Methods). On average, EBVS predicts the ligand-bound poses (RMSD= 8.3 ± 3.5 Å 

(acetylpromazine), 7.0 ± 2.0 Å (arginine), 9.2 ± 1.8 Å (rbt205), 10.3 ±3.4 Å (rbt550), 10.1 

± 3.3 Å (rbt203) and 17.1 ± 4.5 Å (neomycin B)) with an accuracy that is comparable, albeit 

consistently slightly poorer, than those obtained when re-docking the ligands against their 

NMR structure (RMSD= 4.9 ± 0.6 Å (acetylpromazine), 6.8 ± 0.9 Å (arginine), 7.1 ± 1.3 Å 

(rbt205), 8.9 ± 0.9 Å (rbt550), 8.0 ± 2.2 Å (rbt203) and 12.0 ± 1.8 Å (neomycin B)) (Fig. 

5b). These RMSDs are on the high end for re-docking NMR structures (Fig. 5b). This could 

be because the apo-ensemble does not perfectly reproduce the ligand-bound TAR 

conformations and/or because of uncertainty in the NOE-based NMR structures due to lack 

of RDC restraints and/or unaccounted flexibility. When only considering the lowest RMSD 
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pose over 20 docking runs, EBVS E1,4rdc agrees better with the NMR structure than re-

docking the NMR structure itself for three of the six ligands and EBVS against E0,ran yields 

the poorest agreement for all ligands except neomycin B (Fig. 5c). In light of our benchmark 

study, the poor pose prediction of neomycin B may be attributed in part to its large number 

of rotatable bonds.

Discussion

Advances in hybrid experimental-computational methods are enabling the determination of 

dynamic ensembles with ever increasing accuracy. One of the emerging themes from studies 

thus far is that bound conformations of biomolecules are often significantly populated in the 

apo-state ensemble. Even though ensemble-based docking is becoming a popular method for 

treating flexibility during VS7,8,13–15, only three studies have subjected experimentally 

informed ensembles to VS9,27,28. Rather, static structures or purely computational ensembles 

are typically subjected to VS. Here, we present the first perspective study evaluating the 

enrichment performance of VS experimentally informed ensembles and comparing it to that 

of computational ensembles.

While an ensemble of structures can often be identified that outperforms single X-ray or 

NMR structures in retrospective enrichment studies53,54, identifying the successful ensemble 

in advance of VS can prove difficult19,55. This is a significant problem for RNA given that a 

handful of conformers have to be selected from thousands of conformations as 

representatives of a broad conformational landscape. Our results emphasize the potential 

importance of conformational penalties27 when developing and testing scoring functions 

against highly flexible RNA targets9,56. In the case of TAR, the performance varies 

significantly when drawing N=20 ensembles from the same MD pool without guidance from 

experimental data (Fig. 3 and Table 2). Data from NMR, X-ray, or other methods can guard 

against artifactual conformations and guide identification of the most populated 

conformations, which carry the least conformational penalties for ligand binding22–26,57. 

Experimentally informed conformer populations can also be directly translated into scoring 

penalties during EBVS27. Additionally, experimental data can define an optimally small 

ensemble for VS applications, whereas there is no general recipe for selecting ensemble size 

without experimental input53,55. In the case of RDCs, it has been shown that the minimum 

sized ensembles that satisfy the data represent a data driven clustering of the real 

ensemble43. Here, the ensemble size is naturally tuned to the level of dynamics with greater 

flexibility calling for larger ensembles to satisfy the RDCs43.

Our study also highlights future challenges and opportunities in RNA VS applications. First, 

while our results indicate that EBVS significantly enriches compounds with activity in cell-

based (or cell extract based) assays, there is a need to more directly assess the RNA binding 

selectivity of hits and to assess the ability of EBVS to enrich for selective RNA binders. 

Second, rigorous evaluation of pose predictions from EBVS against flexible ncRNA targets 

will require more high-resolution structures of RNA-small molecule complexes by X-ray or 

NMR, so long as RDCs and other experimental restraints are used to improve the accuracy 

of NMR structures. Finally, there is room to further refine ensemble determination 

approaches by including low-populated conformational states that may have optimal binding 
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pockets. For example, as noted previously23,24, the experimentally informed TAR ensemble 

does not contain conformers with the U23-A27-U38 base triple which forms on ARG 

recognition50,58. The integration of conformational penalties from experimentally informed 

ensembles may help identify pitfalls in docking scoring functions that are currently obscured 

by treatment of RNA receptors as static structures. Notwithstanding the above future 

challenges, our results indicate that EBVS can immediately be applied to significantly enrich 

compound libraries with RNA binders.

ONLINE METHODS

HTS library composition

The small molecule library used in experimental HTS consisted of 103,498 drug-like small 

molecules available at the Center for Chemical Genomics (CCG), University of Michigan, 

Ann Arbor. 100,000 molecules were synthetic organic molecules with drug-like properties 

(ChemDiv). The other 3,498 compounds consisted of 2,000 bioactive molecules 

(MicroSource Discovery Systems Inc.), 446 molecules (National Institute of Health clinical 

collection), and 1052 molecules that the CCG had previously found to be active against 

other targets. The library was stored as 2-5 mM stock solutions in DMSO for ~3 years for 

initial screens. Repurchased molecules were stored as 3-20 mM stock solutions in DMSO 

for ~1 year, except for CCG-39701 which was stored as a powder and dissolved in water 

before use.

Preparation of HIV-1 TAR RNA and Tat peptide

HIV-1 TAR for NMR and binding assays was prepared by in vitro transcription using DNA 

template containing the T7 promoter (Integrated DNA Technologies). DNA template was 

annealed at 50 μM DNA in 3 mM MgCl2 by heating to 95°C for 5 min and cooling on ice 

for 30 min. The transcription reaction was carried out at 37°C for 12 hours with T7 RNA 

polymerase (New England BioLabs) in the presence of 13C/15N labeled or unlabeled 

nucleotide triphosphates (Cambridge Isotope Laboratories, Inc). RNA was purified using 

20% (w/v) denaturing polyacrylamide gel electrophoresis with 8 M urea and 1X TBE. 

Purified RNA was extracted from the gel by electroelution in 1X TAE buffer and purified by 

ethanol precipitation. Purified RNA was dissolved in water to 50 μM RNA, heated to 95°C 

for 5 min and cooled on ice for 1 hour to anneal. For NMR experiments, 13C/15N labeled 

RNA was exchanged into NMR buffer [15 mM NaH2PO4/Na2HPO4, 25 mM NaCl, 0.1 mM 

EDTA, 10% (v/v) D2O at pH 6.4]. For in vitro assays, unlabeled RNA was diluted to 150 

nM in Tris-HCl assay buffer [50 mM Tris-HCl, 50 mM KCl, 0.01% (v/v) Triton X-100 at 

pH 7.4].

The Tat peptide used in HTS, (5-FAM)-AAARKKRRQRRRAAA-Lys(TAMRA), was 

purchased (LifeTein) with purity > 95% as assessed by Electrospray Ionization Mass 

Spectrometry. The peptide was stored at −20°C as a 100 μM stock solution in Tris-HCl assay 

buffer and diluted to 60 nM with assay buffer for use in HTS.
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High-throughput screening

Assay—HTS utilized a previously described TAR-Tat displacement assay60. The Tat 

peptide is highly flexible when free in solution and becomes structured upon binding to 

TAR61–63. When the Tat peptide is flexible, its two terminal fluorophores, fluorescein and 

TAMRA, interact and their fluorescence is quenched. Alternatively, in its extended form 

bound to TAR, the fluorophores are held at a distance allowing fluorescence resonance 

energy transfer (FRET) from fluorescein to TAMRA. Thus, as inhibitor displaces Tat, there 

is a decrease in fluorescence signal (excitation: 485 nm, emission: 590 nm). For these 

assays, we used 50 nM TAR and 20 nM Tat because this ratio gave the maximal 

fluorescence signal. In the literature, this assay commonly uses a 1:1 ratio of TAR to Tat, so 

the excess TAR in our assay results in higher CD50 values and a relatively more stringent 

test of binding. Using neomycin B as a control, we found that the CD50 obtained using our 

assay (CD50 = 0.96 ± 0.42 μM) is slightly higher than the same assay with a 1:1 ratio of 

TAR to Tat (CD50 = 0.32 ± 0.10 μM).

The library was tested in a primary screen using a single point measurement (n=1) and 260-

fold excess molecule [50 nM TAR, 20 nM Tat, and 13 μM molecule] followed by a 

confirmation screen of triplicate measurements (n=3) for the 2812 molecules that showed 

activity, defined as a change in fluorescence signal three standard deviations above the 

negative control (Tat alone). Molecules were pin-tooled (200 nL) into opaque 384-well 

microplates by Biomek FX 384-well nanoliter HDR (Beckman) and Mosquito X1 (TTP 

Labtech). TAR and Tat were dispensed with Multidrop reagent dispenser (Thermo 

Scientific). Assay mixtures were incubated at room temperature for 10–15 minutes prior to 

fluorescence measurements using a Pherastar plate reader (BMG Labtech). Each plate 

during HTS contained 16 wells of TAR and Tat without molecule (negative control) and 16 

wells of Tat only (positive control). The Z-factor64 was calculated for each microplate; the 

average Z-factor throughout the screening campaign was 0.71.

Dose response assays—A total of 267 molecules with reproducible activity were tested 

in a dose response assay and those with CD50 < 100 μM were considered hits. Dose-

response assays were performed such that the final assay concentrations were 50 nM TAR, 

20 nM Tat, and 1-1000 μM molecule in assay buffer. Assays were performed in parallel with 

and without 100-fold excess bulk yeast tRNA to test specificity and in the absence of RNA 

(Tat only) to measure background signal. There were 137 molecules that caused 

fluorescence intensity change with Tat alone, suggesting they bound Tat; these were 

removed from further analysis. Assays were performed in opaque 384-well microplates and 

read with a Clariostar plate reader (BMG Labtech). Fluorescence signal was normalized to 

the highest intensity after subtracting background signal. Dose response curves were fit to 

Equation 1 with OriginPro (OrginLab) using the instrumental weighting method. Equation 2 

was used to obtain CD50 values,

y = A1 +
A2 − A1

1 + 10 Logx0 − x p (Equation 1)
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CD50 = 10Logx0 (Equation 2)

where A1 and A2 are the lowest and highest signals, respectively; p is the hill slope; and 

logx0 is the logarithm to base 10 of the concentration at half response. All variables were 

allowed to float during the fit. Assays were measured in triplicate and the mean and standard 

deviation (s.d.) is reported.

Validation of hits—The 17 small molecule hits from the dose response assays were re-

purchased and re-tested for activity in addition to 56 molecules with chemical similarity to 

these hits, defined as having >80% similarity based on sphere exclusion clustering 

performed with JKlustor package (ChemAxon). Next, 32 molecules, including all 17 hits 

and 15 chemically similar molecules with possible activity in the assay, were tested for TAR 

binding by NMR chemical shift titrations employing [13C-1H] SOFAST-HMQC NMR 

experiments65 performed at 298 K on 600 MHz and 800 MHz Agilent spectrometers 

equipped with triple-resonance HCN cryogenic probes. 13C/15N-labeled TAR was 

exchanged into NMR buffer. Concentrated stocks of molecule in DMSO were added to TAR 

such that no more than 10% (v/v) DMSO was added to the buffer. Free TAR controls had 

equivalent volumes of DMSO to compensate for minor changes that may be induced by 

DMSO. Spectra were processed using nmrPipe66 and SPARKY67.

Nine molecules were inactive in both the displacement assay and NMR when retested with 

fresh molecule, suggesting that the original activity was due to contamination or 

degradation. One of the 56 molecules with chemical similarity to the hits, CCG-133994, was 

active in both the displacement assay and NMR, despite not being identified as a hit in the 

primary screen. Three molecules had activity in the assay, but did not bind based on NMR 

chemical shift titrations. Inspection of the Tat-only control for these molecules suggest that 

they likely bind Tat rather than TAR in the displacement assay (Supplementary Fig. 2). 

These should have been identified earlier in the workflow, but the fluorescence change in the 

presence of Tat may not have been large enough. Overall, seven molecules were confirmed 

to bind TAR RNA based on their activity in the TAR-Tat displacement assay and their ability 

to induce chemical shift perturbations in the TAR NMR spectra (Table 1 and Supplementary 

Fig. 1).

Hit molecules—The anthraquinone hits and chemically similar molecules exhibited a 

color change from orange to blue when diluted from 100% DMSO to an aqueous solution, 

likely due to DMSO reacting with the anthraquinone to form DMSO-anthraquinone, as 

described previously68. All experiments were performed with the derivatives in the blue 

state. The addition of the small molecule hits to TAR resulted in large chemical shift 

perturbations or line broadening in 2D NMR spectra for several residues throughout TAR 

(Supplementary Fig. 1b). As expected, hits with similar chemical structures induce similar 

chemical shift perturbations indicating that they interact with TAR via similar binding 

modes (Supplementary Fig. 1b). There are however two interesting exceptions. One of the 

five anthraquinone molecules, CCG-133905, induces significantly more broadening 
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consistent with tighter binding and/or partial aggregation (Supplementary Fig. 1). 

CCG-133994, which contains an ester and an amine, induces chemical shift perturbations 

that are distinct from the other anthraquinone molecules, suggesting a distinct binding mode 

for this molecule (Supplementary Fig. 1). Furthermore, NMR reveals that CCG-133994 is in 

slow exchange, which is in agreement with the fact that it is the tightest binder in the TAR-

Tat displacement assays.

Identification of false negatives—To investigate possible false negatives in the HTS, 

we selected ten molecules in the top 5% of docking scores and tested them for TAR binding 

using NMR. Four of the ten molecules did in fact bind TAR under NMR conditions 

(Supplementary Fig. 4). Closer analysis revealed that different factors led to the exclusion of 

these small molecules from HTS during the primary screen. One aminoglycoside molecule, 

CCG-39701, was insoluble in DMSO but was active in the assay when dissolved in water 

(Supplementary Fig. 4). CCG-174885, does not displace the Tat-peptide strongly enough to 

be a hit in our assay, but NMR clearly shows that it does bind TAR. The other two 

molecules, CCG-208298 and CCG-100975, had fluorescence interference at high 

concentration preventing determination of an accurate CD50 (Supplementary Fig. 4). To 

avoid biasing results, these molecules were not included in EBVS. Although these results 

demonstrate sources of uncertainty in our HTS results, our database is still based on more 

experimental data than the current standard of docking decoys and our Optimized library 

should limit the number of false negatives by removing molecules topologically similar to 

hit molecules (see below). These results also provide a blind test of EBVS since we were 

able to identify TAR binders.

Virtual Screening

VS was performed using the docking program Internal Coordinate Mechanics (ICM, 

Molsoft)37. The protocol allowed full ligand flexibility and rigid receptors. Docking was set 

up as described previously19. Briefly, each of the 20 conformers of the TAR dynamic 

ensemble34 was uploaded to ICM in PDB format and converted to ICM objects using the 

default options (waters deleted and hydrogens optimized). Binding pockets were identified 

with the ICM PocketFinder Module using a tolerance value of 4.6. The volume and 

buriedness of the binding pocket are given by ICM. Receptor maps were generated to 

include all atoms within 5 Å of the predicted binding pockets with atom occupancy 

weighted. Docking was run with a thoroughness value of 1, flexible ring sampling level 2, 

and covalent geometry relaxed. Protonation states of the small molecules were assigned in 

ICM at pH 7 with the exception of neomycin B which was manually assigned a charge of +5 

based on previous reports69. The full library was docked to each ensemble a single time for 

the enrichment studies. Docking against the parent E0,4rdc ensemble was replicated and 

shown to give similar scores/enrichment (ROC AUC/ROC2%= 0.88/42%, 0.81/35%, 

0.87/50% for Full, Filtered and Optimized libraries respectively).

Ensemble-Based Docking Scores

The docking scores provided by ICM represent predicted binding energies in kcal/mol. For 

each molecule, a composite score across all conformers was assigned as the arithmetic 

average, the top score, or the Boltzmann-weighted average. To calculate the Boltzmann-
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weighted average, the fractional population of all 20 TAR conformers was calculated using 

the Boltzmann distribution (Eq. 3). The population of each conformer was multiplied by its 

docking score and these values were summed over all conformers to calculate the 

population-weighted score of each molecule (Eq. 4).

pi = e

−εi
RT

∑i = 1
M e

−εi
RT

(Equation 3)

score = ∑i = 1
M pi × εi (Equation 4)

Where pi is the population of conformer i, εi is the docking score of conformer i, R is the gas 

constant (1.987×10−3 kcal K−1 mol−1), T is temperature (298 K), and M is the number of 

conformers in the ensemble.

Receiver Operator Characteristic Curves

An in-house python script was used to generate the ROC plots using Equations 5 and 6 and 

to calculate the ROC scores (ROC AUC, ROC(2%)),

1 − specificity x = 1 −
nTN

nTN + nFP
(Equation 5)

sensitivity y =
nTP

nTP + nFN
(Equation 6)

where n is the number of true negatives (TN), true positives (TP), false negatives (FN) or 

false positives (FP) at every possible score threshold.

Generating TAR ensembles

The RDC-derived TAR ensembles (E0,4rdc and E1,2rdc) were determined as reported 

previously23,24. Note that no RDCs were measured in the TAR apical loop and this structure 

is not directly informed by experimental data. The NOE-based NMR ensemble (ENOE) 

consists of all 20 models of apo-TAR downloaded from the PDB (1ANR)41. The randomly 

selected ensembles (E0,ran and E1,ran) were constructed by using a random number generator 

to randomly select 20 structures from the two pools of TAR conformations generated using 

MD simulations23,24 containing 10,000 (MD0) and 80,000 (MD1) conformations, 

respectively. Another ensemble was generated by clustering MD0 into 20 clusters by heavy-

atom RMSD of all non-terminal nucleotides and taking representative structures from each 

cluster (E0,clus). Finally, an ensemble that poorly agrees with all four RDC data sets (E0,anti) 
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was generated using a sample and select (SAS) Monte Carlo selection scheme to maximize 

the χ2 function assessing the agreement between measured and predicted RDCs (Eq. 7)23,

Χ2 = ∑i, j

Di, j
calc − Di, j

exp 2

δi, j
2 (Equation 7)

where i runs over all the RDCs measured for the different constructs j and δ is the weight 

used to normalize different RDC data sets, and is set at one tenth of the range of RDCs 

measured for each TAR construct24. Dexp are the experimentally measured RDCs and Dcalc 

are the predicted RDCs that were calculate by PALES70,71 as described below.

The quality of the various TAR ensembles used in this study was determined by evaluating 

how well they agree with four sets of RDC data measured on variably elongated TAR RNA 

molecules as described previously24. Briefly, the program PALES70,71 was used to calculate 

predicted RDCs based on the structures in the ensemble, after in silico elongation as 

described previously24. A scaling factor was used to account for variations in experimental 

conditions. The predicted RDCs are averaged for all structures of the ensemble assuming 

equal probabilities (Eq. 8),

Di, j
calc =

λ j
N ∑k = 1

N Di, j
k (Equation 8)

where k runs over the N conformers of the ensemble, λj is the scaling factor for the jth TAR 

construct and Di,j is the ith coupling in the jth construct. These calculated RDCs were then 

compared to measured RDCs and the RMSD (Hz) was calculated.

Fitting RDCs to ligand-bound NMR structures

Previously published one bond C-H RDCs49–51 were used to assess the quality of NOE-

based NMR structures of TAR in complex with arginine (1ARJ)48, acetylpromazine 

(1LVJ)44 and neomycin B (1QD3)47. Specifically, we computed RMSD between the 

measured RDCs and values calculated when using the best-fit order tensor determined using 

RAMAH72.

Benchmarking docking predicted poses

Using an updated set of ligand-bound RNA structures from the PDB that include 123 X-ray 

structures (90 with Nflex ≤ 11) and 26 NMR (17 with Nflex ≤ 11) structures (Supplementary 

Table 3), we re-docked each structure 20 times using the same docking procedure as 

described above. The binding pockets in the NMR structures were defined as any residue 

within 5 Å of the small molecule. Complexes with metal interactions near the binding site 

were not included in this benchmark. The RMSD between the re-docked structure and the 

original pose was calculated using the heavy atoms of the ligand for the best scoring pose 

over twenty runs.
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Computing inter-helical angles

EBVS was used to predict inter-helical angles for six TAR-ligand complexes and values 

were compared to inter-helical angles in the NOE-based NMR structures of the complexes 

(acetylpromazine (1LVJ)44, rbt550 (1UTS)45, rbt203 (1UUD)46, rbt205 (1UUI)46, neomycin 

B (1QD3)47, and arginine (1ARJ)48). For each of these molecules, docking against a TAR 

ensemble was repeated twenty times using the protocol described above. The inter-helical 

angles (αh, βh, γh) were computed for each conformer of all ensembles as well as for each 

model of the bound TAR NMR structures using an in-house software as described 

previously49. For this calculation, the lower helix was defined by base pairs C19-G43, A20-

U42 and G21-C41 and the upper helix was defined by base pairs G26-C39, A27-U38 and 

G28-C37. For each docking run, the inter-helical angles were population-weighted based on 

the Boltzmann-weighted docking scores and averaged over all twenty replicates. The inter-

helical angles for the NOE-based NMR bundles were averaged over all models assuming 

equal populations.

Analysis of ligand-bound poses

Ligand poses predicted by EBVS were compared to the NOE-based NMR structures for six-

ligand TAR complexes by computing the heavy-atom RMSD between ligands after 

superimposing structures by both the ligand and RNA binding pocket (defined as any 

residue within 5 Å of the ligand in the NMR structure). As a control, we first re-docked all 

ligands to the lowest energy NMR structure twenty times using the same docking protocol as 

above, defining the binding pocket as all resides within 5 Å of the ligand. The RMSD values 

were calculated for the best scoring pose over all twenty runs. Next, each ligand was docked 

to E0,4rdc or E0,ran ensembles twenty times using the same docking protocol. For each run, 

the ligand RMSD was calculated for the best scoring pose(s) from EBVS (some runs 

resulted in two significantly (>25%) populated poses) to all structures in the NMR bundle 

and the best-fit RMSDs over all 20 runs were averaged.

Data Availability

Results from the high-throughput screen have been deposited on PubChem (AID: 1259389). 

The SDF files for the Full, Filtered and Optimized libraries have been made available at 

https://sites.duke.edu/alhashimilab/resources/. All other data can be made available upon 

request.

Code Availability

All custom scripts have been made available at https://sites.duke.edu/alhashimilab/resources/ 

or can be provided upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental HTS of HIV-1 TAR RNA to generate libraries for EBVS a. Secondary 

structure of HIV-1 TAR. b. HTS workflow identifying hits and non-hits. c. Chemical 

property distributions of hits (blue) and non-hits (gray) for the Full, Filtered and Optimized 

libraries.
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Figure 2. 
Evaluating EBVS against the RDC TAR dynamic ensemble a. The twenty conformers of the 

of TAR dynamic ensemble (E0,4rdc). b. ROC curve analysis showing EBVS enrichment of 

all hits (blue) and cell-active hits (orange) for all three libraries. c. ROC AUC and ROC(2%) 

scores for docking against individual conformers of the E0,4rdc ensemble, a randomly 

selected MD ensemble (E0,ran), and the lowest energy NOE-based structures for apo-TAR 

(PDB 1ANR) and tRNA (PDB 1EHZ) for the Filtered library. Dashed lines indicate the 

values for the full N=20 E0,4rdc ensemble. Results for the Full and Optimized libraries are 

shown in Supplementary Fig. 7. ROC plots were generated from one run of docking all 

molecules to all receptors.
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Figure 3. 
Dependence of EBVS enrichment on ensemble size and ensemble accuracy a. Dependence 

of the ROC AUC and ROC(2%) scores on ensemble size for the Filtered library. b. 
Dependence of the RDC RMSD on the ensemble size. c. Dependence of the ROC AUC and 

ROC(2%) scores on the RDC RMSD for the Filtered library. For a, b, and c the mean and s.d. 

values over all possible sub-ensembles of each ensemble size are plotted. d. Distinct 

ensembles of apo-TAR with variable accuracy as assessed based on RDC RMSD (shown in 

parentheses). e. Dependence of the ROC AUC and ROC(2%) on RDC RMSD for all hits 

(blue) and cell-active hits (orange) of the Filtered library. f. Mean and s.d. of EBVS scores 

for hits (blue) and non-hits (gray) of the Filtered library for all ensembles. Dashed lines 

represent the values for the E0,4rdc ensemble. Results for the Full and Optimized libraries are 

shown in Supplementary Fig. 7 and 9. All ROC values were generated from one run of 

docking all molecules to all receptors.
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Figure 4. 
Assessing EBVS-predicted small molecule bound TAR conformations. a. Inter-helical bend 

(βh) and twist (αh+γh) angles59 (negative and positive twist angles correspond to over- and 

under-twisting, respectively) for each TAR ensemble (colored) compared to its respective 

parent MD pool (gray) and all ligand-bound TAR NOE-based NMR structures (black, mean 

and s.d. values over all deposited structures). b. For each small molecule, the inter-helical 

angles of the ligand-bound NMR structures (black, mean and s.d. values over all deposited 

structures) are compared to the conformers of the E0,4rdc ensemble (open squares), the 

average values over all conformers (green), the Boltzmann-weighted EBVS-predicted 

structures (blue circles, mean and s.d. values over n=20 independent docking runs), and all 

conformers predicted to be > 25% populated over n=20 independent docking runs (blue 

open squares).
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Figure 5. 
Evaluating ligand-bound poses predicted using EBVS a. Success rates for a benchmark re-

docking X-ray (black) or NMR (gray) structures of RNA bound to ligands (see 

Supplementary Table 3). Data shown for molecules with number of rotatable bonds Nflex< 

11 (solid line) and Nflex> 11 (dashed line). RMSD values correspond to the best scoring 

pose over n=20 independent docking runs. b. Benchmark RMSDs when re-docking ligands 

to their X-ray (123 structures) or NMR (26 structures) RNA structure and for molecules with 

Nflex< 11 (17 NMR structures and 90 X-ray structures) and Nflex> 11 (9 NMR structures and 

33 X-ray structures). Also shown are the RMSDs over n=20 independent docking runs for 

each ligand-bound TAR NMR structure after re-docking to the NMR structure (yellow) or 

when carrying out EBVS against E0,4rdc (blue) and E0,ran (red). (center line, median; center 

square, mean; box limits, 25th and 75th percentiles; whiskers, 5th and 95th percentiles; points, 

outliers) c. Lowest RMSD bound poses over n=20 independent docking runs based on re-

docking the NMR structure (yellow) or when carrying out EBVS against E0,4rdc (blue) or 

E0,ran (red). All poses are superimposed onto the NMR structure (black) using the binding 

pocket and ligand.
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Table 1

Chemical structure and CD50 values (with and without 100-fold excess tRNA) for TAR hits identified through 

HTS. Reported values represent the mean and s.d. from n=3 independent experiments.

Chemical Structure Molecule Name CD50 (μM) 100X 
tRNA 
CD50 
(μM)

CCG-133994 12 ± 4 16 ± 5

CCG-133895 17 ± 1 29 ± 17

CCG-133868 31 ± 7 21 ± 10

CCG-133905 53 ± 30 12 ± 1

CCG-133879 29 ± 8 24 ± 2

CCG-208662 41 ± 14 NA

CCG-208677 55 ± 13 NA

Nat Struct Mol Biol. Author manuscript; available in PMC 2018 November 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ganser et al. Page 27

Ta
b

le
 2

E
nr

ic
hm

en
t s

co
re

s 
fo

r 
al

l T
A

R
 e

ns
em

bl
es

. R
O

C
 v

al
ue

s 
w

er
e 

ge
ne

ra
te

d 
fr

om
 o

ne
 r

un
 o

f 
do

ck
in

g 
al

l m
ol

ec
ul

es
 to

 a
ll 

re
ce

pt
or

s.

R
D

C
 R

M
SD

 (
H

z)
F

ul
l l

ib
ra

ry
 B

ol
tz

m
an

n 
w

ei
gh

ti
ng

F
ilt

er
ed

 li
br

ar
y 

ar
it

hm
et

ic
 a

ve
ra

ge
O

pt
im

iz
ed

 li
br

ar
y 

ar
it

hm
et

ic
 a

ve
ra

ge

A
U

C
R

O
C

 2
%

A
U

C
R

O
C

 2
%

A
U

C
R

O
C

 2
%

E
0,

4r
dc

4.
0

0.
88

42
%

0.
85

50
%

0.
90

57
%

E
0,

ra
n

10
.4

0.
47

21
%

0.
56

8%
0.

51
0%

E
0,

cl
us

9.
0

0.
79

29
%

0.
75

23
%

0.
82

36
%

E
0,

an
ti

16
.2

0.
51

14
%

0.
49

4%
0.

47
0%

E
1,

2r
dc

7.
2

0.
87

50
%

0.
76

31
%

0.
86

36
%

E
1,

ra
n

11
.0

0.
81

29
%

0.
78

23
%

0.
86

50
%

E
N

O
E

8.
6

0.
73

31
%

0.
80

27
%

0.
76

36
%

Nat Struct Mol Biol. Author manuscript; available in PMC 2018 November 04.


	Abstract
	INTRODUCTION
	RESULTS
	Experimental high-throughput screening to identify TAR hits and non-hits
	Building small molecule libraries for EBVS evaluation
	Ensemble based virtual screening
	Enrichment depends on ensemble size
	Enrichment depends on ensemble accuracy
	Enrichment correlates to overlap with ligand-bound conformations

	Discussion
	ONLINE METHODS
	HTS library composition
	Preparation of HIV-1 TAR RNA and Tat peptide
	High-throughput screening
	Assay
	Dose response assays
	Validation of hits
	Hit molecules
	Identification of false negatives

	Virtual Screening
	Ensemble-Based Docking Scores
	Receiver Operator Characteristic Curves
	Generating TAR ensembles
	Fitting RDCs to ligand-bound NMR structures
	Benchmarking docking predicted poses
	Computing inter-helical angles
	Analysis of ligand-bound poses
	Data Availability
	Code Availability

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2

