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Introduction

The function of acetylcholine in the striatum has perplexed basal ganglia physiologists and 

clinicians for decades. The effects of cholinergic and anticholinergic agents in patients with 

movement disorders, as well as in animal models of basal ganglia-dependent behaviors, 

suggest a critical role for acetylcholine in the normal function of the basal ganglia. The 

highest density of acetylcholine in the basal ganglia occurs in the input nucleus, the striatum, 

suggesting it might be the site of action. Striatal acetylcholine predominantly derives from 

local cholinergic interneurons, which form a dense network of cholinergic fibers throughout 

the striatum.1 These cholinergic interneurons represent a small percentage of all striatal 

neurons, but fire tonically and contribute to some of the brain's highest levels of 

acetylcholine.1-4 Another source of striatal acetylcholine is extrinsic cholinergic input to the 

striatum, deriving from brainstem structures. Acetylcholine regulates the function of the 

striatal microcircuit and striatal output, via a combination of nicotinic and muscarinic 

acetylcholine receptors. Acetylcholine also regulates striatal dopamine release, which may 

modulate symptoms in disorders such as Parkinson's Disease, dystonia, and Tourette 

Syndrome. Fluctuations in levels of both transmitters are believed to contribute to 

pathological circuit activity and drive symptoms, and are a prominent target of current 

therapeutic agents. In both normal and disease states, dopamine and acetylcholine 

concomitantly influence striatal projection neurons to affect a broad number of basal 

ganglia-mediated behaviors, including control of movement, motivation, and decision-

making.

The goal of this Perspective is to discuss how recent research has modified our view of the 

function of striatal cholinergic interneurons. First, we will provide some background on the 

striatal circuit components and theories regarding acetylcholine's site of action, discussing 

recent studies that have clarified or altered these ideas. Next, we will discuss the 

hypothesized role of acetylcholine in several prominent movement disorders. Finally, we 

will outline some outstanding questions within the field, and how recent technological 

advances might allow further exploration of the mechanisms by which acetylcholine 

Correspondence should be addressed to Alexandra B. Nelson, University of California, San Francisco, 675 Nelson Rising Ln, Rm 
495/Box 0663, San Francisco, CA 94158-0663. 

No conflict of interest

HHS Public Access
Author manuscript
Mov Disord. Author manuscript; available in PMC 2018 May 09.

Published in final edited form as:
Mov Disord. 2015 September ; 30(10): 1306–1318. doi:10.1002/mds.26340.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regulates striatal microcircuitry and basal ganglia-dependent behaviors. We hope this 

Perspective will inform clinicians and scientists interested in basal ganglia function, and 

provoke new inquiry regarding the role of striatal acetylcholine in both health and disease.

Striatal Cholinergic Interneurons Within Basal Ganglia Circuitry

The basal ganglia are a group of interconnected subcortical nuclei which participate in the 

control of movement, cognition, and mood (see Figure 1). The basal ganglia circuitry 

consists of (1) two input nuclei, the striatum (in primates consisting of the caudate and 

putamen) and subthalamic nucleus, (2) two output nuclei, the internal segment of the globus 

pallidus (GPi) and the substantia nigra pars reticulata (SNr), (3) one intrinsic nucleus, the 

globus pallidus pars externa (GPe), and (4) neuromodulatory inputs, the most clinically 

important of which derive from dopaminergic neurons arising from the substantial nigra pars 

compacta (SNc) and the ventral tegmental area (VTA). SNc dopamine neurons primarily 

innervate the dorsal striatum, whereas VTA neurons primarily innervate the ventral striatum.
5

This review will focus on the role of striatal cholinergic interneurons in regulating striatal 

function and basal ganglia-related behavior. However, it is critical to mention that striatal 

cholinergic interneurons are not the only source of acetylcholine within the striatum, and 

there may be distinct functions associated with cholinergic signals derived from intrastriatal 

versus extrastriatal sources. In fact, in many historical experiments, systemic administration 

of pharmacological agents, or even local administration of agents within the striatum, would 

tend to confuse the role of local cholinergic interneurons and long-range cholinergic neurons 

projecting to the striatum from other nuclei. These external sources of acetylcholine include 

nuclei such as the brainstem pedunculopontine tegmental area or laterodorsal tegmental area,
6-9 and their distinct functions have been explored through genetic manipulations designed 

to alter the function of forebrain versus brainstem sources of acetylcholine.10 Extrastriatal 

sources of acetylcholine, however, are beyond the scope of this review.

To examine how cholinergic interneurons regulate the function of the striatum and the basal 

ganglia as a whole, it is important to understand where they are situated within striatal 

microcircuitry. The striatum is the primary input nucleus of the basal ganglia, integrating 

excitatory inputs from the thalamus and cortex with dopaminergic inputs from the SNc. 

GABAergic striatal projection neurons, also called medium spiny neurons (MSNs), 

comprise approximately 90% of all neurons in the striatum.11,12 MSNs can be separated by 

virtue of their projection targets into two distinct pathways—the direct and indirect 

pathways, which also have distinct cellular markers.13,14 Direct pathway-forming MSNs 

express the dopamine D1 receptor15 and project directly to the output nuclei, GPi and SNr. 

Indirect pathway-forming MSNs, conversely, express the dopamine D2 receptor15 and 

project via several synapses (indirectly) to the output nuclei. According to the standard 

model of basal ganglia function, developed by Albin, Penney, Young, and Delong,13,14,16,17 

and refined by several investigators,18 the direct pathway is hypothesized to promote 

movement and reinforcement, while the indirect pathway is believed to inhibit movement 

and respond to aversive stimuli. While direct proof in vivo is currently lacking, 

dopaminergic inputs to the striatum are believed to positively modulate direct pathway 
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activity and negatively modulate indirect pathway activity.19-21 This model, although 

oversimplified, provides a useful framework for understanding the role of cholinergic 

modulation of striatal output and behavior.

The remaining <10% of striatal neurons are interneurons: GABAergic interneurons22 

(including parvalbumin, calretinin, and neuropeptide Y-expressing subtypes) and 

acetylcholine-releasing interneurons. Striatal cholinergic interneurons are intrinsically 

active, firing at rates of 8-12 Hz,23 setting them apart from MSNs, which fire between 0-2 

Hz under most conditions. Shaped by a combination of voltage-gated sodium channels, 

hyperpolarization- and cyclic adenosine monophosphate (cAMP)-dependent cation (HCN) 

channels, and small-conductance calcium-activated (SK-type) potassium channels, 

cholinergic interneurons fire tonically in the absence of synaptic inputs.24-26 Importantly, the 

firing pattern of these neurons can change in response to synaptic input or regulation of 

intrinsic conductances.

Although they are sparse, comprising only 1-2% of all striatal neurons,27 cholinergic 

interneurons are large, aspiny neurons with extensive axonal arborizations densely covering 

the entire striatum.4,28-32 Cholinergic axonal varicosities, similar to dopaminergic 

varicosities, form few structurally defined synaptic connections, suggesting that 

acetylcholine may signal via ‘volume transmission.’ 31,33-35 Interestingly, cholinergic 

interneurons play a key role in signaling unexpected rewards and high salience events; 

evidence came from groundbreaking extracellular recordings from the dorsal striatum of 

awake behaving monkeys.36-41 These recordings revealed a unique class of neurons termed 

“tonically active neurons,” TANs, now believed to be cholinergic interneurons.23,42 During 

Pavlovian learning tasks, when the animal heard a tone or click, a conditioned stimulus 

corresponding to delivery of reward, TANs showed a brief pause in firing followed by a 

burst.38-40 The pause response is a neural correlate of classical conditioning within TANs, 

and has been termed the “conditioned pause response.” 43,44 The cellular and synaptic 

mechanisms of the pause are unknown.

Several hypotheses43 exist as to the origin of the conditioned pause response, including (but 

certainly not limited to): (1) GABAergic inhibition deriving from striatal fast spiking 

interneurons (FSIs) onto cholinergic interneurons, (2) dopaminergic inhibition by dopamine 

terminals onto cholinergic interneurons (terminal dopamine release activates D2 receptors 

on cholinergic interneurons, which hyperpolarizes cells via potassium channels), and (3) 

intrinsic properties of cholinergic interneurons themselves. Despite incomplete 

understanding of pause mechanisms, its characteristics suggest it may regulate striatal 

plasticity. This function of cholinergic interneurons is explored in depth in another 

Perspective by Deffains and Bergman. In addition to the pause response, cholinergic 

interneurons also show synchronized discharge, which will be explored in a later section.

Dopamine is likely to play a key role in the generation of the pause response. Studies 

showing simultaneous extracellular recordings from putative dopamine neurons in the SNc 

and TANs of awake behaving monkeys show that the pause in TAN neurons is coincident 

with an increase in firing of SNc neurons. This finding suggests that both TANs and SNc 

neurons signal reward-relevant information and may share synaptic inputs or connect to one 
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another.44 Further strengthening the relationship between dopamine and the pause response, 

depletion of striatal dopamine with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 

treatment resulted in loss of the conditioned pause response.38 Interestingly, dopamine 

depletion did not alter baseline firing, suggesting a specific effect on the pause response. The 

pause could be rescued by administration of dopamine agonists, an even stronger finding in 

support of dopamine's mechanistic contribution to the pause.38 This observation suggests 

that dopamine is permissive for the conditioned pause response, but phasic dopamine, or the 

brief increase in striatal dopamine levels typically triggered by high frequency bursting of 

dopamine neurons, may not be required. More recent studies using slice electrophysiology, 

optogenetics, and pharmacology in rodents have shown that synaptically released dopamine 

acting on D2 receptors inhibits cholinergic interneuron firing in the dorsal striatum.45 There 

is additional evidence that long-range GABAergic projection neurons originating in the VTA 

and innervating the nucleus accumbens (NAc) in the ventral striatum may contribute to the 

pause in cholinergic firing during associative learning tasks.46 This mechanism may be 

limited to the ventral striatum, the target of VTA projection neurons, which likely carry 

reward-relevant information; SNc dopamine neurons generally innervate dorsal striatal 

areas. The dynamic firing patterns as well as the broad axonal arbors of cholinergic 

interneurons permit subtle changes in the firing of single cholinergic interneurons to regulate 

the activity of many surrounding neurons. In addition, synchronized activity of nearby 

cholinergic interneurons may permit even greater control.47

Striatal Muscarinic Acetylcholine Receptors

Local release of acetylcholine modulates the activity of the striatal microcircuit via multiple 

cholinergic receptor subtypes, including metabotropic muscarinic receptors (mAChR) and/or 

ionotropic nicotinic receptors (nAChR). A schematic diagram of the key striatal cell types, 

major synaptic inputs, and their muscarinic and nicotinic receptors can be found in Figure 1. 

A mixture of these receptors is expressed presynaptically on striatal afferents32,48 and 

postsynaptically on all striatal cell types.34,49-52 Muscarinic receptors are divided into two 

classes—M1 and M2 classes. M1 class receptors are composed of M1, M3, and M5 

receptors and couple to Gq/11 Gα proteins to activate protein kinase C and phospholipase C. 

M2 class receptors, comprised of M2 and M4 type receptors, couple to Gi/o G proteins to 

inhibit adenylyl cyclase, subsequently closing calcium channels and opening inward-

rectifying potassium channels. Although MSNs express both M1 and M4 receptors, M4 

mAChRs are more prominent on direct pathway MSNs.53,54

Muscarinic receptors modulate both intrinsic excitability and synaptic inputs of MSNs. 

Activation of postsynaptic dendritic and somatic M1 receptors is hypothesized to increase 

MSN excitability.50,55-57 Dendritic M1 receptor activation decreases the probability of 

inhibitory potassium channels opening,57-59 whereas somatic M1 receptor activation 

enhances sodium currents; both would be predicted to increase neuronal excitability.60 

Conversely, excitatory cortical afferents onto MSNs are heavily populated with M2 and M3 

type receptors.61 Activation of these inhibitory presynaptic mAChRs decreases glutamate 

release from afferents and diminishes excitatory drive onto MSNs.62-67 A recent study using 

optical techniques confirmed this idea at the level of vesicle release.64
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Muscarinic receptors have not been as well characterized on striatal GABAergic 

interneurons, but ex vivo physiology suggests they may regulate the function of parvalbumin 

positive fast spiking interneurons (FSIs). Striatal FSIs make strong inhibitory synapses onto 

MSNs,68,69 whose strength is reduced by acetylcholine via M1 and M4 receptors.34 While 

the function of striatal GABAergic interneurons in vivo is unclear, they are activated during 

basal-ganglia dependent decision tasks,70 so cholinergic modulation may be critical during 

reward-related decision making.

Finally, cholinergic interneurons themselves are regulated by acetylcholine via 

autoreceptors. Activation of the M4 autoreceptor leads to membrane hyperpolarization and 

inhibition of calcium channels. Dorsal striatal cholinergic interneurons also express M2 

receptors not found in the ventral striatum.71 These finding suggest that M4 and/or M2 

autoreceptors serve to homeostatically regulate acetylcholine release.71,72 Indeed, it is 

interesting to consider how the conditioned pause response observed in cholinergic 

interneurons might briefly relieve cholinergic interneurons of this autoregulation, allowing 

them to fire in a more concerted fashion after the pause.

Striatal Nicotinic Acetylcholine Receptors

Nicotinic receptors also play a major role in influencing striatal output. Ionotropic nAChRs 

are widely expressed on presynaptic terminals throughout the CNS, modulating the release 

of neurotransmitter; for an excellent review of this topic, see (Exley and Cragg, 2008).73 In 

the striatum, nAChRs are found on dopaminergic73 and cortical afferents.32 Nicotinic 

signaling regulates both the excitability and release properties of striatal FSIs, as well.34 

Structurally, neuronal nicotinic receptors are pentameric oligomers, containing a 

combination of α- and β-subunits (α2-α10 and β2-β4).74-76 These pentameric receptors can 

homomeric or heteromeric, with each subunit conferring unique physiological properties. 

Differential subunit expression may allow cell-type specific regulation within the 

microcircuit.

The most well-known function of striatal nicotinic receptors is in cholinergic control of local 

dopamine release.31,48,77 Pharmacological evidence suggests that presynaptic nAChRs on 

dopaminergic terminals facilitate the release of dopamine.30,47,73 In fact, optogenetic 

activation of striatal cholinergic interneurons can locally control the release of dopamine 

within the striatum without a strict requirement for action potentials in midbrain dopamine 

neuron somata.78,79 Interestingly, expression patterns of nicotinic receptors differ across the 

striatum; research has suggested that α4α5β2 and α6β2β3 nAChR's regulate dopaminergic 

axons in the dorsal striatum, while α6α4β2β3 nAChRs dominate in the ventral striatum.
80-82 Furthermore, α6 subunit expression is limited to catecholaminergic neurons.83,84 

Nicotinic receptors, however, are notoriously prone to desensitization, a process by which, 

after activation, receptors become unresponsive for a period of time.31,85 Nicotinic receptor 

properties thus create a time window for striatal cholinergic interneurons to modulate 

dopaminergic signals, terminated by desensitization. Given tonically firing interneurons and 

the resultant tone on nicotinic receptors, chronic receptor desensitization may dampen 

dopaminergic release under baseline conditions. Brief pauses in cholinergic interneuron 

activity, as seen during the conditioned pause response, could relieve desensitized nAChRs 
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and boost subsequent incoming dopaminergic signals.73 Amplification by synchronous 

firing of cholinergic interneurons and midbrain dopamine neurons may also occur.44 Thus, 

nAChRs are in an important position to filter the presynaptic signals arriving in the striatum 

and heading to downstream nuclei.

Cholinergic Signaling and Neurological Disease

Many of the suspected functions of striatal cholinergic interneurons derive from their 

(suspected) dysfunction in disease states.86,87 Below, we will discuss current literature on 

the potential role of striatal cholinergic interneurons in a subset of the diseases in which they 

are implicated.

Parkinson's Disease

Parkinson's Disease (PD) is characterized by the progressive loss of midbrain dopamine 

neurons. Many of the cardinal motor symptoms (rigidity, bradykinesia, postural instability, 

resting tremor) are believed to relate to dopamine depletion. Though abnormalities in other 

brainstem neuromodulatory systems or cortical neurodegeneration may contribute to 

cognitive and affective disturbances in PD, these symptoms may also derive from 

disturbances in dopamine signaling. Before the advent of dopamine replacement therapy 

with levodopa in the mid-1960's, anticholinergic (antimuscarinic) drugs were the primary 

medication class available for Parkinson patients. Clinical evidence for this use came in the 

late 1800's when Charcot first discovered the beneficial effects of Atropa belladonna 
(atropine) in reducing excessive salivation in parkinsonian patients.88 Another study 

supported the role of acetylcholine in motor control, noting that parkinsonian symptoms 

worsened when patients were treated with the cholinesterase inhibitor physostigmine.89 

Though used infrequently since the advent of levodopa and potent dopamine agonists, 

understanding how antimuscarinic agents improve motor function in PD may also illuminate 

the function of cholinergic interneurons.

Studies in PD animal models and human postmortem tissue have demonstrated increased 

striatal cholinergic tone, implying a hypercholinergic state in PD,90-94 although other studies 

have countered this assertion.95-97 Interestingly, while cholinergic interneuron firing rate 

appears to be unchanged,39,47 interneurons may be more likely to fire synchronously, 

leading to different functional properties of the striatal microcircuit.47 Together, these results 

suggest that either release of acetylcholine is enhanced or its breakdown and reuptake is 

reduced, so that for a given number of action potentials there is increased striatal 

acetylcholine. The increase in acetylcholine levels was long hypothesized to occur due to 

loss of inhibitory dopamine tone on D2 receptors of cholinergic interneurons.92,98 However, 

one study provided in vitro evidence that increased cholinergic tone in parkinsonian animals 

may occur due to RGS4-related reductions in the efficacy of M4 inhibitory autoreceptors on 

cholinergic interneurons.99 In PD, normal cholinergic tone could be restored by enhancing 

M4 autoreceptor function or by counteracting the increased RGS4 expression in cholinergic 

interneurons.86 This therapeutic strategy, which might avoid some of the negative side 

effects (such as sedation and cognitive impairment) associated with nonselective 

antimuscarinic agents, has not yet been pursued.
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Levodopa-Induced Dyskinesia

While dopamine replacement with levodopa or dopamine agonists is an effective treatment 

for many of the motor symptoms of PD, long-term therapy is limited by the emergence of 

debilitating abnormal involuntary movements, referred to as levodopa-induced dyskinesia 

(LID). LID is progressive: the longer the exposure to levodopa, the more likely dyskinesias 

will develop.100 Recent studies suggest increased cholinergic signaling may be a key 

contributor to LID.101,102 To test the hypothesis that cholinergic interneurons contribute to 

LID, in one study cholinergic interneurons were ablated in a cell-type specific fashion via 

Cre-dependent viral expression of the diptheria toxin A subunit (DT-A) in hemiparkinsonian 

mice expressing Cre under the choline acetyltransferase (ChAT) promoter. This study found 

a marked decrease in abnormal involuntary movements (AIMs) in levodopa-treated mice 

with ablation of interneurons as compared to controls.102 Interestingly, this treatment was 

able to reduce LID without decreasing therapeutic efficacy of levodopa, a major limitation of 

many antidyskinetic therapies. Other studies have also implicated cholinergic interneurons in 

LID: In two PD mouse models, one group showed increased extracellular signal-regulated 

kinase (ERK), phosphorylation in cholinergic interneurons after repeated levodopa exposure. 

Furthermore, they found that inhibition of MEK1/2, an ERK phosphorylator, attenuated the 

motor symptoms of LID without reducing akinesia.101 Another study by the same group 

found that histamine H2 receptor responses were enhanced in cholinergic interneurons in 

mouse LID models.103 Finally, several studies have found that chronic treatment with 

nicotine or nicotinic drugs can ameliorate LID in multiple animal models.104,105 Together, 

such studies suggest that cholinergic interneurons and their signaling pathways are potential 

targets for future therapeutic development.

Dystonia

Dystonia is characterized by involuntary, sustained muscle contractions, with repetitive 

twisting movements and abnormal postures. Anticholinergics have been a first-line 

pharmacological therapy for dystonia, though their mechanism of action is unknown and 

their side effects are often dose-limiting. Animal models of dystonia have highlighted 

dysfunctional cholinergic signaling as a potential pathophysiological feature.86 In the most 

common type of primary generalized dystonia, DYT1, there is a mutation in the dyt1 gene, 

leading to dysfunction of the protein torsinA.106 In a mouse model of DYT1, researchers 

found altered D2 coupling in cholinergic interneurons, causing excitation rather than 

inhibition, and an attenuated in vitro pause response.107,108 Several groups have also 

observed reversible alterations in striatal synaptic plasticity in multiple animal models of 

dystonia, which appear to be related to cholinergic dysfunction, as they are reversed by 

treatment with anticholinergics.109-113 These findings suggest not only that cholinergic 

interneurons may be integral to the physiological abnormalities observed in dystonia across 

multiple etiologies, but that cholinergic signaling may be a therapeutic target at multiple 

sites within the striatum. Understanding the specific cholinergic receptor subtypes involved 

may allow for more targeted therapies.
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Tourette Syndrome

Gilles de la Tourette Syndrome (TS) is a neurological disorder characterized by disabling 

tics, which are repetitive, involuntary and nonrhythmic in character. Tics affect 

approximately 5% of school-aged children, often arising at 3-9 years of age.114 Current 

research suggests that habit-related basal ganglia circuitry, specifically the dorsolateral 

striatum (DLS), may contribute to TS.115,116 Interestingly, postmortem human studies have 

shown that cholinergic interneurons are reduced by approximately 50% in patients with TS.
117 To test whether loss of cholinergic interneurons is causative of TS, one group selectively 

ablated cholinergic interneurons in the DLS, which resulted in aberrant tic-like movements 

in mice after amphetamine administration and stress. This study demonstrated a potential 

causative role of cholinergic interneurons in TS.118

Potential Mechanisms of Striatal Cholinergic Signaling in Basal Ganglia 

Function

While cholinergic interneurons are likely to play a major role in striatal function in normal 

and disease states, the mechanism by which they control striatal output is unclear. We will 

focus on two (of many) hypotheses regarding regulation of striatal function by cholinergic 

interneurons: 1) interplay of cholinergic and dopaminergic modulation of striatal output, and 

2) cholinergic interneuron synaptic integration, the pause response, and synchronous 

discharge. Cholinergic modulation of striatal synaptic plasticity, a third mechanism, is likely 

to be extremely important both in the normal function of the basal ganglia in flexible 

behavior, but also in disease contexts. Striatal long-term potentiation119 and 

depression119-124 are present at excitatory synapses onto striatal MSNs, which can be 

modulated by acetylcholine. As cholinergic regulation of synaptic plasticity is the topic for 

another, related review by Deffains and Bergman, it will not be discussed further here.

Cholinergic and Dopaminergic Interplay Within the Striatum

Striatal dopamine terminals and cholinergic interneurons have a complex bidirectional 

synaptic connectivity. Historically believed to antagonize each other, recent evidence 

supports the idea that dopamine and acetylcholine are more synergistic. Dopamine neurons 

regulate the function of cholinergic interneurons and vice versa, and likely do so over 

different timescales due to the kinetics of various cholinergic receptors. This reciprocal 

relationship may also depend on cotransmitters, such as glutamate and GABA (discussed in 

detail below; see Figure 2). While the functional corelease of two or more neurotransmitters 

remains controversial, particularly in higher mammals, accumulating physiological evidence 

of functional corelease has been fueled by the use of cell-type specific manipulations and 

optogenetics in rodents. Recent work suggests dissociable roles for each of several 

transmitters released by neuromodulatory neurons.125,126 The functional role of corelease in 

the striatal microcircuit is still being explored.

Cholinergic interneurons receive synaptic input from midbrain dopamine neurons and 

express both Gs-coupled dopamine D5 receptors (from the D1 family) and Gi-coupled D2 

receptors.127,128 D1 agonists increase the excitability of striatal cholinergic interneurons in 

vitro,129-131 whereas D2 agonists inhibit the pacemaking of cholinergic interneurons.25,132 
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However, the net effect of synaptically released dopamine on cholinergic interneuron 

excitability in vivo is unclear. Furthermore, as midbrain dopamine neurons corelease 

dopamine, glutamate, and GABA, dopamine may not mediate all observed effects (see 

Figure 2).133-136

In addition, cholinergic interneurons synapse onto dopamine terminals, regulating their 

transmitter release. In vitro optogenetic activation of cholinergic interneurons is sufficient to 

drive increases in dopamine levels in the dorsal and ventral striatum.78,79 This relationship 

had been suspected based on pharmacological experiments, but these studies using cyclic 

voltammetry to measure local dopamine concentrations, provided direct evidence. 

Synchronous optical activation of thalamostriatal inputs, the main excitatory afferent input to 

cholinergic interneurons, also triggered dopamine release disynaptically.79 This mechanism 

may be engaged in vivo when a salient sensory stimulus (encoded by the thalamic inputs to 

striatal cholinergic interneurons), triggers both cholinergic interneuron activity and 

disynaptic dopamine release. These studies were groundbreaking in that they corroborated 

older pharmacological studies and provided direct evidence for a cooperative relationship 

between striatal dopamine and acetylcholine, in which cholinergic neurons can control 

dopamine release independently of activity in the midbrain. This observation may be critical 

in the context of learning as well as disease, as cholinergic interneurons become more 

synchronized during learning tasks,41 and in parkinsonism.47

The final readout of this interplay is the activity of striatal MSNs, the sole output neurons. 

Interestingly, modulation of MSN activity may be mediated in part by noncanonical 

neurotransmitter release from both cholinergic interneurons and dopamine terminals. First, 

cholinergic interneurons appear to release glutamate.137,138 This recent finding was fueled 

by the observation that striatal cholinergic interneurons express the glutamate transporter 

VGlut3.139,140 The advent of optogenetics permitted selective activation of groups of 

cholinergic interneurons, making it possible to detect modest glutamate responses in MSNs.
64 Second, optogenetic stimulation of dopamine terminals in rodent striatal slice 

preparations triggers glutamate and/or GABA release, in addition to dopamine.133-136 The 

function of dopamine terminal-derived glutamate is unknown: MSN responses are relatively 

small and confined to the ventral striatum,134 but presumably increase activity. Dopamine 

terminal-derived GABA responses may also reflect cholinergic regulation. GABAergic MSN 

synaptic responses have been observed by several groups in response to activation of 

cholinergic interneurons.138,141-143 This response appears to be mediated in part by GABA 

released from dopamine terminals, likely triggered by the same nicotinic mechanism 

identified by labs exploring cholinergic control of dopamine from the same terminals.
78,79,138 In addition, activation of cholinergic interneurons triggers GABA release from a 

type of local GABAergic interneurons neurogliaform cells, which may allow signaling over 

complementary timescales.141 Both components of the inhibitory response depend on 

activation of nicotinic receptors, and thus would be subject to the same type of 

desensitization effects as cholinergic interneuron-driven dopamine release, making it likely 

to act during specific time windows when desensitization is relieved.138,141
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Synchronization of Interneuron Discharge

One intriguing property of striatal cholinergic interneurons is their tendency to fire 

synchronously,38,41,47,144 leading investigators to hypothesize that they form synchronous 

neuronal assemblies during the conditioned pause response.38,39,41 Investigators have found 

significant correlated firing between nearby cholinergic interneurons at a time lag of zero 

milliseconds, suggesting synchronized firing.44,47,144,145 This synchronization exists both in 

and out of task events and persists in parkinsonian animals, suggesting cholinergic 

interneurons provide a timing signal, which complements the reward-predictive signal of 

dopamine neurons in the same context.44 Candidate synaptic sources for synchrony include 

dopaminergic, cortical, thalamic, and intrastriatal neurons.

Cholinergic interneurons receive significant input from midbrain dopamine neurons; single 

dopamine neurons form large axonal arborizations within the striatum, innervating many 

cholinergic interneurons.146 Anatomically, these inputs are a potential source of 

simultaneous activation of striatal cholinergic interneurons, but as dopamine signals 

postsynaptically through slower G-protein coupled receptors and second messengers, it is 

not a likely candidate for mediating millisecond timescale synchrony. Glutamate or GABA, 

signaling via fast ionotropic receptors, are potential candidates underlying synchrony.

Cortical Inputs to Cholinergic Interneurons

Although the striatum as a whole receives heavy excitatory cortical input,147,148 

corticostriatal projections to cholinergic interneurons are relatively sparse and have been 

difficult to isolate anatomically.149 Physiological evidence suggests a monosynaptic 

connection does exist.150-152 Thalamic terminals appear to be more numerous than cortical 

afferents,149,152 though a recent rabies tracing study shows many cortical neurons project to 

cholinergic neurons, as well.153 Further work on corticostriatal connectivity to cholinergic 

interneurons will be needed to determine if this is a potential source of synchrony.

Intrastriatal inputs to Cholinergic Interneurons

Cholinergic interneurons express GABAA receptors,154 and are surrounded by GABAergic 

neurons, including medium spiny neurons, the principal neurons of the striatum, and local 

GABAergic interneurons.143 The role of these neurons in controlling synchrony in 

cholinergic interneurons is unknown, but recent work shows there are extensive anatomical 

connections between medium spiny neurons and cholinergic interneurons.153,155 

Interestingly, there are minimal correlations between the firing of these two cell populations 

in vivo in simultaneous single-unit recordings from the striatum,156 which may reflect a lack 

of monosynaptic connectivity, or weakness of individual connections. Local GABAergic 

interneurons could in principle also inhibit cholinergic interneurons, though there is not 

strong evidence for this connection as measured by paired recordings in vitro.69

Thalamic Inputs to Cholinergic Interneurons

The richest afferent projection to striatal cholinergic interneurons originates in the 

intralaminar nuclei of the thalamus, consisting of excitatory glutamatergic fibers.157 This 

thalamic area corresponds to the centromedian- parafascicular (CM-PF) nuclear complex in 

primates and the lateral and medial parafascicular (PF) nuclei in the rat. Thalamic axons, 
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similar to dopaminergic and cholinergic axons, arborize extensively in the striatum and 

innervate cholinergic interneuron cell bodies as well as proximal and distal dendrites.158 

There is also good evidence that thalamic inputs to cholinergic interneurons are functional 

and control firing, as measured in vitro.79,132 In fact, synchronized activation of thalamic 

inputs can drive disynaptic dopamine release via cholinergic interneurons.78 These inputs 

are likely to transmit relevant sensory information to the striatum: the CM-PF area of the 

thalamus responds to salient and unexpected events, which alert the animal to pay attention 

to their surrounding environment.132 Thus, given their dense projections and wide coverage 

of the striatum, as well as strong evidence for their functional control of striatal cholinergic 

interneurons, thalamic inputs are poised to contribute to interneuron synchrony.

Clinical Importance, Future Research, and Conclusions

Cholinergic interneurons powerfully regulate locomotion and procedural learning by 

modulating the excitability of MSNs, the plasticity of corticostriatal synapses, and the local 

release of dopamine through local release of acetylcholine. These neurons are pivotal for 

normal striatal function and their dysfunction may complicate neuropsychiatric disease. 

There is still much to be done to determine the precise mechanisms by which cholinergic 

interneurons regulate striatal output in both normal and disease states, and evolving 

experimental methods, such as transgenic models of disease, optogenetics, and parallel 

recording techniques will help elucidate these mechanisms. While there are many potential 

approaches to these questions, some potential experiments to address these outstanding 

questions are outlined below.

Normal Function of Cholinergic Interneurons In Vivo

To understand the role of cholinergic neurons in vivo under normal conditions, it will be 

important to both observe and manipulate these neurons during basal ganglia-dependent 

behaviors. Historically, there have been two major obstacles impeded these goals. First, as 

cholinergic interneurons are relatively sparse, it is challenging to record numerous neurons 

simultaneously using traditional recording devices, which use either one or a small bundle of 

metal electrodes. Second, there existed no method to manipulate these neurons specifically 

in vivo, as pharmacological agents and stimulating electrodes would nonspecifically activate 

many surrounding cells. However, the advent of new recording techniques, such as larger 

and less tissue-disruptive electrode arrays,159 as well as deep calcium imaging in awake-

behaving animals, may help overcome the first of these issues. Researchers have already 

taken advantage of Choline Acetyltransferase (ChAT) – Cre recombinase driver lines, which 

are available in mice and rats, to drive cell-type specific expression of optogenetic 

tools142,160,161 and calcium indicators in cholinergic neurons.162-166 Genetically-encoded 

calcium indicators can thus be expressed in cholinergic interneurons, combined with 

techniques such as fiber photometry, in which a surgically implanted optical fiber can detect 

bulk fluorescence signals in deep structures such as the basal ganglia.153 While technically 

challenging, such techniques have already been used for other cell types in the striatum in 

animals performing behavioral tasks.167,168 To monitor individual cholinergic interneurons 

independently within the overall ensemble during behavioral tasks, these indicators can also 

be combined with implanted GRIN lenses and head-mounted mini-microscopes.169 These 
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observational techniques will allow investigators to determine if small ensembles of 

cholinergic interneurons are engaged during specific aspects of behavior. Of particular 

interest would be looking at the conditioned pause response across many neurons, to further 

explore the synchrony seen in pairs of neurons recorded in monkeys.47

To establish causal relationships between cholinergic interneuron firing and specific 

behaviors, it is crucial to manipulate the activity of cholinergic interneurons on a physiologic 

timescale. Historically, this was not possible with electrical or pharmacological stimulation 

due to lack of specificity in the former and nonphysiological timescale in the latter. 

However, the combination of cell-type specific tools and optogenetics allows for selective 

activation or inhibition of neuronal ensembles at millisecond timescales, and patterns of 

stimulation can mimic what is seen in vivo during behavior. While optogenetic 

manipulations can often synchronize neurons in a nonphysiological way, in the case of 

cholinergic interneurons it may be a way to mimic their natural synchrony. The effects of 

stimulation or inhibition of interneurons can now be studied as it alters locomotor behavior, 

decision-making, and reward-related behavior. A pioneering study used optical inhibition of 

cholinergic interneurons during reinforcement behavior,142 finding that optical inhibition of 

striatal cholinergic interneurons blocked cocaine conditioned place preference. These same 

tools for recording and manipulating the activity of cholinergic interneurons can be used in 

the context of animal models of disease to probe their role in disease phenotypes. Although 

these experiments present technical challenges, the pioneering work of several laboratory 

groups is making such technology more feasible and accessible to the scientific community.

Long-term modulation of cholinergic interneuron activity can be achieved in parallel with 

these recording techniques. These chronic manipulations may trigger adaptive changes in 

basal ganglia circuits, but nevertheless provide an interesting way to address the role of 

interneurons in chronic disease context. Cell type-specific chronic manipulation can be 

achieved using Cre-dependent neuromodulatory or ablation techniques. Specific neuronal 

populations can now be eliminated using caspase or diphtheria toxin signaling,118,170,171 or 

their synaptic output can be selectively manipulated using tetanus toxin or designer G-

protein coupled receptors, also called DREADDs (designer receptors exclusively activated 

by designer drugs).172,173 Given the hypothesized function of cholinergic interneurons in 

movement disorders, chronic cell type-specific manipulations in animal models may 

ameliorate or worsen disease symptoms. Such methods have been validated in two recent 

studies finding that cell-type specific ablation of cholinergic interneurons (1) reduced 

levodopa-induced dyskinesia102 and (2) reduced the threshold for tics.118 Similar 

experiments in other disease models would further support the centrality of cholinergic 

interneurons in these disorders. Building on historic pharmacological studies, these newer 

manipulations have the ability to dissociate the role of striatal cholinergic interneurons 

versus other sources of acetylcholine in the striatum and brain at large.

Finally, the complex relationship of striatal dopaminergic and cholinergic neurons might be 

parsed in vivo using these novel techniques for both neuronal recording and manipulation. 

For example, though pharmacological studies and in vitro physiology have identified a 

number of potential mechanisms by which dopamine release may regulate the activity of 

cholinergic interneurons (and consequently, striatal output neurons), these findings have not 
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been verified under physiological conditions in vivo. We know that firing of midbrain 

dopamine neurons and the cholinergic pause response are approximately synchronous,44 but 

we do not know whether this relationship is causal. Investigators might probe this 

relationship by simultaneous optical stimulation of dopamine terminals and recording of 

cholinergic interneurons (and/or output neurons) in vivo, during relevant decision-making or 

reward-related tasks. Such experiments could demonstrate causal relationships between 

activity in these two populations.

Function of Thalamostriatal Inputs to Cholinergic Interneurons

While the anatomic connection between the thalamus and the striatum, and the dense 

innervation of striatal cholinergic interneurons is well-established, the function of these 

inputs is unclear. Using new recording and optical stimulation techniques to investigate the 

role of thalamostriatal inputs during both normal basal ganglia-dependent behaviors and in 

disease models may shed light on the role of thalamostriatal inputs onto MSNs versus 

cholinergic interneurons. For example, the specific sources of cholinergic interneuron 

synchrony, the synaptic inputs of tonically active neurons could be silenced in a cell-type 

specific fashion during in vivo recordings. Thalamostriatal inputs might be inactivated using 

optogenetic or chemogenetic techniques, observing both the resulting changes in striatal 

activity and behavioral effects in movement, decision-making, and reward responses.

Pharmacological Dissection of Striatal Cholinergic Signaling

Though optogenetics and new recording techniques will shed light on the function of 

cholinergic interneurons, these techniques do not currently translate to patient care. 

Cholinergic and anticholinergic drugs have major shortcomings therapeutically, largely due 

to off-target effects. Developing a deeper understanding of how individual nicotinic and 

muscarinic receptor subtypes participate in regulation of striatal microcircuitry will be an 

important step toward harnessing the positive effects of these powerful drugs while 

minimizing harmful off-target effects. Many of the functions investigated so far do have 

some receptor subtype specificity, such as the specific nicotinic receptor subunits expressed 

on dopamine neurons and not on other neighboring cells75,84 and more specific functions 

may motivate development of additional therapeutic agents. In addition, cell-type specific 

deletion of particular receptor subtypes or downstream signaling molecules may permit even 

finer dissection of the receptors involved in striatal cholinergic signaling in vivo.174,175

Building on the pioneering work of clinicians and primate neurophysiologists, we conclude 

that this is a pivotal time in the investigation of striatal cholinergic interneurons. We can now 

utilize novel neurophysiology techniques and cell-type specific manipulations to discover 

the role of cholinergic interneurons in both health and disease.
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Figure 1. 
Cholinergic Interneurons in the Striatal Microcircuit. Top: Coronal schematic of the human 

basal ganglia. Striatal medium spiny neurons are highlighted in the caudate and putamen as 

blue and white circles. Bottom: Illustration of the distribution of striatal cholinergic 

receptors and sites of cholinergic regulation (arrows). Abbreviations: D2 (dopamine type 2-

like receptor), D5 (dopamine type 5-like receptor), nAChR (nicotinic acetylcholine 

receptor), M1,2,3, or 4 (muscarinic acetylcholine receptor), ACh (acetylcholine), FSI (fast 

spiking interneuron) NMDA (N-methyl-D-aspartate receptor), AMPA (α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptor), GABA (γ-Aminobutyric acid).
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Figure 2. 
Neurotransmitter corelease from striatal neurons. Top Left: Cholinergic interneurons 

corelease ACh and glutamate. Top Right: Midbrain dopaminergic neurons corelease 

dopamine, glutamate and/or GABA. Only a subset of all receptors are illustrated. See text 

for details. Abbreviations: ACh (acetylcholine), GABA (γ-Aminobutyric acid), D1 or D2 

(dopamine type 1 or 2-like receptor), nAChR (nicotinic acetylcholine receptor), M1 or 4 

(muscarinic acetylcholine receptor), GABAA (γ-Aminobutyric acid type A receptor), 

NMDA (N-methyl-D-aspartate receptor), AMPA (α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor).
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