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Abstract

We present a locally adaptive nonparametric curve fitting method that operates within a fully 

Bayesian framework. This method uses shrinkage priors to induce sparsity in order-k differences 

in the latent trend function, providing a combination of local adaptation and global control. Using 

a scale mixture of normals representation of shrinkage priors, we make explicit connections 

between our method and kth order Gaussian Markov random field smoothing. We call the 

resulting processes shrinkage prior Markov random fields (SPMRFs). We use Hamiltonian Monte 

Carlo to approximate the posterior distribution of model parameters because this method provides 

superior performance in the presence of the high dimensionality and strong parameter correlations 

exhibited by our models. We compare the performance of three prior formulations using simulated 

data and find the horseshoe prior provides the best compromise between bias and precision. We 

apply SPMRF models to two benchmark data examples frequently used to test nonparametric 

methods. We find that this method is flexible enough to accommodate a variety of data generating 

models and offers the adaptive properties and computational tractability to make it a useful 

addition to the Bayesian nonparametric toolbox.

1 Introduction

Nonparametric curve fitting methods find extensive use in many aspects of statistical 

modeling such as nonparametric regression, spatial statistics, and survival models, to name a 

few. Although these methods form a mature area of statistics, many computational and 

statistical challenges remain when such curve fitting needs to be incorporated into multi-

level Bayesian models with complex data generating processes. This work is motivated by 

the need for a curve fitting method that could adapt to local changes in smoothness of a 

function, including abrupt changes or jumps, and would not be restricted by the nature of 

observations and/or their associated likelihood. Our desired method should offer measures of 

uncertainty for use in inference, should be relatively simple to implement and 

computationally efficient. There are many methods available for nonparametric curve fitting, 

but few which meet all of these criteria.

Gaussian process (GP) regression (Neal, 1998; Rasmussen and Williams, 2006) is a popular 

Bayesian nonparametric approach for functional estimation that places a GP prior on the 
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function of interest. The covariance function must be specified for the GP prior, and the 

isotropic covariance functions typically used are not locally adaptive. Nonstationary 

covariance functions have been investigated to make GP regression locally adaptive 

(Brahim-Belhouari and Bermak, 2004; Paciorek and Schervish, 2004, 2006). Any finite 

dimensional representation of GPs involves manipulations of, typically high dimensional, 

Gaussian vectors with mean vector and covariance matrix induced by the GP. Many GPs, 

including the ones with nonstationary covariance functions, suffer from high computational 

cost imposed by manipulations (e.g., Cholesky factorization) of the dense covariance matrix 

in the finite dimensional representation.

Sparsity can be imposed in the precision matrix (inverse covariance matrix) by constraining 

a finite dimensional representation of a GP to be a Gaussian Markov random field (GMRF), 

and then computational methods for sparse matrices can be employed to speed computations 

(Rue, 2001; Rue and Held, 2005). Fitting smooth functions with GMRFs has been practiced 

widely. These methods use difference equations as approximations to continuous function 

derivatives to induce smoothing, and have a direct relationship to smoothing splines 

(Speckman and Sun, 2003). GMRFs have also been used to develop Bayesian adaptive 

smoothing splines (Lang et al., 2002; Yue et al., 2012, 2014). A similar approach is the 

nested GP (Zhu and Dunson, 2013), which puts a GP prior on the order-k function 

derivative, which is in turn centered on another GP. This approach has good adaptive 

properties but has not been developed for non-Gaussian data.

Differencing has commonly been used as an approach to smoothing and trend estimation in 

time series analysis, signal processing, and spatial statistics. Its origins go back at least to 

Whittaker (1922), who suggested a need for a trade off between fidelity to the data and 

smoothness of the estimated function. This idea is the basis of some frequentist curve-fitting 

methods based on penalized least squares, such as the smoothing spline (Reinsch, 1967; 

Wahba, 1975) and the trend filter (Kim et al., 2009; Tibshirani, 2014). These penalized least-

squares methods are closely related to regularization methods for high-dimensional 

regression such as ridge regression (Hoerl and Kennard, 1970) and the lasso (Tibshirani, 

1996) due to the form of the penalties imposed.

Bayesian versions of methods like the lasso (Park and Casella, 2008) utilize shrinkage priors 

in place of penalties. Therefore, it is interesting to investigate how these shrinkage priors 

(Polson and Scott, 2010; Griffin et al., 2013; Bhattacharya et al., 2015) perform when 

applied to differencing-based time series smoothing. Although shrinkage priors have been 

used explicitly in the Bayesian nonparametric regression setting for regularization of wavelet 

coefficients (Abramovich et al., 1998; Johnstone and Silverman, 2005; Reményi and 

Vidakovic, 2015) and for shrinkage of order-k differences of basis spline coefficients in 

adaptive Bayesian P-splines (Scheipl and Kneib, 2009), a Bayesian version of the trend filter 

and Markov random field (MRF) smoothing with shrinkage priors has not been thoroughly 

investigated. To our knowledge, only Roualdes (2015), independently from our work, looked 

at Laplace prior-based Bayesian version of the trend filter in the context of a normal 

response model. In this paper, we conduct a thorough investigation of smoothing with 

shrinkage priors applied to MRFs for Gaussian and non-Gaussian data. We call the resulting 

models shrinkage prior Markov random fields (SPMRFs).
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We borrow the idea of shrinkage priors from the sparse regression setting and apply it to the 

problem of function estimation. We take the perspective that nonparametric curve fitting is 

essentially a regularization problem where estimation of an unknown function can be 

achieved by inducing sparsity in its order-k derivatives. We propose a few fully Bayesian 

variations of the trend filter (Kim et al., 2009; Tibshirani, 2014) which utilize shrinkage 

priors on the kth-order differences in values of the unknown target function. The shrinkage 

imposed by the priors induces a locally adaptive smoothing of the trend. The fully Bayesian 

implementation allows representation of parameter uncertainty through posterior 

distributions and eliminates the need to specify a single global smoothing parameter by 

placing a prior distribution on the smoothing parameter, although complete automation is not 

possible so we offer ways to parameterize the global smoothing prior. In Section 2 we 

provide a derivation of the models starting from penalized frequentist methods and we show 

the relationship to GMRF models. In Section 2 we also describe our method of sampling 

from the posterior distribution of the parameters using Hamiltonian Monte Carlo (HMC), 

which is efficient and straight forward to implement. In Section 3 we use simulations to 

investigate performance properties of the SPMRF models under two different prior 

formulations and we compare results to those for a GMRF with constant precision. We show 

that the choice of shrinkage prior will affect the smoothness and local adaptive properties. In 

Section 4 we apply the method to two example data sets which are well known in the 

nonparametric regression setting.

2 Methods

2.1 Preliminaries

We start by reviewing a locally adaptive penalized least squares approach to nonparametric 

regression known as the trend filter (Kim et al., 2009; Tibshirani and Taylor, 2011; 

Tibshirani, 2014) and use that as a basis to motivate a general Bayesian approach that 

utilizes shrinkage priors in place of roughness penalties. We first consider the standard 

nonparametric regression problem to estimate the unknown function f. We let θ represent a 

vector of values of f on a discrete uniform grid t ∈ {1, 2, …, n}, and we assume y = θ + ε, 

where ε~ (0, Iσ2), and y and ε are vectors of length n. Here all vectors are column vectors. 

Following Tibshirani (2014) with slight modification, the least squares estimator of the kth 

order trend filtering estimate θ̂ is

θ = argmin
θ

‖y − θ‖2
2 + λ‖D(k)θ‖1, (1)

where ||·||q represents the Lq vector norm, and D(k) is an (n−k)×n forward difference operator 

matrix of order k, such that the ith element of the vector Δkθ = D(k)θ is the forward 

difference Δkθi = ( − 1)k∑ j = 0
k ( − 1) j k

j
θi + j. Note that D(k) has recursive properties such that 

Dn
(k) = Dn − k + 1

(1) Dn
(k − 1), where Dm

(h) has dimensions (m−h)×m. The objective function in 

equation (1) balances the trade-off between minimizing the squared deviations from the data 

(the first term in the sum on the right) with minimizing the discretized roughness penalty of 
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the function f (the second term in the sum on the right). The smoothing parameter λ ≥ 0 

controls the relative influence of the roughness penalty. Setting λ to 0 we get least squares 

estimation. As λ gets large, the roughness penalty dominates, resulting in a function with k-

th order differences approaching 0 for all t. The trend filter produces a piecewise polynomial 

function of t1, …, tn with degree k − 1 as an estimator of the unknown function f. Increasing 

the order of the difference operator will enforce a smoother function.

The L1 penalty in equation (1) results in the trend filter having locally adaptive smoothing 

properties. Tibshirani (2014) shows that the trend filter is very similar in form and 

performance to smoothing splines and locally adaptive regression splines, but the trend filter 

has a finer level of local adaptivity than smoothing splines. A main difference between the 

trend filter and smoothing splines is that the latter uses a squared L2 penalty, which is the 

same penalty used in ridge regression (Hoerl and Kennard, 1970). Note that the L1 penalty 

used by the trend filter is also used by the lasso regression (Tibshirani, 1996), and the trend 

filter is a form of generalized lasso (Tibshirani and Taylor, 2011; Tibshirani, 2014). In the 

linear regression setting with regression coefficients βjs, the L1 and L2 penalties can be 

represented by the generalized ridge penalty λΣj |βj|q (Frank and Friedman, 1993), where q 
= 2 corresponds to the ridge regression penalty, q = 1 to the lasso penalty, and sending q to 

zero results in all subsets selection regression (Tibshirani, 2011). Based on what we know 

about lasso regression, subset selection regression, and ridge regression, we expect a penalty 

closer to subset selection to do better for fitting functions with a small number of large 

jumps, a trend filter penalty (L1) to do better for fitting functions with small to moderate 

deviations from polynomials of degree k−1, and a smoothing spline (squared L2) penalty to 

do better for smooth polynomial-like functions with no jumps. This distinction will become 

important later when we assess the performance of different Bayesian formulations of the 

trend filter.

One can translate the penalized least squares formulation in equation (1) into either a 

penalized likelihood formulation or a Bayesian formulation. Penalized least squares can be 

interpreted as minimizing the penalized negative log-likelihood −lp(θ | y) = −l(θ | y) + p(θ | 

λ), where l(θ | y) is the unpenalized log-likelihood and p(θ | λ) is the penalty. It follows that 

maximization of the penalized log-likelihood is directly comparable to finding the mode of 

the log-posterior in the Bayesian formulation, where the penalty is represented as a prior. 

This implies independent Laplace (double-exponential) priors on the Δkθj, where j = 1, …, n 

− k, for the trend filter formulation in equation (1). That is, p(Δkθ j ∣ λ) = λ
2 exp −λ ∣ Δkθ j ∣ . 

This is a well-known result that has been used in deriving a Bayesian form of the lasso 

(Tibshirani, 1996; Figueiredo, 2003; Park and Casella, 2008). Note that putting independent 

priors on the kth order differences results in improper joint prior p(θ | λ), which can be 

made proper by including a proper prior on the first k θs.

The Laplace prior falls into a class of priors commonly known as shrinkage priors. An 

effective shrinkage prior has the ability to shrink noise to zero yet retain and accurately 

estimate signals (Polson and Scott, 2010). These properties translate into a prior density 

function that has a combination of high mass near zero and heavy tails. The high density 

near zero acts to shrink small values close to zero, while the heavy tails allow large signals 
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to be maintained. A simple prior developed for subset selection in Bayesian setting is the 

spike-and-slab prior, which is a mixture distribution between a point mass at zero and a 

continuous distribution (Mitchell and Beauchamp, 1988). This prior works well for model 

selection, but some drawbacks are that it forces small signals to be exactly zero, and 

computational issues can make it difficult to use (Polson and Scott, 2010). There has been 

much interest in developing priors with continuous distributions (one group) that retain 

variable selection properties of the spike-and-slab (two-group) yet do so by introducing 

sparsity through shrinkage (Polson and Scott, 2010). This approach allows all of the 

coefficients to be nonzero, but most are small and only some are large. Many such shrinkage 

priors have been proposed, including the normal-gamma (Griffin et al., 2010), generalized 

double-Pareto (Armagan et al., 2013), horseshoe (Carvalho et al., 2010), horseshoe+ 

(Bhadra et al., 2015), and Dirichlet-Laplace (Bhattacharya et al., 2015). The Laplace prior 

lies somewhere between the normal prior and the spike-and-slab in its shrinkage abilities, 

yet most shrinkage priors of current research interest have sparsity inducing properties closer 

to those of the spike-and-slab. Our main interest is in comparing the Laplace prior to other 

shrinkage priors in the context of nonparametric smoothing.

2.2 Model Formulation

It is clear that shrinkage priors other than the lasso could represent different smoothing 

penalties and therefore could lead to more desirable smoothing properties. There is a large 

and growing number of shrinkage priors in the literature. It is not our goal to compare and 

characterize properties of Bayesian nonparametric function estimation under all of these 

priors. Instead, we wish to investigate a few well known shrinkage priors and demonstrate as 

proof of concept that adaptive functional estimation can be achieved with shrinkage priors. 

Further research can focus on improvements to these methods. What follows is a general 

description of our modeling approach and the specific prior formulations that will be 

investigated through the remainder of the paper.

We assume the n observations yi, where i = 1, …, n, are independent and follow some 

distribution dependent on the unknown function values θi and possibly other parameters ξ at 

discrete points t. We further assume that the order-k forward differences in the function 

parameters, Δkθj, where j = 1, …, n − k, are independent and identically distributed 

conditional on a global scale parameter which is a function of the smoothing parameter λ. 

These assumptions result in the following general hierarchical form:

yi ∣ θi, ξ p(yi ∣ θi, ξ), Δkθ j ∣ λ p(Δkθ j ∣ λ), λ p(λ), ξ p(ξ) . (2)

One convenient trait of many shrinkage priors, including the Laplace, the logistic, and the t-
distribution, is that they can be represented as scale mixtures of normal distributions 

(Andrews and Mallows, 1974; West, 1987; Polson and Scott, 2010). The conditional form of 

scale mixture densities leads naturally to hierarchical representations. This can allow some 

otherwise intractable density functions to be represented hierarchically with standard 

distributions and can ease computation. To take advantage of this hierarchical structure, we 

restrict densities p(Δkθj | λ) to be scale mixtures of normals, which allows us to induce a 
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hierarchical form to our model formulation by introducing latent local scale parameters, τj. 

Here the order-k differences in the function parameters, Δkθj, are conditionally normally 

distributed with mean zero and variance τ j
2, and the τj are independent and identically 

distributed with a global scale parameter which is a function of the smoothing parameter λ. 

The distribution statement for Δkθj in Equation (2) can then be replaced with the following 

hierarchical representation:

Δkθ j ∣ τ j N(0, τ j
2), τ j ∣ λ p(τ j ∣ λ) . (3)

To complete the model specification, we place proper priors on θ1, …, θk. This maintains 

propriety and can improve computational performance for some Markov chain Monte Carlo 

(MCMC) samplers. We start by setting θ1 ~ N(μ,ω2), where μ and ω can be constants or 

allowed to follow their own distributions. Then for k ≥ 2 and h = 1, …, k − 1, we let 

Δhθ1 ∣ αh N(0, αh
2) and αh | λ ~ p(αh | λ), where p(α | λ) is the same form as p(τ | λ). That is, 

we assume the order-h differences are independent with scale parameters that follow the 

same distribution as the order-k differences. For most situations, the order of k will be less 

than 4, so issues of scale introduced by assuming the same distribution on the scale 

parameters for the lower and higher order differences will be minimal. One could 

alternatively adjust the scale parameter of each p(αh | λ) to impose smaller variance for 

lower order differences.

For the remainder of the paper we investigate two specific forms of shrinkage priors: the 

Laplace and the horseshoe. We later compare the performance of these two priors to the case 

where the order-k differences follow identical normal distributions. The following provides 

specific descriptions of our shrinkage prior formulations.

Laplace—As we showed previously, this prior arises naturally from an L1 penalty, making 

it the default prior for Bayesian versions of the lasso (Park and Casella, 2008) and trend 

filter. The Laplace distribution is leptokurtic and features high mass near zero and 

exponential tails (Figure 1). Various authors have investigated its shrinkage properties 

(Griffin et al., 2010; Kyung et al., 2010; Armagan et al., 2013). We allow the order-k 
differences Δkθj to follow a Laplace distribution conditional on a global scale parameter γ = 

1/λ, and we allow γ to follow a half-Cauchy distribution with scale parameter ζ. That is,

Δkθ j ∣ γ Laplace(γ), γ C+(0, ζ) . (4)

The use of a half-Cauchy prior on γ is a departure from Park and Casella (2008), who make 

λ2 follow a gamma distribution to induce conjugacy in the Bayesian lasso. We chose to use 

the half-Cauchy prior on γ because its single parameter simplifies implementation, it has 

desirable properties as a prior on a scale parameter (Gelman et al., 2006; Polson and Scott, 

2012b), and it allowed us to be consistent across methods (see horseshoe specification 

below). The hierarchical form of the Laplace prior arises when the mixing distribution on the 
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square of the local scale parameter τj is an exponential distribution. Specifically, we specify 

τ j
2 ∣ λ Exp(λ2/2) and Δkθ j ∣ τ j N(0, τ j

2) in the hierarchical representation.

Horseshoe—The horseshoe prior (Carvalho et al., 2010) has an infinite spike in density at 

zero but also exhibits heavy tails (Figure 1). This combination results in excellent 

performance as a shrinkage prior (Polson and Scott, 2010), and gives the horseshoe 

shrinkage properties more similar to the spike-and-slab variable selection prior than those of 

the Laplace prior. We allow the order-k differences Δkθj to follow a horseshoe distribution 

conditional on global scale parameter γ = 1/λ, and allow γ to follow a half-Cauchy 

distribution with scale parameter ζ. That is,

Δkθ j ∣ γ HS(γ), γ C+(0, ζ) . (5)

The horseshoe density function does not exist in closed form, but we have derived an 

approximate closed-form solution using the known function bounds (see Supplementary 

Materials), which could be useful for application in some settings. Carvalho et al. (2010) 

represent the horseshoe density hierarchically as a scale mixture of normals where the local 

scale parameters τj are distributed half-Cauchy. In our hierarchical version, the latent scale 

parameter τj | γ ~ C+(0, γ) and then conditional on τj the distribution on the order-k 

differences is Δkθ j ∣ τ j N(0, τ j
2).

The horseshoe prior arises when the mixing distribution on the local scale parameter τj is 

half-Cauchy, which is a special case of a half-t-distribution where degrees of freedom (df) 
equal 1. Setting df > 1 would result in a prior with lighter tails than the horseshoe, and 

setting 0 < df < 1 would result in heavier tails. We tested half-t formulations with df between 

1 and 5 in test scenarios, but did not find an appreciable difference in performance relative to 

the horseshoe. We also attempted to place a prior distribution on the df parameter, but found 

the data to be insufficient to gain information in the posterior for df in our test scenarios, so 

we did not pursue this further.

Normal—The normal distribution arises as a prior on the order-k differences when the 

penalty in the penalized likelihood formulation is a squared L2 penalty. The normal prior is 

also the form of prior used in Bayesian smoothing splines. The normal is not considered a 

shrinkage prior and does not have the flexibility to allow locally adaptive smoothing 

behavior. We use it for comparison to demonstrate the local adaptivity allowed by the 

shrinkage priors. For our investigations, the distribution on the order-k differences and 

associated scale parameter is:

Δkθ j ∣ γ N(0, γ2), γ C+(0, ζ) . (6)
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2.3 Connections to Markov Random Fields

Here we briefly show the models represented by (2) can be expressed with GMRF priors for 

θ conditional on the local scale parameters τ. It is instructive to start with the normal 

increments model (6), which belongs to a class of time series models known as 

autoregressive models of order k. Rue and Held (2005) call this model a k-th order random 

walk and show that it is a GMRF with respect to a k-th order chain graph — a graph with 

nodes {1, 2, …, n}, where the nodes i ≠ j are connected by an edge if and only if |i− j| ≤ k. 

Since the normal model (6) does not fully specify the joint distribution of θ, it is an intrinsic 

(improper) GMRF. We make it a proper GMRF by specifying a prior density of the first k 
components of θ, p(θ1, …, θk). The Markov property of the model manifests itself in the 

following factorization:

p(θ) = p(θ1, …, θk)p(θk + 1 ∣ θ1, …, θk)⋯p(θn ∣ θn − 1, …, θn − k) .

Equipped with initial distribution p(θ1, …, θk), models (5) and (4) also admit this 

factorization, so they are kth order Markov, albeit not Gaussian models. However, if we 

condition on the latent scale parameters τ, both the Laplace and horseshoe models become 

GMRFs, or more specifically k-th order normal random walks. One important feature of 

these random walks is that each step in the walk has its own precision. To recap, under prior 

specifications (5) and (4) p(θ | γ) is a non-Gaussian Markov field, while p(θ | τ, γ) = p(θ | τ) 

is a GMRF.

Our GMRF point of view is useful in at least three respects. First, GMRFs with constant 

precision have been used for nonparametric smoothing in many settings (see Rue and Held 

(2005) for examples). GMRFs with nonconstant precision have been used much less 

frequently, but one important application is to the development of adaptive smoothing 

splines by allowing order-k increments to have nonconstant variances (Lang et al., 2002; Yue 

et al., 2012). The approach of these authors is very similar to our own but differs in at least 

two important ways. First, we specify the prior distribution on the latent local scale 

parameters τj with the resulting marginal distribution of Δkθj in mind, such as the Laplace or 

horseshoe distributions which arise as scale mixtures of normals. This allows a better 

understanding of the adaptive properties of the resulting marginal prior in advance of 

implementation. In contrast, Lang et al. (2002) and Yue et al. (2012) appear to choose the 

distribution on local scale parameters based on conjugacy and do not consider the effect on 

the marginal distribution of Δkθj. Second, we allow the local scale parameters τj to be 

independent, whereas Lang et al. (2002) and Yue et al. (2012) impose dependence among 

the scale (precision) parameters by forcing them to follow another GMRF. Allowing the 

local scale parameters to be independent allows the model to be more flexible and able to 

adapt to jumps and sharp local features. We should also note that Rue and Held (2005) in 

section 4.3 show that the idea of scale mixtures of normal distributions can be used with 

GMRFs to generate order-k differences which marginally follow a t-distribution by 

introducing latent local scale parameters. Although they do not pursue this further, we 

mention it because it bears similarity to our approach.
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Second, viewing the SPMRF models as conditional GMRFs allows us to utilize some of the 

theoretical results and computational methods developed for GMRFs. In particular, one can 

take advantage of more complex forms of precision matrices such as circulant or seasonal 

trend matrices (see Rue and Held (2005) for examples). One can also employ the 

computational methods developed for sparse matrices, which speed computation times (Rue, 

2001; Rue and Held, 2005). We note that simple model formulations such as the kth-order 

random walk models can be coded with state-space formulations based on forward 

differences, which speed computation times by eliminating the operations on covariance 

matrices necessary with multivariate Gaussian formulations.

A third advantage of connecting our models to GMRFs is that the GMRF representation 

allows us to connect our first-order Markov models to subordinated Brownian motion 

(Bochner, 1955; Clark, 1973), a type of Lévy process recently studied in the context of scale 

mixture of normal distributions (Polson and Scott, 2012a). Polson and Scott (2012a) use the 

theory of Lévy processes to develop shrinkage priors and penalty functions. Let us briefly 

consider a simple example of subordinated Brownian motion. Let W be a Weiner process, so 

that W(t + s) − W(t) ~ N(0, sσ2), and W has independent increments. Let T be a 

subordinator, which is a Lévy process that is non-decreasing with probability 1, has 

independent increments, and is independent of W. The subordinated process Z results from 

observing W at locations T(t). That is, Z(t) = W[T(t)]. The subordinator essentially generates 

a random set of irregular locations over which the Brownian motion is observed, which 

results in a new process. In our hierarchical representation of Laplace and horseshoe priors 

for the first order differences, we can define a subordinator process T j = ∑i = 1
j τi

2, so that the 

GMRF p(θ | τ) can be thought of as a subordinated Brownian motion or as a realization of a 

Brownian motion with unit variance on the random latent irregular grid T1, …, Tn. The 

subordinated Brownian motion interpretation is not so straight forward when applied to 

higher-order increments, but we think this interpretation will be fruitful for extending our 

SPMRF models in the future. One example where this interpretation is useful is when 

observations occur on an irregularly spaced grid, which we explore in the following section.

2.4 Extension to Irregular Grids

So far we have restricted our model formulation to the case where data are observed at 

equally-spaced locations. Here we generalize the model formulation to allow for data 

observed at locations with irregular spacing. This situation arises with continuous 

measurements over time, space, or some covariate, or when gaps are left by missing 

observations.

For a GMRF with constant precision (normally distributed kth-order differences), we can 

use integrated Wiener processes to obtain the precision matrix (see Rue and Held (2005) and 

Lindgren and Rue (2008) for details). However, properly accounting for irregular spacing in 

our models with Laplace or horseshoe kth-order differences is more difficult. To use tools 

similar to those for integrated Wiener processes we would need to show that the processes 

built on Laplace and horseshoe increments maintain their distributional properties over any 

subinterval of a continuous measure. Polson and Scott (2012a) show that processes with 

Laplace or horseshoe first-order increments can be represented as subordinated Brownian 
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motion. However, to meet the necessary condition of an infinitely divisible subordinator, the 

subordinator for the Laplace process needs to be on the precision scale and the subordinator 

for the horseshoe process needs to be on the log-variance scale. Both resulting processes are 

Lévy process, which means they have independent and stationary increments, but the 

increments are no longer over the continuous measure of interest. This makes representation 

of these processes over continuous time difficult and development of the necessary theory is 

out of the scope of this paper.

Absent theory to properly address this problem, we instead start with our hierarchical model 

formulations and assume that conditional on a set of local variance parameters τ, we can use 

methods based on integratedWiener processes to obtain the precision matrices for the latent 

GMRFs. This requires the assumption that local variances are constant within respective 

intervals between observations. Let s1 < s2 < … < sn be a set of locations of observations, 

and let δj = sj+1 − sj be the distance between adjacent locations. We assume we have a 

discretely observed continuous process and denote by θ(sj) the value of the process at 

location sj. For the first-order model and some interval [sj, sj+1], we assume that conditional 

on local variance τj, θ(s) follows a Wiener process where θ(s j + h) − θ(s j) ∣ τ j N(0, hτ j
2) for all 

0 ≤ h ≤ δj. If we let Δθj = θ(sj+1) − θ(sj), the resulting variance of Δθj is

Var(Δθ j) = δ jτ j
2 .

Note that the resulting marginal distribution of θ(sj +h)−θ(sj) after integrating over τj is 

therefore assumed to be Laplace or horseshoe for all h, with the form of the marginal 

distribution dependent on the distribution of τj. We know this cannot be true in general given 

the properties of these distributions, but we assume it approximately holds for h ≤ δ.

The situation becomes more complex for higher order models. We restrict our investigations 

to the second-order model and follow the methods of Lindgren and Rue (2008), who use a 

Galerkin approximation to the stochastic differential equation representing the continuous 

process. The resulting formula for a second-order increment becomes

Δ2θ j = θ(s j + 2) − 1 +
δ j + 1

δ j
θ(s j + 1) +

δ j + 1
δ j

θ(s j),

and the variance of a second-order increment conditional on τj is

Var(Δ2θ j) =
δ j + 1
2 (δ j + δ j + 1)

2 τ j
2 .

This adjustment of the variance results in good consistency properties for GMRFs with 

constant precision (Lindgren and Rue, 2008), so should also perform well over intervals with 

locally constant precision. We show in the Supplementary Materials that integrating over the 
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local scale parameter τj maintains the distance correction as a multiplicative factor on the 

scale of the resulting marginal distribution. We also provide a data example involving a 

continuous covariate in the Supplementary Materials where we apply the methods above for 

irregular grids.

2.5 Posterior Computation

Since we have two general model formulations, marginal and hierarchical, we could use 

MCMC to approximate the posterior distribution of heights of our piecewise step functions, 

θ, by working with either one of the two corresponding posterior distributions. The first one 

corresponds to the marginal model formulation:

p(θ, γ, ξ ∣ y) ∝ ∏
i = 1

n
p(yi ∣ θi, ξ)p(θ ∣ γ)p(ξ)p(γ), (7)

where p(θ | γ) is a Markov field induced by the normal, Laplace, or horseshoe densities, and 

p(γ) is a half-Cauchy density. Note that a closed-form approximation to the density function 

for the horseshoe prior (see Supplementary Materials) is needed for the marginal 

formulation using the horseshoe. The second posterior corresponds to the hierarchical model 

with latent scale parameters τ:

p(θ, τ, γ, ξ ∣ y) ∝ ∏
i = 1

n
p(yi ∣ θi, ξ)p(θ ∣ τ) ∏

j = 1

n − k
p(τ j ∣ γ)p(ξ)p(γ), (8)

where p(θ | τ) is a GMRF and the choice of p(τj | γ) makes the marginal prior specification 

for θ correspond either to a Laplace or to a horseshoe Markov random field. Notice that the 

unconditional GMRF (normal prior) has only the marginal specification.

Both of the above model classes are highly parameterized with dependencies among 

parameters induced by differencing and the model hierarchy. It is well known that high-

dimensional, hierarchical models with strong correlations among parameters can create 

challenges for standard MCMC samplers, such as component-wise random walk Metropolis 

or Gibbs updates. When faced with these challenges, random walk behavior can result in 

inefficient exploration of the parameter space, which can lead to poor mixing and 

prohibitively long convergence times. Many approaches have been proposed to deal with 

these issues, including block updating (Knorr-Held and Rue, 2002), elliptical slice sampling 

(Murray et al., 2010; Murray and Adams, 2010), the Metropolis adjusted Langevin 

algorithm (MALA) (Roberts and Stramer, 2002), and Hamiltonian Monte Carlo (HMC) 

(Duane et al., 1987; Neal, 1993, 2011). All of these approaches jointly update some or all of 

the parameters at each MCMC iteration, which usually improves mixing and speeds up 

convergence of MCMC. Among these methods, HMC offered the most practical choice due 

to its ability to handle a wide variety of models and its relative ease in implementation via 

readily availble software such as stan (Carpenter et al., 2016). We used a modification of 

HMC proposed by Hoffman and Gelman (2014) which automatically adjusts HMC tuning 
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parameters. We used the open source package rstan (Stan Development Team, 2015a), 

which provides a platform for fitting models using HMC in the R computing environment (R 

Core Team, 2014).

Even with HMC, slow mixing can still arise with hierarchical models and heavy-tailed 

distributions due to the inability of a single set of HMC tuning parameter values to be 

effective across the entire model parameter space. Fortunately this problem can often be 

remedied by model reparameterizations that change the geometry of the sampled parameter 

space. For hierarchical models, the non-centered parameterization methods described by 

Papaspiliopoulos et al. (2003, 2007) and Betancourt and Girolami (2015) can be useful. 

Non-centered parameterizations break the dependencies among parameters by introducing 

deterministic transformations of the parameters. The MCMC algorithm then operates 

directly on the independent parameters. Betancourt and Girolami (2015) discuss non-

centered parameterizations in the context of HMC, and further examples of these and other 

reparameterization methods that target heavy-tailed distributions are provided in the 

documentation for stan (Stan Development Team, 2015b).

We note that after employing reparameterizations, HMC with stationary distribution equal to 

the hierarchical model posterior (8) had good convergence and mixing properties for each of 

our models and in nearly all of our numerical experiments. HMC that targeted the marginal 

model posterior (7) had fast run times and good mixing for the normal and Laplace 

formulations, but we could not effectively reparameterize the (approximate) marginal 

horseshoe distribution to remove the effects of its heavy tails, which resulted in severe 

mixing problems for the marginal horseshoe-based model. Therefore, in the rest of the 

manuscript we work with the hierarchical model posterior distribution (8) for all models.

For SPMRF and GMRF models, the computation time needed to evaluate the log-posterior 

and its gradient scales as (n), where n is the grid size. However, the hierarchical SPMRF 

models have approximately twice as many parameters as the GMRF or marginal SPMRF 

models. These hierarchical SPMRF methods are therefore slower than their GMRF 

counterparts. Since the computational cost of evaluating the log-posterior is only one factor 

determining the MCMC speed, we compared run times of the SPMRF and GMRF models 

on simulated and real data (see Supplementary Materials). Our results show that SPMRF 

models are slower than GMRFs, but not prohibitively so.

We developed an R package titled spmrf which allows for easy implementation of our 

models via a wrapper to the rstan tools. The package code is publicly available at https://

github.com/jrfaulkner/spmrf.

3 Simulation Study

3.1 Simulation Protocol

We use simulations to investigate the performance of two SPMRF formulations using the 

Laplace and horseshoe shrinkage priors described in section (2.2) and compare results to 

those using a normal distribution on the order-k differences. We refer to the shrinkage prior 

methods as adaptive due to the local scale parameters, and the method with normal prior as 
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non-adaptive due to the use of a single scale parameter. We constructed underlying trends 

with a variety of characteristics following approaches similar to those of other authors 

(Scheipl and Kneib, 2009; Yue et al., 2012; Zhu and Dunson, 2013). We investigated four 

different types of underlying trend (constant, piecewise constant, smooth function, and 

function with varying smoothness). The first row of Figure 2 shows examples of the trend 

functions, each illustrated with simulated normal observations centered at the function 

values over a regular grid. We used three observation types for each trend type where the 

observations were conditionally independent given the trend function values θi, where i = 1, 

…, n. The observation distributions investigated were 1) normal: yi | θi ~ N(θi, σ2), where σ 
= 1.5 or σ = 4.5; 2) Poisson: yi | θi ~ Pois(exp(θi)); and 3) binomial: yi | θi ~ Binom(m, (1 + 

exp(−θi))−1), where m = 20 for all scenarios.

Note that we constructed the function values for the scenarios with normally distributed 

observations so that each function would have approximately the same mean and variance, 

where the mean and variance were calculated across the function values realized at the 

discrete time points. This allowed us to specify observation variances which resulted in the 

same signal-to-noise ratio for each function, where signal-tonoise ratio is defined as the 

standard deviation of function values divided by the standard deviation of observations. The 

signal-to-noise ratios for our scenarios with normal observations were 6 for σ = 1.5 and 2 for 

σ = 4.5. We chose the mean sizes for the Poisson scenarios and sample sizes for the 

binomial scenarios so that the resulting signal-to-noise ratios would be similar to those for 

the normal scenarios with σ = 4.5. These levels allowed us to assess the ability of the models 

to adapt to local features when the signal is not overwhelmed by noise. We describe the 

trend functions further in what follows.

Constant—This scenario uses a constant mean across all points. We use this scenario to 

investigate the ability of each method to find a straight horizontal line in the presence of 

noisy data. The values used for the constant mean were 20 for normal and Poisson 

observations, and 0.5 for binomial observations.

Piecewise constant—This type of function has been used by Tibshirani (2014) and 

others such as Scheipl and Kneib (2009) and Zhu and Dunson (2013). The horizontal trends 

combined with sharp breaks offer a difficult challenge for all methods. For the scenarios 

with normal or Poisson observations, the function values were 25, 10, 35, and 15 with break 

points at t ∈ {20, 40, 60}. For the binomial observations the function values on the 

probability scale were 0.65, 0.25, 0.85, and 0.45 with the same break points as the other 

observation types.

Smooth trend—We use this as an example to test the ability of the adaptive methods to 

handle a smoothly varying function. We generated the function f as a GP with squared 

exponential covariance function. That is, f ~ GP(μ, Σ), ∑i, j = σ f
2 exp −(t j − ti)

2/(2ρ2) , 

where Σi, j is the covariance between points i and j, σ f
2 > 0 is the signal variance and ρ > 0 is 

the length scale. We set μ = 10, σ f
2 = 430, and ρ = 10 for the scenarios with normal or 

Poisson observations. For binomial observations, f was generated in logit space with μ = 
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−0.5, σ f
2 = 3, and ρ = 10 and then back-transformed to probability space. For all scenarios 

the function was generated with the same random number seed.

Varying smoothness—This function with varying smoothness was initially presented by 

DiMatteo et al. (2001) and later used by others, including Yue et al. (2012). We adapted the 

function to a uniform grid, t ∈ [1, n], where n = 100 in our case, resulting in the function

g(t) = sin 4t
n − 2 + 2 exp −30 4t

n − 2
2

.

For the normal and Poisson observations we made the transformation f (t) = 20 + 10g(t). For 

binomial observations we used f (t) = 1.25g(t) on the logit scale.

We generated 100 datasets for each combination of trend and observation type. This number 

of simulations was sufficient to identify meaningful differences between models without 

excessive computation time. Each dataset had 100 equally-spaced sample points over the 

interval [1, 100]. For each dataset we fit models representing three different prior 

formulations for the order-k differences, which were 1) normal, 2) Laplace, and 3) 

horseshoe. We used the hierarchical prior representations for these models given in Section 

2.2. We selected the degree of k-th order differences for each model based on knowledge of 

the shape of the underlying function. We fit first-order models for the constant and piecewise 

constant functions, and we fit second-order models for the smooth and varying smooth 

functions. For the scenarios with normal observations, we set σ ~ C+ (0, 5). In all cases, θ1 ~ 

N(μ,ω2), where μ is set to the sample mean and ω is two times the sample standard deviation 

of the observed data transformed to match the scale of θ. We also set γ ~ C+ (0, 0.01) for all 

models.

We used HMC to approximate the posterior distributions. For each model we ran four 

independent chains with different randomly generated starting parameter values and initial 

burn-in of 500 iterations. For all scenarios except for normal observations with σ = 1.5, each 

chain had 2,500 posterior draws post-burn-in that were thinned to keep every 5th draw. For 

scenarios with normal observations with σ = 1.5, chains with 10,000 iterations post-burn-in 

were necessary, with additional thinning to every 20th draw. In all cases, these settings 

resulted in 2,000 posterior draws retained per model. We found that these settings 

consistently resulted in good convergence properties, where convergence and mixing were 

assessed with a combination of trace plots, autocorrelation values, effective sample sizes, 

and potential scale reduction statistics (Gelman and Rubin, 1992).

We assessed the relative performance of each model using three different summary statistics. 

We compared the posterior medians of the trend parameters (θ̂i) to the true trend values (θi) 

using the mean absolute deviation (MAD):

MAD = 1
n ∑

i = 1

n
∣ θ i − θi ∣ . (9)
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We assessed the width of the 95% Bayesian credible intervals (BCIs) using the mean 

credible interval width (MCIW):

MCIW = 1
n ∑

i = 1

n
θ97.5, i − θ2.5, i, (10)

where θ̂97.5,i and θ̂2.5,i are the 97.5% and 2.5% quantiles of the posterior distribution for θi. 

We also computed the mean absolute sequential variation (MASV) of θ̂ as

MASV = 1
n − 1 ∑

i = 1

n − 1
∣ θ i + 1 − θ i ∣ . (11)

We compared the observed MASV to the true MASV (TMASV) in the underlying trend 

function, which is calculated by substituting true θ’s into equation for MASV.

3.2 Simulation Results

In the interest of space, we emphasize results for the scenarios with normally distributed 

observations with σ = 4.5 here. This level of observation variance was similar to that for 

Poisson and binomial observations and therefore offered results similar to those scenarios. 

We follow these results with a brief summary of results for the other observation types, and 

we provide further summary of other results in the Supplementary Materials.

Constant—The three models performed similarly in terms of absolute value of all the 

metrics (Table 1 and Figure 2), but the Laplace and normal models were slightly better at 

fitting straight lines than the horseshoe. This is evidenced by the fact that the horseshoe had 

larger MCIW and larger MASV than the other methods. The first column of plots in Figure 

3 provides a visual example of the extra variation exhibited by the horseshoe.

Piecewise constant—The horseshoe model performed the best in all categories for this 

scenario and the normal model performed the worst (Table 1 and Figure 2). The Laplace 

model was closer to the normal model in performance. The horseshoe was flexible enough 

to account for the large function breaks yet still able to limit variation in the constant 

segments. Example fits for the piecewise constant function are shown in the second column 

of plots in Figure 3.

Smooth trend—The different models were all close in value of the performance metrics 

for the smooth trend scenario (Table 1 and Figure 2). The normal and Laplace models had 

smallest MAD, but the horseshoe had MSAV closer to the true MSAV. The fact that the 

values of the metrics were similar for all models suggests that not much performance is lost 

in fitting a smooth trend with the adaptive methods in comparison to non-adaptive.
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Varying Smoothness—Again the models all performed similarly in terms of absolute 

value of the metrics, but there was a clear ordering among models in relative performance 

(Table 1 and Figure 2). The horseshoe model performed the best relative to the other models 

on all metrics. This function forces a compromise between having large enough local 

variance to capture the spike and small enough local variance to remain smooth through the 

rest of the function. The horseshoe was more adaptive than the other two methods and 

therefore better able to meet the compromise. The plots in the last column of Figure 3 

provide example fits for this function.

The results for the scenarios with normal observations with σ = 1.5 and Poisson and 

binomial observations (see Supplementary Materials) showed similar patterns to those with 

normal observations and σ = 4.5. For the constant function, the normal prior performed the 

best and the horseshoe prior the worst, although differences in terms of absolute values of 

the performance metrics were small. The relative differences were more pronounced with 

the scenarios with normal observations with σ = 1.5. For the piecewise constant function, the 

horseshoe prior performed the best for all scenarios and the normal prior the worst. All 

methods performed similarly for the smooth function, with the normal and Laplace generally 

performing a little better than the horseshoe. For the function with varying smoothness, the 

horseshoe performed the best and the normal the worst for all scenarios.

4 Data Examples

Here we provide two examples of fitting SPMRF models to real data. Each example uses a 

different probability distribution for the observations. The first example exhibits a change 

point, which makes it amenable to adaptive smoothing methods. The second example has a 

more uniformly smooth trend but also shows a period of rapid change, so represents a test 

for all methods. First we address the issue of setting the hyperparameter for the global 

smoothing parameter.

4.1 Parameterizing the Global Smoothing Prior

The value of the global smoothing parameter λ determines the precision of the marginal 

distributions of the order-k differences, which influences the smoothness of the estimated 

trend. Selection of the global smoothing parameter in penalized regression models is 

typically done via cross-validation in the frequentist setting (Tibshirani, 1996) or marginal 

maximum likelihood in the empirical Bayes setting (Park and Casella, 2008). Our fully 

Bayesian formulation eliminates the need for these additional steps, but in turn requires 

selection of the hyperparameter controlling the scale of the prior on the smoothing 

parameter. The value of this hyperparameter will depend on the order of the model, the grid 

resolution, and the variability in the latent trend parameters. Therefore, a single 

hyperparameter value cannot be used in all situations. Some recent studies have focused on 

methods for more careful and principled specification of priors for complex hierarchical 

models (Fong et al., 2010; Simpson et al., 2014; Sørbye and Rue, 2014). The method of 

Sørbye and Rue (2014) was developed for intrinsic GMRF priors and we adapt their 

approach to our specific models in what follows.
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We wish to specify values of the hyperparameter ζ for various situations, where the global 

scale parameter γ ~ C+ (0, ζ). Let Q be the precision matrix for the Markov random field 

corresponding to the model of interest (see Supplementary Materials for examples), and Σ = 

Q−1 be the covariance matrix with diagonal elements Σii. The marginal standard deviation of 

all components of θ for a fixed value of γ is σγ(θi) = γσref(θ), where σref(θ) is the 

geometric mean of the individual marginal standard deviations when γ = 1 (Sørbye and Rue, 

2014). We want to set an upper bound U on the average marginal standard deviation of θi, 

such that Pr(σγ(θi) > U) = α, where α is some small probability. Using the cumulative 

probability function for a half-Cauchy distribution, we can find a value of ζ for a given value 

of σref(θ) specific to a model of interest and given common values of U and α by:

ζ = U
σref(θ) tan π

2 (1 − α)
. (12)

By standardizing calculations to be relative to the average marginal standard deviation, the 

methods of Sørbye and Rue (2014) allow us to easily calculate ζ for a model of different 

order or a model with a different density of grid points. For practical purposes we apply the 

same method to the normal and SPMRF models. This is not ideal in terms of theory, 

however, since the horseshoe distribution has infinite variance and the corresponding 

SPMRF will clearly not have the same marginal variance as a GMRF. This is not necessarily 

problematic since GMRF approximation will result in an estimate of ζ under the horseshoe 

SPMRF which is less informative than would result under similar methods derived 

specifically for the horseshoe SPMRF, and could therefore be seen as more conservative in 

terms of guarding against over smoothing. In contrast, the Laplace SPMRF has finite 

marginal variance that is well approximated by the GMRF methods. We apply these 

methods in the data examples that follow.

4.2 Coal Mining Disasters

This is an example of estimating the time-varying intensity of an inhomogeneous Poisson 

process that exhibits a relatively rapid period of change. The data are on the time intervals 

between successive coal-mining disasters, and were originally presented by Maguire et al. 

(1952), with later corrections given by Jarrett (1979) and Raftery and Akman (1986). We use 

the data format presented by Raftery and Akman (1986). A disaster is defined as an accident 

involving 10 or more deaths. The first disaster was recorded in March of 1851 and the last in 

March of 1962, with 191 total event times during the period 1 January, 1851 through 31 

December, 1962. Visual inspection of the data suggests a decrease in rate of disasters over 

time, but it is unclear by eye alone whether this change is abrupt or gradual. The decrease in 

disasters is associated with a few changes in the coal industry at the time. A sharp decline in 

labor productivity at the end of the 1880’s is thought to have decreased the opportunity for 

disasters, and the formation of the Miner’s Federation, a labor union, in late 1889 brought 

added safety and protection to the workers (Raftery and Akman, 1986).

This data set has been of interest to various authors due to uncertainty in the timing and rate 

of decline in disasters and the computational challenge presented by the discrete nature of 
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the observations. Some authors have fit smooth curves exhibiting gradual change (Adams et 

al., 2009; Teh and Rao, 2011) and others have fit change-point models with abrupt, 

instantaneous change (Raftery and Akman, 1986; Carlin et al., 1992; Green, 1995). An ideal 

model would provide the flexibility to automatically adapt to either scenario.

We assumed an inhomogeneous Poisson process for the disaster events and binned the event 

counts by year. We fit first-order models using the normal, Laplace, and horseshoe prior 

formulations. We assumed the event counts, yi, were distributed Poisson conditional on the 

θi: yi | θi ~ Pois (exp(θi)). The marginal prior distributions for the first-order increments 

were Δθj ~ N(0, γ2) for the Normal, Δθj ~ Laplace(γ) for the Laplace, and Δθj ~ HS(γ) for 

the horseshoe. We used the same prior specifications as those used in the simulations for the 

remaining parameters, except we used the guidelines in Section 4.1 to set the 

hyperparameter on the global scale prior. Using calculations outlined in the Supplementary 

Materials, we set σref(θ) = 6.47 and U = 0.860. Setting α = 0.05 and substituting into 

Equation (12) results in ζ = 0.0105, so γ ~ C+(0, 0.0105) for each model. We used HMC for 

approximating the posterior distributions. For each model we ran four independent chains, 

each with a burn-in of 500 followed by 6,250 iterations thinned at every 5. This resulted in a 

total of 5,000 posterior samples for each model. We were interested in finding the best 

representation of the process over time as well as finding the most likely set of years 

associated with the apparent change point. For this exercise we arbitrarily defined a change 

point as the maximum drop in rate between two consecutive time points.

Plots of the fitted trends (Figure 4) indicate that the horseshoe model picked up a sharper 

change in trend and had narrower BCIs than the other models. The normal and Laplace 

models did not have sufficient flexibility to allow large jumps and produced a gradual 

decline in accidents rate, which is less plausible than a sharp decline in light of the 

additional information about change in coal mining industry safety regulations. The relative 

qualitative performance of the normal, Laplace, and horseshoe densities is similar to that for 

the piecewise constant scenario from our simulation study. The posterior distributions of the 

change point times are shown in Figure 4. The horseshoe model clearly shows a more 

concentrated posterior for the break points, and that distribution is centered near the late 

1880’s, which corresponds to the period of change in the coal industry. Therefore, we think 

the Bayesian trend filter with the horseshoe prior is a better default model in cases where 

sharp change points are expected.

It is important to point out that we tried other values for the scale parameter (ζ) in the prior 

distribution for γ and found that the models were somewhat sensitive to that hyperparameter 

for this data set. In particular, the horseshoe results for ζ = 1 looked more like those for the 

other two models in Figure 4, but when ζ = 0.0001, the horseshoe produced more defined 

break points and straighter lines with narrower BCIs compared to the results with ζ = 0.01 

(see Supplementary Materials).

4.3 Tokyo Rainfall

This problem concerns the estimation of the time-varying mean of an inhomogeneous 

binomial process. We are interested in estimating the seasonal trend in daily probability of 

rainfall. The data are binary indicators of when daily rainfall exceeded 1 mm in Tokyo, 
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Japan, over the course of 39 consecutive years (1951–1989). The indicators were combined 

by day of year across years, resulting in a sample size of m = 39 for each of 365 out of 366 

possible days, and a size of m = 10 for the additional day that occurred in each of the 10 leap 

years. The observation variable y is therefore a count, where y ∈ {0, 1, …, 39}. Data were 

obtained from the NOAA’s National Center for Climate Information (https://

www.ncdc.noaa.gov). A smaller subset of these data (1983–1984) was initially analyzed by 

Kitagawa (1987) and later by several others, including Rue and Held (2005).

We fit SPMRF models with Laplace and horseshoe priors and a GMRF model (normal 

prior). All models were based on second-order differences. The observation model was

yi ∣ θi Bin mi,
1

1 + exp ( − θi)
,

and the marginal prior distributions for the second-order differences were Δ2θj ~ N(0, γ2) 

for the normal prior, Δ2θj ~ Laplace(γ) for the Laplace, and Δ2θj ~ HS(γ) for the horseshoe. 

We used the same prior specifications as those used in the simulations for the remaining 

parameters, except we used the guidelines in Section 4.1 to set the hyperparameter on the 

global scale prior. Using calculations outlined in the Supplementary Materials, we set σref(θ) 

= 906.7 and U = 0.679. Setting α = 0.05 and substituting into Equation (12) results in ζ = 

5.89 × 10−5, so γ ~ C+ (0, 5.89 × 10−5) for each model. We ran four independent chains for 

each model, each with a burn-in of 500 followed by 6,250 draws thinned at every 5. This 

resulted in a total of 5,000 MCMC samples retained for each model.

The resulting function estimates for all models reveal a sharp increase in probability of rain 

in June followed by a sharp decrease through July and early August and a subsequent sharp 

increase in late August and September (Figure 5). Changes through the rest of the months 

were relatively smooth. The estimated function displays some variations in smoothness 

similar to the function with varying smoothness used in our simulations. All methods 

resulted in a similar estimated function, but the horseshoe prior resulted in a smoother 

function that displayed sharper features at transition points in late June and early August, yet 

also had narrower credible intervals over most of the function. The normal and Laplace 

models resulted in a little more variability in the trend in January-April and in November. In 

their analysis of a subset of these data, Rue and Held (2005) used a circular constraint to tie 

together the endpoints of the function at the beginning and end of the year. We did not use 

such a constraint here, although it is possible with the SPMRF models. Even so, it is evident 

that the horseshoe model resulted in more similar function estimates at the endpoints than 

did the other two models.

5 Discussion

We presented a method for curve fitting in a Bayesian context that achieves locally adaptive 

smoothing by exploiting the sparsity-inducing properties of shrinkage priors and the 

smoothing properties of GMRFs. We compared the performance of the Laplace prior, which 

simply reformulates the frequentist trend filter to a Bayesian analog, to a more aggressive 
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horseshoe shrinkage prior by using simulations and found that the horseshoe provided the 

best balance between bias and precision. The horseshoe prior has the greatest concentration 

of density near zero and the heaviest tails among the priors we investigated. This 

combination allows smooth functions to be fit in regions with weak signals or noisy data 

while still allowing for recovery of sharp functional changes when supported by informative 

data. The Laplace prior allowed more functional changes of moderate value to be retained 

and could not accommodate large changes without compromising the ability to shrink the 

noisy and smaller functional changes. This resulted in greater variability in the estimated 

functions and wider associated credible intervals for the models with the Laplace prior in 

comparison to those with the horseshoe prior when the underlying true functions had jumps 

or varying smoothness. The Laplace prior did have adaptive ability not possessed by the 

normal prior, but the horseshoe prior clearly had the best adaptive properties among the 

priors we investigated.

The Laplace prior performed better than the horseshoe for the constant and smooth functions 

in our simulations, with results closer to those of the normal prior, although the differences 

in performance among the three methods were relatively small. These functions do not have 

large deviations in order-k differences, and so there are many small or medium sized values 

for the estimated Δkθ. This situation is reflective of cases described by Tibshirani (1996) 

where the lasso and ridge regression perform best, which helps explain why the analogous 

SPMRF models with Laplace or normal prior distributions do better here. We expect that 

non-adaptive or mildly adaptive methods will perform better when used on functions which 

do not exhibit jumps or varying smoothness. However, it is reassuring that an adaptive 

method does nearly as well as a non-adaptive method for these functions. This allows an 

adaptive model such as that using the horseshoe to be applied to a variety of functions with 

minimal risk of performance loss.

Our fully Bayesian implementation of the SPMRF models eliminates the need to explicitly 

select the global smoothing parameter λ, either directly or through selection methods such 

as cross-validation (e.g., Tibshirani (1996)) or marginal maximum likelihood (e.g., Park and 

Casella (2008)). However, the fully Bayesian approach does still require attention to the 

selection of the hyperparameter that controls the prior distribution on the smoothing 

parameter. We found the methods of Sørbye and Rue (2014) to offer practical guidelines for 

selecting this hyperparameter, and we successfully applied a modification of those methods 

in our data examples. A highly informative prior on the global smoothing parameter can 

result in over-smoothing if the prior overwhelms the information in the data, while a diffuse 

prior may result in a rougher function with insufficient smoothing. Noisier data are therefore 

more sensitive to choice of parameterization of the prior on the global smoothing parameter. 

We tested prior sensitivity in the coal mining example and found that the horseshoe prior 

was more responsive to changes in hyperparmeter values than the normal and Laplace priors 

(see Supplementary Materials). However, the results for the simulations and for the Tokyo 

rainfall example were much more robust to the value of the hyperparameter on the global 

scale due to the information in the data. As a precaution, we recommend first applying 

methods such as those by Sørbye and Rue (2014) to set the hyperparameter, but then also 

paying attention to prior sensitivity when analyzing noisy data with the SPMRF models.
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We only addressed one-dimensional problems here, but we think the GMRF representation 

of these models can allow extension to higher dimensions such as the spatial setting by 

incorporating methods used by Rue and Held (2005) and others. We also plan to extend 

these methods to semi-parametric models that allow additional covariates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Shapes of prior distributions (left) and associated tail behavior (right) for priors used for 

p(Δkθ | λ).
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Figure 2. 
Functions used in simulations and simulation results by model (N=normal, L=Laplace, 

H=horseshoe) and function type for normally distributed data with σ = 4.5. Top row shows 

true functions (dashed lines) with example simulated data. Remaining rows show mean 

absolute deviation (MAD), mean credible interval width (MCIW), and mean absolute 

sequential variation (MASV). Horizontal dashed line in plots on bottom row is the true mean 

absolute sequential variation (TMASV). Shown for each model are standard boxplots of 

simulation results (left) and mean values with 95% frequentist confidence intervals (right).
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Figure 3. 
Example fits for models using a) normal, b) Laplace, and c) horseshoe priors where 

observations are drawn from normal distributions with SD = 4.5. Plots show true functions 

(dashed gray lines), posterior medians (solid dark gray lines), and associated 95% Bayesian 

credible intervals (BCI; gray bands) for each θ. Values between observed locations are 

interpolated for plotting.
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Figure 4. 
Top row: fits to coal mining disaster data for different prior distributions. Posterior medians 

(lines), 95% credible intervals (shaded regions), and data points are shown. Bottom row: 

associated posterior distributions for change points.
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Figure 5. 
Fits to Tokyo rainfall data for different prior distributions. Posterior medians (lines), 95% 

credible intervals (shaded regions), and empirical probabilities (yi/ni) are shown.
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