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Abstract

Genome-wide association studies (GWAS) have identified over 100 risk loci for schizophrenia, but 

the causal mechanisms remain largely unknown. We performed a transcriptome-wide association 

study (TWAS) integrating a schizophrenia GWAS of 79,845 individuals from the Psychiatric 

Genomics Consortium with expression data from brain, blood, and adipose tissues across 3,693 

primarily control individuals. We identified 157 TWAS significant genes, of which 35 did not 

overlap a known GWAS locus. 42/157 genes were associated to specific chromatin features 

measured in independent samples, highlighting potential regulatory targets for follow-up. 

Suppression of one identified susceptibility gene, MAPK3, in zebrafish showed a significant effect 

on neurodevelopmental phenotypes. Expression and splicing from brain captured the majority of 

the TWAS effect across all genes. This large-scale connection of associations to target genes, 

tissues, and regulatory features is an essential step in moving towards a mechanistic understanding 

of GWAS.

INTRODUCTION

Genome-wide association studies (GWAS) have yielded thousands of robustly associated 

variants for schizophrenia (SCZ) and many other complex traits, but relatively few of these 

associations have implicated specific biological mechanisms1,2, as GWAS association 

signals often span many putative target genes, may affect gene expression through 

regulatory3 or structural elements4, and may affect genes at considerable genomic distances 

via chromatin looping5,6. A growing body of research has demonstrated the enrichment of 

SCZ GWAS risk variants and heritability within regulatory elements identified through maps 

of chromatin modifications and accessibility1,7–13. Since chromatin modifications are 

themselves under genetic control6,14–19, a plausible causal mechanism for most SCZ loci is 

genetic variation leading to regulatory changes marked by chromatin, to gene expression, 

and finally to disease risk. Indeed, QTLs for chromatin (and other molecular phenotypes) are 

enriched within GWAS associations, further supporting this hypothesis6,18,20,21.

In this work, we leveraged gene expression and splicing data from SCZ and bipolar (BIP) 

cases and controls in brain, as well as gene expression data from controls in other tissues, to 
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perform a transcriptome-wide association study (TWAS)22–24 in a large SCZ GWAS data 

set1 and identify genes whose expression is genetically correlated with SCZ. We 

subsequently performed a TWAS for a diverse set of chromatin phenotypes to connect 

putative SCZ susceptibility genes with specific regulatory elements. To our knowledge, this 

is the first TWAS of any disease to integrate analysis of gene expression, splicing, and 

chromatin variation, moving beyond top SNPs to implicate SCZ-associated molecular 

phenotypes across the regulatory cascade (Fig. 1).

RESULTS

TWAS for SCZ identifies new susceptibility genes

We analyzed gene expression and genome-wide SNP array data in 3,693 individuals across 

four expression reference panels: RNA-seq from the dorsolateral prefrontal cortex (PFC) of 

621 individuals – including 283 SCZ cases, 47 BIP cases, and 291 controls – collected by 

the CommonMind Consortium (CMC)25, expression array data measured in peripheral blood 

from 1,245 unrelated control individuals from the Netherlands Twin Registry (NTR)26, 

expression array data measured in blood from 1,264 control individuals from the Young 

Finns Study (YFS)23, and RNA-seq measured in adipose tissue from 563 control individuals 

from the Metabolic Syndrome in Men study (METSIM)23. We further characterized splicing 

events27 in the CMC/brain RNA-seq data (Online Methods). Average cis and trans estimates 

of SNP-heritability of expression ( hg
2, Online Methods) were highly significant in each 

panel, with nominally significant cis−hg
2 (P <0.01) for a total of 18,084 genes summed across 

the four panels (10,819 unique genes; Supplementary Table 1), as well as an additional 

9,009 splicing events in brain (in 3,908 unique genes; Supplementary Table 1).

We performed a TWAS using each of the four gene expression reference panels and 

summary-level data from the PGC SCZ GWAS of 79,845 individuals1 in order to identify 

genes associated to SCZ (Fig. 1, Supplementary Fig. 1A). Briefly, this approach integrates 

information from expression reference panels (SNP-expression correlation), GWAS 

summary statistics (SNP-SCZ correlation), and LD reference panels (SNP-SNP correlation) 

to assess the association between the cis-genetic component of expression and phenotype 

(expression-SCZ correlation)23. In practice, the expression reference panel was used as the 

LD reference panel, and cis SNP-expression effect sizes were estimated using a sparse 

mixed linear model28 (Online Methods). As SCZ is a highly polygenic trait, we expect these 

control reference samples to carry disease-affecting regulatory variants. By leveraging 

genetic predictors of expression our approach is immune to reverse causality (disease → 
expression), but pleiotropic effects on expression and trait cannot be ruled out without 

additional analyses (see Discussion)23.

The TWAS identified 247 transcriptome-wide significant gene-SCZ and intron-SCZ 

associations (summed across expression reference panels) for a total of 157 unique genes, 

including 49 genes that were significant in more than one expression panel (Fig. 2, 

Supplementary Fig. 2, Table 1, Supplementary Table 2, 3). We observed no significant 

differences when performing the TWAS using brain expression from SCZ/BIP cases or 

controls separately, confirming that the presence of cases in the reference panel did not 
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affect our results (Supplementary Note, Supplementary Table 4). We observed hotspots29 of 

multiple TWAS-associated genes at 33 loci (defined by genes <500kb apart). However, only 

6/33 loci exhibited evidence of statistically independent genetic effects using a summary-

based joint test30, suggesting that most of these loci can be explained by a single genetic 

effect (Online Methods, Supplementary Table 3). Across all TWAS associations, the 

implicated gene was the nearest gene to the top SNP at the locus in only 56% of instances 

(using the 10,819 cis-heritable genes as background; decreasing to 24% of instances when 

using all 26,469 known RefSeq genes) underscoring previous findings23,24,29,31. We 

confirmed that the summary-based approach was consistent with individual-level predictions 

using individual-level PGC data and replicated the associations in aggregate using out-of-

sample SCZ+BIP phenotypes (Supplementary Note, Supplementary Table 5, 6, 

Supplementary Fig. 1A, 3, 4, 5).

Of the 108 published PGC GWAS regions1, 47 regions were located near (±500kb) at least 

one TWAS gene (accounting for 122/157 genes), with the remaining 35/157 genes 

implicating novel targets. The GWAS association statistics at novel TWAS loci were often 

well below genome-wide significance (Supplementary Fig. 6), and we hypothesized that 

some of the new discoveries may be driven by the TWAS aggregating partially independent 

effects on SCZ that operate through a single gene. As evidence of this, the TWAS 

association was stronger than the lead SNP for 27% of TWAS associations that did not 

overlap a genome-wide significant SNP, but only 3% of TWAS associations that did 

(Fisher’s exact P =8.1×10−07). Across all TWAS associations 21/247 were more significant 

than the lead GWAS SNP, with the percent of cis expression heritability explained by the top 

eQTL for these 21 genes significantly lower than for the rest (56% vs. 88%, P =9.6×10−05), 

indicative of secondary QTL effects. We excluded the MHC region (chr6:28–34MB) from 

our primary analyses due to its complex haplotype and LD structure. However, as a positive 

control we specifically tested the C4A gene recently fine-mapped for SCZ4, which lies 

inside the MHC, and confirmed a highly significant TWAS association between C4A 
expression in brain tissue and SCZ (P =1.8×10−18).

Splicing events in brain accounted for 46 transcriptome-wide significant gene associations 

(of which 10 were at novel loci), comparable to the 44 significant gene associations from 

brain (Table 1, Supplementary Table 3), despite the fact that splicing events accounted for 

30% fewer significantly cis-heritable genes than total expression (Supplementary Table 1). 

Overall, 20/46 associations corresponded to genes that were not tested in the analysis of total 

gene expression due to non-significant expression heritability, and 19 of the remaining 26 

did not have a transcriptome-wide significant association for total gene expression. This is 

consistent with the recent observation that sQTLs are typically independent of eQTLs at the 

same gene27. We caution that effect direction for splice events is difficult to interpret 

because alternatively spliced exons are often negatively correlated (Supplementary Note, 

Supplementary Fig. 7). Although the largest number of associations came from brain the 

enrichment was not striking after accounting for the total number of heritable genes (Table 

1), suggesting that expression data quality and sample size currently play a more important 

role than tissue-specificity in finding significant associations.
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TWAS associations may be caused by coincidental overlap between eQTLs and non-causal 

disease variants at a GWAS locus32, which we investigated using formal colocalization and 

conditional analyses. First, we used the COLOC method33 to estimate the posterior 

probability of a single shared causal variant for TWAS implicated genes and SCZ using the 

marginal association statistics. We calibrated a 5% false discovery threshold for considering 

a gene “colocalized” using randomly selected heritable genes in the same SCZS GWAS 

regions (Online Methods). Colocalization between eQTLs and SCZ was observed for 55% 

of the TWAS implicated genes (Supplementary Fig. 8, Supplementary Table 3). We note that 

COLOCs posterior is highly dependent on the prior probability of a single shared causal 

variant (Supplementary Fig. 9) and conservative when multiple causal variants mediate the 

effect on expression and trait23, so that colocalization at the remaining loci may be 

underestimated. For the 45% genes that did not colocalize significantly, the percent of cis 

expression heritability explained by the top eQTL was lower than for the rest (79% vs. 

89%), suggestive of secondary effects, but the difference was not statistically significant. 

Second, conditioning on the predicted expression of a TWAS-associated gene (using 

summary-level data30, Online Methods) reduced the χ2 of the lead GWAS SNP at the locus 

(including genome-wide significant and non-significant loci) from 42 to 10 on average, and 

explained more of the association signal than conditioning on the corresponding top 

expression-QTL (eQTL) (Supplementary Table 7). For the 43 lead GWAS SNPs at genome-

wide significant loci that were correlated (r2>0.05) with the predicted expression of at least 

one TWAS-significant gene (out of 47 overlapping index SNPs), joint conditioning on the 

predicted expression of all such genes reduced the median SNP P-value from P =1.2×10−10 

to P =0.028 (Online Methods, Supplementary Table 8). Given that the expression predictor 

typically captures only 60-80% of the cis component of gene expression at the expression 

panel sample sizes used here23, the complete elucidation of the cis component could 

potentially explain the entire GWAS signal at these loci.

This SCZ GWAS data1 was recently evaluated in a TWAS with gene expression in blood 

using Summary-based Mendelian Randomization (SMR)24, identifying 16 transcriptome-

wide significant associated genes (in contrast to 157 identified here). Of the 16 gene 

associations identified by SMR, 12 were tested in our study in blood, all replicated at 

nominal P <0.05 (with consistent sign), and 9 were transcriptome-wide significant – a 

striking concordance given the different methods and independent expression panels used.

Functional validation of TWAS-associated genes using chromatin interaction data

We leveraged recently published chromatin interaction (Hi-C) data in developing human 

brain34 to investigate whether TWAS-associated genes are supported by physical chromatin 

interactions that occur during brain development (Supplementary Fig. 1B). We used the Hi-

C data to construct a set of comparison SCZ risk genes based on 3D chromatin interactions 

between gene transcription start sites (TSS) and SNPs in the fine-mapped 95% causal 

credible set (Online Methods). This yielded a set of 59 loci with both TWAS and fine-

mapped Hi-C data, containing 474 Hi-C predicted SCZ risk genes. The 474 Hi-C predicted 

genes overlapped with 105/157 TWAS-associated genes (Supplementary Fig. 10; Fisher’s 

exact test P =1.03×10−18, OR=4.68 compared to random heritable genes at these loci), 

indicating that most of the TWAS associated genes were supported by 3D chromatin 

Gusev et al. Page 5

Nat Genet. Author manuscript; available in PMC 2018 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interactions with an SCZ SNP in developing brain. TWAS associations were also 

significantly correlated with increased expression during mid-fetal developmental in 

independent samples (P <0.05/19; Supplementary Note, Supplementary Fig. 11, 12) further 

underscoring the etiological relevance of mechanisms active during brain development.

Polygenic TWAS signal largely explained by expression in brain

To assess the full polygenic architecture of the TWAS associations, we relaxed the 

transcriptome-wide significance threshold and constructed gene-based polygenic risk scores 

(GE-PRS) from their predicted expression in the CMC (SCZ+BIP) case-control samples 

(Supplementary Fig. 1C). For each out-of-sample individual, the GE-PRS is the sum of 

predicted expression weighted by its signed SCZ TWAS Z-score (Online Methods). The GE-

PRS was significantly associated with SCZ status (conditioned on ancestry) across the full 

spectrum of TWAS association P-values (Fig. 2), as seen with SNP-based polygenic 

scores1,35,36. Although the prediction was significant in all tissues individually, there was 

clear evidence of increased effect in brain (in contrast to the transcriptome-wide significant 

results), with the prediction from brain (genes and splicing events) capturing 92% of the 

joint prediction from all tissues (Fig. 2, Supplementary Fig. 13). A GE-PRS from actual 

measured expression and differential splicing in brain was significant but substantially less 

so than the genetic GE-PRS (Supplementary Fig. 13). Based on polygenic theory37,38, the 

best TWAS GE-PRS was estimated to account for 26% of the total SCZ SNP-heritability, 

providing an upper-bound on the amount of trait variance that could be mediated by the 

steady-state expression in these tissues (Supplementary Note).

Chromatin TWAS identifies specific regulatory features associated with expression

We next sought to identify relationships between the expression of TWAS genes and cis-

regulatory elements marked by chromatin activity. We used population-level ChIP-Seq 

chromatin phenotypes measured in 76 HapMap YRI LCLs for H3k27ac (marking active 

enhancers), H3k4me1 (enhancers), H3k4me3 (promoters), and DNAse (open chromatin)6, 

and in 45 HapMap CEU LCLs for H3k27ac, H3k4me1, H3k4me3, PU1 (regulatory 

transcription factor) and RNA polymerase II (RPB2, associated with active transcription)18. 

For each of the nine chromatin phenotypes, regions with an excess of ChIP-Seq reads were 

segmented into local peaks, and the chromatin abundance within each peak treated as a 

quantitative trait6,18. Both cohorts additionally had gene expression measured by RNA-seq 

in the same samples, and we confirmed that the genetic correlation was highly significant 

between expression and each chromatin mark (as well as between different chromatin 

marks) and persisted as far as 500kb from the TSS (Supplementary Fig. 14, 15, 16, 

Supplementary Table 9, Online Methods).

We applied individual-level TWAS methods23 to predict expression of the 10,819 

significantly heritable genes and 9,009 differentially spliced introns into samples with 

chromatin phenotypes and searched for expression-chromatin associations (Fig. 1, 

Supplementary Fig. 1D). Prediction was performed from expression to chromatin phenotype 

samples (instead of from chromatin phenotype to expression samples) due to increased 

prediction accuracy in the larger expression panels, but we note that this choice was agnostic 

to the direction of causality (Supplementary Note). Our approach yielded an average of 2.4× 
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more Bonferroni significant expression-chromatin associations than the conventional 

approach using in-sample cis-eSNP/cQTL overlap39,40, primarily due to associations >10kb 
from the TSS (Fig. 3, Supplementary Fig. 17); with similar results when overlapping all cis-

eQTLs6,18 and in simulation (Supplementary Note; Supplementary Fig. 18, 19, 20; 

Supplementary Table 10). Across all tissues, 806 unique genes had a transcriptome-wide 

significant association (Online Methods) with at least one chromatin phenotype 

(Supplementary Fig. 18B, Supplementary Table 11), and 4,294 genes were significant at the 

10% (per-phenotype) FDR used in previous studies6,18 (Supplementary Table 12). In 

contrast, only 224 of 9,009 splicing events in the CMC had a transcriptome-wide significant 

chromatin association, corresponding to 2-3× fewer associations than identified using total 

CMC gene expression (depending on the chromatin phenotype, Supplementary Table 13). 

Half of the chromatin associations were distal (10–500kb from TSS) and these were 

significantly enriched for Hi-C interactions in LCLs6 relative to random (distance-matched) 

gene-peak pairs (Supplementary Fig. 22, 23, 21, 1G, 24). No other differences in chromatin 

mark usage or mark-gene distance were observed across the expression reference panels. 

However, we found that genes with associations to multiple chromatin peaks were more 

likely to be driven by a single eQTL (Supplementary Table 14), suggesting that multiple 

chromatin TWAS peaks were typically related by a single genetic mechanism.

We used the measured RNA-seq expression in the chromatin individuals to confirm these 

associations. Across the 806 chromatin TWAS-associated genes, the correlation between 

measured expression and an associated chromatin phenotype was highly significant when 

compared against a distance-matched background null (Supplementary Fig. 1E, 14B), with 

the average TWAS-associated chromatin peak explaining a striking 20% of the variance in 

expression of its target gene in CEU (Supplementary Fig. 25, 26, 27, 28, Supplementary 

Table 16). For the three chromatin phenotypes that were measured in both CEU and YRI, 

chromatin TWAS peaks implicated in one population were predictive of correlation with 

measured expression in the other (Supplementary Fig. 1F, 29, 30, Supplementary Table 17), 

supporting our use of chromatin phenotypes from multiple populations.

Putative regulatory mechanisms for SCZ-associated genes

Focusing on the 157 transcriptome-wide significant genes from the SCZ TWAS, we 

identified 42 genes (including 7 genes at novel loci) that also had Bonferroni significant 

chromatin TWAS associations (to a total of 78 individual chromatin peaks) in analyses using 

the same expression reference panel (Supplementary Fig. 1H, Table 1, Supplementary Table 

2, 3, 18, 19). Only 8 of the 78 chromatin peaks underlying joint SCZ TWAS and chromatin 

TWAS associations were within the promoter (±2kb of the TSS) of their associated gene, 

suggesting that most regulatory elements affecting SCZ are distally located, as previously 

observed in other traits6,8,20. SCZ TWAS genes were nominally enriched for chromatin 

TWAS associations (OR=1.53, P =4×10−4) but the effect was largely dampened after 

matching on cis-genetic properties of genes (P =0.01; Supplementary Table 20) and could 

potentially be explained by other unknown properties.

Significant evidence of chromatin-SCZ association and colocalization was observed for the 

majority of the identified peaks using independent statistical methods (Supplementary Fig. 
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1H). We analyzed the subset of SCZ TWAS loci with expression-chromatin associations by 

applying COLOC to (1) SNP-expression and SNP-chromatin association data to investigate 

expression-chromatin colocalization and (2) SNP-chromatin and SNP-SCZ association data 

to investigate chromatin-SCZ colocalization. Colocalization was observed for 100% of the 

expression-chromatin associations and 97% of the chromatin-SCZ associations in CEU 

(Supplementary Fig. 8, Supplementary Table 19). The chromatin associations in YRI pose a 

model violation for COLOC due to differences in LD structure between populations, but 

colocalization still remained much higher than background, with 70% (43%) of expression-

chromatin (chromatin-SCZ) associations colocalized (Supplementary Fig. 8). Predicting 

chromatin into SCZ using SMR24 (which tests the best cQTL) or a TWAS-like test (testing 

all SNPs in the BSLMM predictor) replicated >60% of the associations at Bonferroni 

significance and >90% at P <0.05 (Supplementary Note, Supplementary Table 21, 3, 19). 

However, the chromatin sample size was insufficient to robustly estimate genetic predictors 

of chromatin and carry out a full chromatin-wide association study.

Examples of SCZ and chromatin TWAS loci

We highlight three examples of TWAS associations to both SCZ and chromatin phenotypes. 

We visualize these loci using a “TWAS scatterplot” of the relationship between each 

marginal GWAS/QTL association (Z-score, y axis) and the correlation (x axis) between 

TWAS predicted expression (GEpred) and the marginal GWAS/QTL association. This 

relationship is expected to be linear and without outliers under the TWAS model 

(Supplementary Note, Fig. 4, 5, 32, 33, 34).

First, total expression of PPP2R3C in NTR/blood was associated with SCZ (P =3.4×10−6) – 

despite no genome-wide significant SNPs at the locus – as well as four distal chromatin 

peaks (minimum P =1.0×10−9; Fig. 4). Conditioning each GWAS SNP on the predicted 

expression of PPP2R3C explained all significant marginal associations for the implicated 

phenotypes and formal colocalization was supported between all features and SCZ (average 

posterior=92%; Supplementary Table 24). PPP2R3C was the nearest gene to the most 

significantly associated SNP at the locus and to the implicated chromatin peaks. However, 

because the locus was not genome-wide significant, this association would not have been 

identified in a conventional analysis of known GWAS loci. PPP2R3C was recently identified 

by SMR analysis of SCZ in an independent expression panel24 and our findings pinpoint 

specific regulatory elements for experimental follow-up.

Second, a splicing event at KLC1 in CMC had an SCZ TWAS P =6.7×10−12 and 

overlapping H3k4me1/me3 chromatin TWAS associations (minimum P =2.5×10−07) (Fig. 

5). Conditioning on the top sQTL explained all significant SCZ GWAS signal at the locus 

whereas conditioning on the most significant eQTL had a negligible effect, highlighting an 

effect on SCZ explained by splicing independent of total expression. Notably, both 

chromatin TWAS associations were supported by Hi-C interactions to the KLC1 promoter in 

developing brain34 (FDR 0.01 significant and the most significant interaction in the locus), 

serving as a functional validation of coordinated activity (Fig. 5, Supplementary Fig. 35). 

We performed a TWAS-like test for chromatin-SCZ association, which was highly 

significant for both peaks (best P =2.6×10−13; Supplementary Table 3). Evidence for 
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colocalization was high for KLC1 splicing and SCZ (posterior=58%) as well as for the 

chromatin phenotypes and both KLC1 splicing and SCZ (posterior >80%), in spite of the 

fact that the chromatin phenotypes were identified in YRI and may exhibit LD differences 

across populations (Supplementary Table 24). Differential DNA methylation41 and 

expression at KLC1 in SCZ cases versus controls was recently identified in two independent 

analyses of brain tissue, further supporting a cis-regulatory effect on SCZ.

Third, total expression of MAPK3 in CMC/brain was associated with SCZ (P =1.3×10−6) as 

well as two chromatin peaks near the TSS: H3k27ac (P =7×10−6) and RPB2 (P =1×10−11). 

In the CEU chromatin phenotype samples, where MAPK3 expression was also measured in 

LCLs, the H3k27ac and RPB2 peaks explained 36% (P =7×10−6) and 23% (P =5×10−4) of 

the variance in measured expression, respectively, with only the H3k27ac peak significant in 

a joint model. Formal colocalization analysis supported a single shared causal variant across 

all combinations of eQTL/cQTL/GWAS for the implicated features (posterior probabilities 

54–97%; Supplementary Table 24). We confirmed that the associated peaks were observed 

in epigenetic data from H3k27ac, H3k4me3 and ATAC-seq measured in brain tissues42 and 

contained two SNPs with significant allele-specific effect43 on MAPK3 (Supplementary 

Note, Supplementary Fig. 36, 37, 38, 39). Strikingly, these peaks overlapped two recently 

identified human-gained neuro-developmental enhancers in independent fetal cortex 

tissues44 (Supplementary Fig. 36). This class of enhancers clusters with genes important to 

cortical development and neuronal differentiation, and has been hypothesized to play a key 

role in human cortical evolution.

Functional interrogation of MAPK3 in zebrafish

MAPK3 maps within the 16p11.2 600kb copy number variant (CNV) that has been 

associated with both SCZ and autism45–49. Previous studies have shown that dosage 

perturbation of another transcript in that region KCTD13 can induce reciprocal head size 

and neuro-proliferative defects consistent with the anatomical pathology in patients45. 

Critically, pairwise dosage analyses showed a genetic interaction of KCTD13 with MAPK3 
(as well as a third locus, MVP)45, while independent transcriptional studies in human cells 

and mouse models highlighted a functional ”cassette“ composed of KCTD13, MVP and 

MAPK3, a set of coregulated genes associated with the head size phenotype48. Together 

with our TWAS observations, these data implicate a transcriptional relationship between 

these genes in the 16p11.2 region and suggest that MAPK3 (and its expression thereof) 

might be a functional trigger. If so, suppression of MAPK3 should rescue the pathology 

induced by increased expression of KCTD13. To test this hypothesis, we performed an 

experimental assay in zebrafish embryos (Online Methods). Consistent with prior studies, 

overexpression of human KCTD13 (associated with microcephaly in humans) induced both 

a decrease in head size and a concomitant decrease in the number of cycling cells in the 

brain (Fig. 6). However, suppression of endogenous mapk3 in KCTD13 over-expressants 

was able to rescue both phenotypes reproducibly (Fig. 6; n=37-69 embryos per injection, 

replicated, scored blind).
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DISCUSSION

The landmark PGC SCZ GWAS paper concluded that “if most risk variants are regulatory, 

available eQTL catalogues do not yet provide power, cellular specificity, or developmental 

diversity to provide clear mechanistic hypotheses for follow-up experiments”1. In this work, 

we integrate data from GWAS, expression, splicing, and chromatin activity to identify 

mechanistic hypotheses. We found 157 unique genes with transcriptome-wide significant 

associations to SCZ, which were significantly supported by chromatin contact measured 

during brain development. Genes below the transcriptome-wide significance threshold 

continued to be strongly associated with SCZ and exhibited enrichment for expression and 

splicing in the brain (though this can also reflect expression data quality). Associations for 

splicing events that were independent of total expression highlighted an important source of 

disease-relevant variation27 with potential therapeutic implications50,51. 42/157 SCZ-

associated genes were significantly associated with nearby chromatin phenotypes, 

implicating specific regulatory features for functional follow-up. We interrogated one TWAS 

association, MAPK3, in zebrafish embryos and observed a significant effect on 

neurodevelopmental phenotypes with consistent direction, prioritizing this as a candidate for 

further follow-up.

We conclude with several limitations and future directions of this study. First, although 

TWAS is not confounded by reverse-causality (disease → expression independent of SNP), 

instances of pleiotropy (where a SNP or linked SNPs influence SCZ and expression 

independently) are statistically indistinguishable from truly causal susceptibility genes. As 

molecular studies grow and the chance of incidental QTL/GWAS overlap increases, 

experimental causal inference is necessary to validate these findings. Second, the chromatin 

phenotypes analyzed here were measured in LCLs (as population-level chromatin data from 

other tissues is currently unavailable), preventing us from identifying expression-chromatin 

associations that are brain-specific. Third, the use of summary-based data necessitates linear 

predictors of expression, which may misinterpret relationships between expression and 

disease/chromatin where, for example, the strongest eQTLs/cQTLs have weak effect on the 

trait due to context specificity. Lastly, although we did not observe significant pathway/

ontology enrichment for the identified susceptibility genes, we posit that these genes and 

chromatin features can serve as anchors for network-based analyses of genome-wide co-

expression and co-regulation; we view this as an intriguing future direction.

As tissue acquisition may be the biggest hurdle for producing larger data sets, methods that 

do not depend on measurements from the same samples will remain critical. Beyond specific 

mechanistic findings for SCZ, this work outlines a systematic approach to identify 

functional mediators of complex disease.

ONLINE METHODS

Data and quality control

Genotypes and expression from the NTR26, YFS23, and METSIM23 were processed as 

described in ref23 (and below) and the corresponding expression weights were downloaded 

directly from the TWAS web-site (see Web Resources). Genotypes and expression data from 
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the CMC25 were processed using the GTEx Consortium guidelines for eQTL analysis of 

RNA-seq data. Specifically, RNA-seq RPKM was quantile normalized across samples; 

genes having >10 individuals with zero reads were removed; each gene was rank-

normalized; 15 PEER factors were computed; and the residual expression used.

For alternative splice variants in brain, we used the LeafCutter algorithm27,52 to quantify de 

novo intron excision in the CMC RNA-seq data by clustering reads that spanned intron 

junctions. These clusters correspond to individual isoforms and enable an estimate of 

differential intron splicing computed from the ratio of reads spanning an intron relative to 

the total isoform read count. Splice variants were quantified using default parameters: a 

minimum of 50 reads per cluster, and a maximum intron length of 500kb. Based on the 

guidelines in ref.52, the following quality controls were applied to the inferred isoform 

clusters: clusters having >10 individuals with zero reads were removed; clusters with <100 

individuals having >20 reads were removed; and introns with <5 individuals having non-

zero counts were removed. The inferred per-sample abundance for each intron was then 

treated as a molecular phenotype, normalized, and PEER-corrected as with total expression 

above. This process identified 123,480 splicing events, of which 99,562 mapped to canonical 

gene introns. We treated the differential splicing of these 99,562 splicing events as 

quantitative traits in the same manner as total expression.

For genotype data in the above studies, individuals failing a sex check or having 5% missing 

SNPs were removed. Additionally, SNPs were removed if they had >5% missing calls; P 
<0.05 case-control missing association; P <5×10−6 Hardy-Weinberg disequilibrium; P 
<5×10−3 association to batch; P <5×10−8 missing haplotype association; or frequency <1%. 

Principal components (PCs) were computed using ×all samples for the NTR, YFS, and 

METSIM data directly and using SNPweights (v2.1)53 for the CMC data, outliers were 

removed (samples >6 standard deviations away the mean along any top component), and 

PCs included as fixed-effects in estimating hg
2.

For all datasets, related individuals with GRM values >0.05 were also removed prior to 

estimating hg
2.

For chromatin data, we used population-level ChIP-Seq chromatin phenotypes measured in 

76 HapMap YRI LCLs for H3k27ac (marking active enhancers), H3k4me1 (enhancers), 

H3k4me3 (promoters), and DNAse (open chromatin)6, and in 45 HapMap CEU LCLs for 

H3k27ac, H3k4me1, H3k4me3, PU1 (regulatory transcription factor) and RNA polymerase 

II (RPB2, associated with active transcription)18. We did not perform any additional QC of 

the functional features, which were previously adjusted for PEER/covariates and 

normalized6,18.

hg
2 estimation

Cis and trans hg
2 were estimated using variance-components, modeling the phenotype as a 

multi-variante Normal y σg, cis
2 Kcis + σg, trans

2 Ktrans + σe
2I where K are the standard genetic 

relatedness matrices from SNPs in the cis locus (Kcis) and in the rest of the genome (Ktrans). 
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The σ2 parameters were fit for each gene using AI-REML as implemented in the GCTA 

software54, with principal components and sex included as fixed effects. For hg
2 of splicing 

events, the intron ratios condition out isoform abundance but total gene expression was also 

included as a covariate to account for any residual correlation. As in previous studies26, 

individual estimates outside the plausible 0-1 range were allowed in order to achieve 

unbiased mean estimates. The standard error of each estimate was approximated as the 

standard deviation divided by the square root of the number of genes tested; however, 

significant differences were confirmed by permutation tests (see below).

To evaluate the contribution of low-frequency variants, we imputed the NTR data to the 

Haplotype Reference Consortium reference, yielding high-quality imputed SNPs down to 

MAF of 0.001. On average, we did not observe a significantly non-zero contribution of 

imputed rare variants to cis−hg
2, nor did we see a significant change in common cis−hg

2 due to 

denser imputation relative to array SNPs (Supplementary Table 1). Though recent work has 

identified biases in estimates of hg
2 from rare variants55, we expect these biases to be small in 

the cis region and largely mitigated by the two-component model. We did not further 

evaluate the contribution of rare variants to trans−hg
2. No difference was observed when using 

dosages to construct the cis GRM.

In the CMC data, where SCZ/BIP and control status was also available, the average cis-

genetic correlation of expression between (SCZ/BIP) cases and controls was 1.00 (s.e. 0.02), 

indicating consistent direction of eQTL effect sizes between cases and controls and 

motivating us to use the full cohort as a TWAS reference panel (Supplementary Table 25).

Schizophrenia TWAS

We performed a Transcriptome Wide Association Study (TWAS) using publicly available 

summary statistics from the PGC GWAS of 79,845 individuals1 and four gene expression 

reference panels in independent samples (Web Resources). For a given gene, SNP-

expression weights in the 1MB cis locus were first computed using the Bayesian Sparse 

Linear Mixed Model (BSLMM)28, which models effects on expression as a mixture of 

normal distributions to account for the sparse expression architecture. Given weights w, SCZ 

Z-scores Z, and SNP correlation (LD) matrix D; the association between predicted 

expression and SCZ (i.e. the TWAS statistic) is estimated as ZTWAS = w′Z / w′Dw (see ref23 

for methodological details). We computed TWAS statistics using either the SNPs genotyped 

in each expression reference panel, or imputed HapMap3 SNPs (which typically represent 

well-imputed SNPs). To account for multiple hypotheses, we applied Bonferroni correction 

within each expression panel that was used. This threshold was chosen so as to maximize 

consistency with previous published results and not penalize for additional (and often highly 

correlated) expression panels tested. Specifically, we report “transcriptome-wide” 

significance after correcting for the number of genes tested within each of the five reference 

panels (CMC, CMC-splicing, NTR, YFS, METSIM; 5,419 tests on average). This is 

consistent with the correction applied in previous TWAS results of multiple expression 

references23.
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Summary-based joint/conditional tests and figures

Conditional and joint analysis was performed using the summary statistic-based method 

described in ref.30, adapted to genes instead of SNPs. This joint test aims to distinguish 

genes with independent genetic predictors (that are also SCZ associated) from those that are 

merely co-expressed with a shared genetic predictor. This requires marginal association 

statistics (i.e. the main TWAS results) and a correlation/LD matrix to evaluate the joint/

conditional model. The correlation matrix was estimated by predicting the cis-genetic 

component of expression for each TWAS gene into the 1000 Genomes genotypes and 

computing Pearson correlations across all pairs of genes as well as between all gene-SNP 

pairs (with correlations below 0.01 set to zero due to sampling noise). The 247 

transcriptome-wide significant TWAS associations across four reference panels were then 

added to the model one at a time in decreasing order of significance and retained if their 

conditional TWAS association remained significant after Bonferroni correction for 247 tests. 

To quantify strongly independent gene associations at hotspot loci, this procedure was 

repeated with the additional constraint that genes were only added to the model at each step 

if they had r2<0.30 with all genes already in the model. To assess how much of the SCZ 

GWAS association signal remained after the TWAS signal was removed, each GWAS SNP 

association was conditioned on the joint gene model one SNP at a time. For Manhattan plots 

in Fig. 4, 5 each GWAS SNP was conditioned on the predicted expression of the single 

target TWAS gene. For TWAS scatterplots in Fig.s 4, 5 the correlation of each SNP to the 

TWAS predicted phenotype was computed by predicting expression into the 1000 Genomes 

reference.

Colocalization analyses

We used the COLOC software33 to estimate the posterior probability of two phenotypes 

sharing a causal variant (which we refer to as “colocalization”). For a locus and pair of traits 

(e.g. chromatin and SCZ) the corresponding SNP-trait QTL effect sizes (and standard errors) 

were tested with the coloc.abf function, with molecular phenotypes treated as quantitative 

traits and SCZ input treated as a case-control trait with 43% cases. The posterior probability 

of one shared causal variant (H4) was reported. The default prior on sharing (P =1×10−5) 

was used for all primary analyses, with priors P =1×10−4 and P =1×10−3 evaluated 

separately with all other parameters unchanged.

Functional validation of TWAS-associated genes using chromatin interaction data

The TWAS genes were validated by presence of chromosome conformation capture (Hi-C) 

interaction with finemapped SCZ GWAS SNPs in the locus.

SCZ GWAS loci were fine-mapped as described34. First, independent, genome-wide 

significant SNPs and all nearby SNPs in LD (r2>0.6) having P <1×10−5 were selected. The 

CAVIAR fine-mapping algorithm56 was then applied in each locus (allowing for a maximum 

of 2 causal variants) to identify the 95% credible set of causal SNPs. Functional SNPs (SNPs 

that cause nonsense and missense variation as well as that reside within gene promoters) 

were directly assigned to their target genes, while non-annotated SNPs were assigned to the 

genes of action based on chromatin interactions in developing human cortices34.
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Hi-C interactions were defined as described34. We fit background interaction profiles as a 

function of distance from all 9,444,230 imputed PGC GWAS SNPs using a Weibull 

distribution. The significance for a given Hi-C contact was then measured by calculating the 

probability of observing a stronger contact under this null. Fine-mapped GWAS SNPs were 

assigned to 10kb bins (which is the highest resolution available for the fetal brain Hi-C 

data), and the significance of interactions for every bin within a 1Mb flanking region (500kb 

upstream to downstream) was calculated. Significant Hi-C interacting regions (FDR<0.01) 

are then overlapped with Gencode v19 gene coordinates to identify the potential gene 

targets, and only genes with significant SNP heritability estimates ( cis−hg
2 P <0.01) were 

evaluated, resulting in 474 genes. These Hi-C defined schizophrenia risk genes were then 

overlapped with the genes and splice variants identified by TWAS. Overrepresentation 

analysis was performed by Fisher’s exact test with a background gene list of 1,392 genes 

that reside within a ±500kb window to any credible SNP and have nominally significant 

cis−hg
2 (P <0.01).

Polygenic TWAS signal from gene-based polygenic risk scores (GE-PRS)

We extend to genes the SNP-based polygenic risk score35 to evaluate TWAS predictive 

accuracy and validation. Given a 1-by-M vector z of signed association statistics in the 

discovery study (e.g. PGC) and an N-by-M matrix X of predicted expression for the 

corresponding M genes in the replication study, we constructed a GE-PRS S=Xz. The M 
genes were either all transcriptome-wide significant genes (Supplementary Note) or all 

genes passing relaxed p-value thresholds. This risk score was then tested with ancestry 

against case/control status by a standard linear model y~S+P +e where S is the risk score 

and P is a matrix of principal components accounting for ancestry. Risk-score performance 

was measured as the linear R2 from the above model less the R2 from the model y~P +e to 

account for ancestry, and converted to the liability scale assuming a prevalence of 1%.

For the TWAS using METSIM, YFS, and NTR expression reference panels, the cis-genetic 

component of expression was predicted in CMC samples. For the TWAS using the CMC 

expression panel, either the total expression was used (Supplementary Fig. 13) or the cis-

genetic component of expression was estimated directly using BSLMM (equivalent up to a 

scaling factor to estimating genetic values by dropping each individual in turn). We stress 

that the case/control label from the CMC data was never used to identify the TWAS 

associations, and that the GePRS from the CMC expression panel were thus evaluated 

against an independent CMC case/control phenotype. Ascertaining cases in the CMC 

expression panel may increase the frequency of causal variants and make the prediction 

more accurate than using a randomly ascertained expression panel, however, we observed 

little difference when performing the TWAS using an expression panel consisting of CMC 

controls only (Supplementary Table 4).

Individual-level chromatin TWAS

We used cis SNP-expression effect sizes computed by BSLMM scores in the four expression 

reference panels (including splicing events) to predict individual-level expression into the 45 

CEU18 and 766 YRI individuals with measured chromatin phenotypes. We retained only 
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post-QC SNPs that were typed in both studies and removed strand-ambiguous SNPs. We 

note that even though the YRI target samples are of different ethnicity, this prediction does 

not require an LD-reference panel and is therefore only expected to suffer loss in power (but 

not increased type I error) due to the differences in LD. For each predicted gene, we 

identified all chromatin peaks within a given window of the TSS (primary results used 

±500kb) and tested each mark for association to predicted expression by linear regression.

Top eSNP/cQTL overlap analysis

We compared the chromatin TWAS to a traditional approach of identifying SNPs that are 

significant both as cQTLs and eQTLs in real data (Fig. 18B). For each population and given 

distance to TSS, we performed this analysis in two stages. Stage 1: We used fastQTL40 to 

identify the most significantly associated eSNP for each gene by permuting the expression 

and re-testing the cis-locus, and restricted to those genes with eSNP P <0.01 (for consistency 

with the TWAS gene selection). Stage 2: Each significant eSNP from Stage 1 was then 

tested for an association to all nearby chromatin peaks by standard linear regression, and 

those passing Bonferroni correction for all gene-peak pairs for each chromatin phenotype 

(e.g. H3K27ac in CEU) were reported. This analysis was compared to the chromatin TWAS 

analysis where each gene was tested against any peak within the given distance (by standard 

linear regression), and number of significant results reported after Bonferroni correction for 

total number of gene-peak pairs tested in that phenotype. We separately considered an 

approach where all significant eQTLs in a gene are evaluated for overlap (as in refs.6,18), 

which underperformed the permuted top eSNP/cQTL approach here (Supplementary Note).

Multiple hypothesis correction for chromatin TWAS

The large number of correlated phenotypes analyzed – expression from five experiments and 

chromatin from nine experiments in two populations – allows for several approaches to 

multiple testing correction. For the chromatin TWAS, we corrected for the number of gene-

peak pairs tested within a single expression reference and chromatin phenotype experiment 

(for example, number of gene-peak pairs when evaluating predicted CMC expression with 

the CEU:H3k27ac chromatin phenotype). This is directly comparable to the experiment-

wide corrections applied in previous eQTL/cQTL analyses6,18. The same correction was 

applied for the SCZ/chromatin TWAS overlap: for example, the 44 SCZ TWAS genes 

identified using CMC expression were within 500kb of 1,528 total peaks in the 

CEU:H3k27ac experiment and “overlap” was reported for any peak that had a chromatin 

TWAS association P <0.05/1,528.

For comparison, we separately calculated the number of associations that were significant at 

5% FDR across all molecular experiments. This yielded approximately 3.5× more chromatin 

TWAS associations and 1.2× more SCZ and chromatin TWAS associations (Supplementary 

Table 2), demonstrating that the above experiment-wide Bonferroni correction strategy 

corresponds to a conservative study-wide FDR.

Estimating support for mediation by expression/chromatin

We sought to evaluate the evidence in support of two models of mediation: MCH, where SNP 

→ chromatin → expression → disease; and MEX, where SNP → expression → chromatin 
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→ disease. Under the assumption of linear, additive variance across molecular phenotypes, 

this can be estimated via the ratio of genetic covariance (covg) between chromatin-SCZ and 

expression-SCZ. Conceptually, the genetic effect of a given molecular phenotype on SCZ 

will be attenuated by environmental noise, which will manifest itself as lower covg to SCZ 

for phenotypes further along the molecular cascade. The fraction of environmental variance 

on expression (envEX) under each model of mediation can then computed from the following 

equation (see Supplementary Note for derivation):

covg, CH/covg, EX = 1/ 1 − envEX
2

We inferred these quantities from both CEU and YRI using covg estimates from cross-trait 

LD score regression57 and computed significance by comparing to randomly sampled gene-

peak pairs within 500kb of the TSS. We separately considered a partial correlation approach 

using residuals of expression and chromatin in turn (Supplementary Note). We caution that 

the estimate of env in the above equation was computed from an average across all loci, and 

could also be consistent with confounding from different levels of measurement error for 

ChIP-seq and RNA-seq, a mixture of models MCH and MEX that favors model MCH, or 

mediation by other unobserved molecular phenotypes.

In vivo complementation in zebrafish embryos and whole-mount immunostaining

The human wild-type (WT) mRNA of KCTD13 (NM 178863) was cloned into the pCS2+ 

vector and transcribed in vitro using the SP6 Message Machine kit (Ambion), as 

described45. To suppress endogenous mapk3 we identified ENSDART00000103746.5 with 

93% similarity and 88% identity to human MAPK3 (NM_002746) as the sole zebrafish 

ortholog, against which we designed a splice blocking morpholino (MO) targeting exon 2 

(mapk3 sb: CTGTGAGTGTTTAAGGATACACATC). We injected 10ng of mapk3 MO and 

150pg of WT KCTD13 RNA alone and in combination into wild-type zebrafish embryos at 

the 1-to 4-cell stage. For the evaluation of neuronal proliferation, experiments were 

performed as described58. Proliferating neurons were quantified by counting all positive 

cells on a dorsal view of 3 days post fertilization (dpf) embryos, excluding the eyes from the 

scored area, using the ITCN ImageJ plugin that considers cells with 20 pixel width and 5 

pixel minimum distance between them in order to be considered as separate cells. Statistical 

significance for this assay was established using Student’s t-test. For the head size assay, 

injected larvae were grown to 4 dpf and imaged live on dorsal view. The area of the head 

was traced excluding the eyes from the measurements and statistical significance was 

calculated using Student’s t-test. The sample size for the head size assay consisted of 

control=67, mapk3_MO=59, KCTD13_WT=61 and mapk3_MO+KCTD13_WT=60; for 

PH3 it consisted of control=37, mapk3_MO=40, KCTD13_WT=39 and mapk3_MO

+KCTD13_WT=40. All experiments were repeated in duplicate and scored blind to 

injection cocktail.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of TWAS approach
Illustration of the TWAS approach: genetic predictor of gene expression (Eg) is learned in a 

reference panel (top); integrated with SCZ GWAS association statistics to infer SCZ-Eg 

association (middle); further integrated with individual-level chromatin phenotypes to infer 

genes with SCZ and chromatin-Eg associations (bottom). See Supplementary Fig. 1 for 

detailed analysis flowchart.
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Figure 2. SCZ TWAS associations and polygenic effects
(top) Manhattan plot of all TWAS associations. Each point represents a single gene tested, 

with physical position plotted on x-axis and Z-score of association between gene and SCZ 

plotted on y-axis. Transcriptome-wide significant associations are highlighted as red points, 

with jointly significant independent associations (see Methods) labeled with gene names and 

color-coded by expression reference (red CMC; blue METSIM, purple YFS, green NTR, 

black ALL). (bottom) Polygenic TWAS effects across reference tissues. Out of sample SCZ 

prediction R2 for gene-based polygenic risk scores (GE-PRS) as a function of significance 

cutoff. Significant correlations (after Bonferroni correction for number of thresholds tested) 

are indicated with a (*) and the most significant P-value reported. Right-most panel shows 

prediction from all tissues jointly (black) and from CMC/brain genes + splicing events 

jointly (red). R2 computed after subtracting ancestry principal components and converting to 

liability scale with population prevalence of 1%.
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Figure 3. Chromatin TWAS associations compared to top eSNP/cQTL associations
Number of unique genes significantly associated with a chromatin peak after Bonferroni 

correction for a given distance from the gene (x-axis): (left) using top eSNP in chromatin 

cohort; (right) using chromatin TWAS from all reference panels. Results from CEU (YRI) 

populations shown in top (bottom) panels.
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Figure 4. Chromatin and SCZ TWAS association at PPP2R3C
Example association of PPP2R3C gene expression and SCZ and four nearby chromatin 

peaks. (A) locus schematic with all nearby genes and chromatin peaks; TWAS associated 

features highlighted in blue and green. (B–G left) Manhattan plots of marginal association 

statistics before and after conditioning on the TWAS predicted expression (colored/dark 

dots, respectively). Dashed line shows local significance threshold after Bonferroni 

correction for number of SNPs. (B–G right) Relationship between marginal GWAS/QTL 

association (y axis) and the correlation (x-axis) between TWAS predicted expression (GEpred 

estimated in the 1000 Genomes reference) and marginal GWAS/QTL association. The color 

of each point reflects the eQTL effect size of the expression used for GEpred and size of each 

point reflects absolute significance of the eQTL. (B) SCZ GWAS association; (C) PPP2R3C 
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expression phenotype used for TWAS prediction and associated with SCZ/chromatin; (D) 

1st TWAS associated H3k27ac peak in CEU; (E) 2nd TWAS associated H3k27ac peak in 

CEU; (F) 1st TWAS associated H3k4me1 peak in CEU; (G) 2nd TWAS associated 

H3k4me1 peak in CEU. See Supplementary Note, Supplementary Fig. 32, 33, 34 for 

additional examples and simulations.
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Figure 5. Chromatin and SCZ TWAS association at KLC1
Example association of KLC1 splice event to SCZ with evidence of chromatin interaction in 

Hi-C from developing brain. (A) locus schematic with all nearby genes and chromatin 

peaks; TWAS associated features highlighted in blue and green. Hi-C GZ/CP rows show 

significance of Hi-C chromatin interaction between the 10kb block containing the associated 

chromatin peaks (gray, with neighboring white blocks not tested) and every other 10kb block 

in the region; 10kb being the highest resolution for this Hi-C data. Dark red shading 

indicates more significant and interactions significant at 0.01 FDR are labeled with stars. 
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The most significant interaction in the locus overlaps the KLC1 promoter. The interactions 

are shown for fetal brain data from CP (cortical and subcortical plate) and GZ (germinal 

zone) and corresponding topological domains (TADs) are outlined with solid black lines. 

(B–F left) Manhattan plots of marginal association statistics before and after conditioning on 

the TWAS predicted expression (colored/dark dots, respectively). Dashed line shows local 

significance threshold after Bonferroni correction for number of SNPs. (B–F right) 
Relationship between marginal GWAS/QTL association (y axis) and the correlation (x-axis) 

between TWAS predicted expression (GEpred estimated in the 1000 Genomes reference) and 

marginal GWAS/QTL association. The color of each point reflects the eQTL effect size of 

the expression used for GEpred and size of each point reflects absolute significance of the 

eQTL.(B) SCZ GWAS association; (C) KLC1 total expression, both panels show 

independence from the TWAS predicted expression; (D) KLC1 splicing event phenotype 

used for TWAS prediction and associated with SCZ/chromatin; (E) TWAS associated 

H3k4me1 chromatin peak in YRI; (F) TWAS associated H3k4me3 chromatin peak in YRI. 

See Supplementary Note, Supplementary Fig. 32, 33, 34 for additional examples and 

simulations.
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Figure 6. Suppression of endogenous mapk3 rescues the microcephaly and neuronal proliferation 
phenotypes induced by overexpression of wild-type KCTD13
Dorsal view of 4 days post fertilization (dpf) control larvae (A) and embryos injected with 

either morpholino (MO) against endogenous mapk3 (B), human capped wild-type (WT) 

KCTD13 mRNA (C) or combinatorial administration of mapk3 MO and WT human 

KCTD13 mRNA (D). Quantification of the headsize phenotype across the four conditions 

(E). Dorsal view of 3dpf embryos stained with an antibody against phospho-histone 3 (PH3), 

a marker of neuronal proliferation of control larvae (F) or embryos injected with either MO 

against mapk3 (G), human capped wild-type (WT) KCTD13 mRNA (H) or combinatorial 
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administration (I). Graph showing quantification of the proliferating neuronal count across 

the four conditions (J). Student’s t-test was used to determine statistical significance.
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