
Astrocyte-specific DJ-1 overexpression protects against 
rotenone-induced neurotoxicity in a rat model of Parkinson’s 
disease

Briana R. De Miranda1,2, Emily M. Rocha1,2, Qing Bai1,2, Amina El Ayadi1,2, David Hinkle1,2, 
Edward A. Burton1,2,3, and J. Timothy Greenamyre1,2,3,*

1Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, 
Pennsylvania

2Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania

3Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, 
Pennsylvania

Abstract

DJ-1 is a redox-sensitive protein with several putative functions important in mitochondrial 

physiology, protein transcription, proteasome regulation, and chaperone activity. High levels of 

DJ-1 immunoreactivity are reported in astrocytes surrounding pathology associated with idiopathic 

Parkinson’s disease, possibly reflecting the glial response to oxidative damage. Previous studies 

showed that astrocytic over-expression of DJ-1 in vitro prevented oxidative stress and 

mitochondrial dysfunction in primary neurons. Based on these observations, we developed a 

pseudotyped lentiviral gene transfer vector with specific tropism for CNS astrocytes in vivo to 

overexpress human DJ-1 protein in astroglial cells. Following vector delivery to the substantia 

nigra and striatum of adult Lewis rats, the DJ-1 transgene was expressed robustly and specifically 

within astrocytes. There was no observable transgene expression in neurons or other glial cell 

types. Three weeks after vector infusion, animals were exposed to rotenone to induce Parkinson’s 

disease-like pathology, including loss of dopaminergic neurons, accumulation of endogenous α-

synuclein, and neuroinflammation. Animals over-expressing hDJ-1 in astrocytes were protected 

from rotenone-induced neurodegeneration, and displayed a marked reduction in neuronal oxidative 

stress and microglial activation. In addition, α-synuclein accumulation and phosphorylation were 

decreased within substantia nigra dopaminergic neurons in DJ-1–transduced animals, and 

expression of LAMP-2A, a marker of chaperone mediated autophagy, was increased. Together, 

these data indicate that astrocyte-specific overexpression of hDJ-1 protects neighboring neurons 
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against multiple pathologic features of Parkinson’s disease and provides the first direct evidence in 
vivo of a cell non-autonomous neuroprotective function of astroglial DJ-1.
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Introduction

DJ-1 is a pleiotropic protein containing a ThiJ/PfpI domain characteristic of a protein 

chaperone, and is expressed ubiquitously in all human cell types (Nagakubo et al., 1997; S.-

J. Lee et al., 2003; Tao and Tong, 2003; Wilson et al., 2005). Autosomal recessive mutations 

in the PARK7 gene encoding DJ-1 are linked to a rare, familial type of early-onset 

parkinsonism (Bonifati et al., 2002; 2003; Tao and Tong, 2003). However, even in cases of 

idiopathic Parkinson’s disease (PD) with no apparent PARK7 mutations, postmortem 

analysis reveals that high levels of oxidized DJ-1 accumulate in neurons and astrocytes of 

the ventral midbrain (Bandopadhyay et al., 2004; Choi et al., 2006).

Multiple lines of evidence suggest that, within neurons, DJ-1 is involved in maintaining 

mitochondrial function (Miller et al., 2003; Canet-Avilés et al., 2004; Blackinton et al., 

2005; Hayashi et al., 2009; Junn et al., 2009; N. J. Larsen et al., 2011; Thomas et al., 2011), 

protein transcription and processing (Takahashi et al., 2001; Shinbo et al., 2005; J. Xu et al., 

2005; Zhong et al., 2006; Lu et al., 2016;), neurotransmitter reuptake (Luk et al., 2015; 

Piston et al., 2017), proteasome activity (Saito et al., 2016; Moscovitz et al., 2017), and 

signal transduction (Aleyasin et al., 2010; Zhang et al., 2017; reviewed in Oh and 

Mouradian, 2017), abnormalities of which are implicated in the pathogenesis of PD. A 

highly conserved (S. Bandyopadhyay and Cookson, 2004; Bai et al., 2006;), and readily 

oxidized cysteine (Cys)106 residue suggests that DJ-1 functions in part as a redox sensor 

(Canet-Avilés et al., 2004; Taira et al., 2004; Kinumi et al., 2004; Ooe et al., 2006; 

Blackinton et al., 2009b), and is induced in substantia nigra (SN) dopamine neurons that 

experience a high degree of oxidative burden (Lin and Beal, 2006; X. Wang and Michaelis, 

2010; Winklhofer and Haass, 2010; Surmeier et al., 2017). Additionally, DJ-1 expression has 

been inversely correlated with α-synuclein toxicity and accumulation, both through 

mechanisms of direct protein interaction (Shendelman et al., 2004; Meulener et al., 2005; W. 

Zhou et al., 2006; Zondler et al., 2017), as well as the transcriptional upregulation of 

chaperone proteins (i.e. HSP70; Batelli et al., 2008; C.-Y. Xu et al., 2017).

DJ-1 has also been shown to be important in maintaining astrocytic mitochondrial function 

(Ashley et al., 2009; N. J. Larsen et al., 2011), and impairment of DJ-1 in astrocytes 

deleteriously affects primary neurons following an oxidative insult (Mullett and Hinkle, 

2011; 2009; Mullett et al., 2012). Conversely, in vitro overexpression of DJ-1 in astrocytes is 

protective against rotenone-induced mitochondrial dysfunction and reactive oxygen species 

(ROS) production in co-cultured neurons (Mullett et al., 2012). Collectively, these data 

suggest that astrocytic DJ-1 plays a cell non-autonomous role in the protection of neurons 

from the consequences of mitochondrial dysfunction.
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In a previous study, we discovered that replication-defective HIV1-based vectors 

pseudotyped with the envelope glycoprotein from Moloney Murine Leukemia Virus (MuLV) 

showed specific tropism for astrocytes within the adult rat brain (Cannon et al., 2011). Here, 

we engineered a MuLV-pseudotyped HIV1-based vector to overexpress human DJ-1 (hDJ-1) 

protein selectively within astrocytes, but not in neurons or other glial cells (microglia or 

oligodendrocytes). This new vector allowed us to test whether modulation of astrocytic DJ-1 

expression could attenuate neurodegeneration in vivo. Our data show unequivocal evidence 

that astroglial DJ-1 over-expression is neuroprotective in the rat rotenone model of PD, 

thereby providing the first direct evidence of a cell non-autonomous protective function of 

astrocyte DJ-1 in vivo.

Materials and Methods

Chemical reagents and supplies

Chemicals were purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise noted. 

Antibodies are listed in Table 1.

Lentiviral vectors

Total RNA (RNAqueous, Invitrogen, Carlsbad, CA) was isolated from human NT2 cells and 

reverse transcribed using oligo-dT primers (SuperScript III, Invitrogen). cDNA encoding 

human DJ-1 was amplified by PCR with Platinum Pfx polymerase (Invitrogen) using 

primers hDJ-1F-EcoR1 (5′-CGAATTCGGTGCAGGCTTGTAAACATA-3′) and hDJ-1R-

KpnI (5′-CGGTACCTGAGAATGGATTCCTAACGG-3′). The PCR product was digested 

with EcoRI and KpnI and inserted into the EcoRI/KpnI sites of pBlueScript to make pBS-

DJ-1, which was sequenced to verify that no mutations were introduced during 

amplification. The human DJ-1 ORF was released from pBS-DJ-1 and inserted into the 

EcoRI/SmaI sites of pIRES2-EGFP (Clontech. Mountain View, CA) to yield pDJ-1-IRES2-

EGFP. This was digested with XbaI, the 5′ overhang filled in using Klenow fragment and 

then digested with EcoRI to liberate a fragment containing hDJ-1-IRES-EGFP. The HIV-1-

based lentiviral gene transfer plasmid pHR′ (Naldini et al., 1996) was digested with BamHI/

XhoI to release the LacZ insert and re-ligated, generating pHR′-ΔLacZ. pHR′-ΔLacZ was 

digested with KpnI, the 3′ overhang removed using Klenow fragment, and then digested 

with EcoRI, so that the hDJ-1-IRES-EGFP could be ligated into the resulting blunt and 

EcoRI ends to yield pHR′-hDJ-1-IRES2-EGFP, with the DJ-1 ORF immediately 3′ of the 

CMV promoter. The control vector pHR′-IRES2-EGFP was generated similarly except for 

the absence of the DJ-1 gene. Production of transduction-competent lentiviral particles from 

these plasmids was confirmed in vitro by co-transfection of 293T cells with packaging and 

VSV-G envelope plasmids. Expression of DJ-1 was verified by Western blot analysis of cells 

transduced by the resulting viral particles, expression of GFP was confirmed by 

epifluorescence microscopy of transduced cells, and biological activity of over-expressed 

DJ-1 was confirmed by protection of transduced PC6–3 cells from H2O2 exposure 

(supplemental figure 1). High titer stocks of MuLV-pseudotyped lentiviral vector particles of 

sufficient purity for in vivo transduction were generated by 3-plasmid transfection at the at 

the University of Pennsylvania Gene Therapy Vector Core. The presence of replication-

competent lentivirus in the resulting viral stocks was excluded by monitoring p24 antigen 
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levels in the culture medium for 30 days after transduction of 293T cells. DJ-1 and control 

vector stocks were diluted in PBS to the same titer (1.78×109 GC/ml) prior to experiments.

Animals and stereotaxic surgery

Adult, middle-age (7–9 month), male Lewis rats (Charles River Laboratories, Wilmington, 

MA) were used for all experiments. Conventional diet and water were given ad libitum. 

Animals were maintained under standard temperature-controlled conditions with 12:12 hour 

light-dark cycle.

Rats were randomly assigned to control and treatment groups and blinded throughout all 

study analyses. All experiments involving animal treatment and euthanasia were approved 

by the University of Pittsburgh Institutional Animal Care and Use Committee.

Rodent stereotaxic surgery was performed under deep isoflurane anesthesia. Each animal 

was infused unilaterally with 2 μl of LV-hDJ-1/MuLV or LV-GFP/MuLV following standard 

Bregma coordinates for the substantia nigra (Bregma −5.8 mm A/P, −2.2 mm M/L, −8.5 mm 

V). Striatal infusion of 4 μl of either vector was performed at two injection depths (2 μl per 

site) to maximize vector expression throughout the dorsolateral striatum (Bregma +1.2 mm 

A/P, −3.4 mm M/L, −5; −7 mm V).

Rotenone administration and motor behavior

One week after virus infusion, rats started a 2-week behavioral training period, after which 

they were given single daily intraperitoneal (IP) injections of 2.8 mg/kg of rotenone 

suspended in 2% DMSO, 98% Miglyol 812 N as described (Cannon et al., 2009a). Motor 

deficits were assessed daily using the postural instability test (PIT; Woodlee et al., 2008) 

until each rat reached its motor behavioral endpoint, defined as the rat’s inability to 

successfully complete the PIT or loss of 25% body mass (Supplemental Figure 2). 

Behavioral tests were carried out by investigators blinded to treatment group throughout the 

study. Animals were euthanized using 0.3 mg/kg pentobarbital, followed by transcardial 

perfusion and 4% paraformaldehyde perfusion fixation.

Striatal terminal intensity

Brain sections (35 μm) through striatum were stained for tyrosine hydroxylase (TH) using 

immunofluorescence. Striatal tissue sections were analyzed using near-infrared imaging for 

density of dopamine neuron terminals (LiCor), and analyzed using Odyssey software (V3.0).

Stereology

Stereological analysis of dopamine neuron number in the SN was achieved using an adapted 

protocol from Tapias et al. (2013), employing an unbiased, automated system. Briefly, nigral 

tissue sections were stained for TH and counterstained with DAPI and NeuroTrace Dye 

(640; Life Technologies) and imaged using a Nikon 90i upright fluorescence microscope 

equipped with high N.A. plan fluor/apochromat objectives, Renishaw linear encoded 

microscope stage (Prior Electronics) and Q-imaging Retiga cooled CCD camera (Center for 

Biological Imaging, University of Pittsburgh). Images were processed using Nikon NIS-
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Elements software, and quantitative analysis was performed on fluorescent images 

colocalizing DAPI, TH, and Nissl-positive stains.

Immunohistochemistry and pathology

Brain sections (35 μm) were maintained at −20°C in cryoprotectant, stained while free-

floating, and mounted to glass slides for imaging, using a “primary antibody delete” 

(secondary antibody only) stained section to subtract background fluorescence. Fluorescent 

immunohistochemical images were collected using an Olympus BX61 confocal microscope 

and Fluoview 1000 software (Melville, NY). Quantitative fluorescence measurements were 

thoroughly monitored using standard operating imaging parameters to ensure that images 

contained no saturated pixels.

For quantitative comparisons, all imaging parameters (e.g., laser power, exposure, pinhole) 

were held constant across specimens. For presentation, screenshots of rat brain images 

(Figure 1) were modified from brainmaps.org, and released under the Creative Commons 

Attribution 3.0 License.

Statistical analysis

All data were expressed as mean values ± standard error of the mean (SEM). Statistical 

significance was evaluated between normally distributed means by parametric one-way 

analysis of variance (ANOVA) with the Tukey post-hoc test to compare multiple data sets, 

unless otherwise stated. Statistical significance for group comparisons is represented in each 

Figure as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, or as specified on graph. 

Animal survival was analyzed using the Mantel-Cox comparison of survival curve (p < 

0.05), and postural instability testing (PIT) was evaluated using the Kruskal-Wallis test, 

followed by Dunn’s multiple comparison test. To compare daily PIT performance following 

the first endpoint animal, a one-way ANOVA (p < 0.0001) with a Bonferroni multiple 

comparison test was performed between pairs of each vector treatment per day. Statistical 

analyses were carried out using GraphPad Prism software (V. 5.01).

Results

Overexpression of hDJ-1 in astrocytes

We generated an HIV1-based lentiviral vector, LV-hDJ-1, that over-expresses human DJ-1 

and GFP in transduced cells (Figure 1a). The control vector LV-GFP is isogenic, with the 

exception of the deleted hDJ-1 gene (Figure 1a). Vectors were pseudotyped with MuLV 

envelope glycoprotein in order to direct tropism to astrocytes in the adult rat brain (Cannon 

et al., 2011). Stereotaxic injections of LV-hDJ-1/MuLV increased expression of DJ-1 

through the ipsilateral SN and dorsolateral striatum (Figure 1b–c), whereas no change in 

DJ-1 expression was seen after transduction with LV-GFP/MuLV. hDJ-1 protein expression 

was found in all cellular compartments of the astrocyte (cell body and processes), but was 

not detectable in adjacent neurons or microglia, (Figure 1d–e). Quantification of total DJ-1 

(human + endogenous rat) protein within the SN of animals injected with LV-hDJ-1 revealed 

a significant (9-fold, p < 0.0001) increase in DJ-1 expression within astrocytes relative to 
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endogenous expression within microglia (IBA-1) or dopaminergic neurons (tyrosine 

hydroxylase, TH; Figure 1f).

The population of astrocytes expressing the hDJ-1 transgene were predominately 

immunoreactive for a marker of fibrillary-type astrocytes, glial fibrillary acidic protein 

(GFAP), and shared relatively low colocalization with a marker for protoplasmic astrocytes, 

aldehyde dehydrogenase (ALDH)-1L1 (p < 0.0001; Figure 1g). LV-DJ-1/MuLV or LV-GFP/

MuLV infusion into the rat brain provoked no neurological abnormalities, induced minimal 

pathology immediately surrounding the injection site, and no apparent gliosis or cellular 

activation was observed beyond the immediate needle tract.

Astrocytic overexpression of hDJ-1 protects dopaminergic neurons

Rotenone, an organic pesticide, is a classic mitochondrial complex I inhibitor that 

reproduces key pathological features of PD in rat models, including the selective killing of 

dopaminergic neurons (Cannon et al., 2009a). As such, rotenone treatment induced 

progressive motor disability until all rats reached a predefined endpoint. During this 

endpoint study, animals that received LV-DJ-1/MuLV infusion did not significantly differ in 

total survival time post rotenone treatment from those receiving the LV-GFP/MuLV control 

vector, (p = 0.147; Figure 2b). Similarly, hDJ-1 expressing animals did not differ 

significantly in motor function compared to LV-GFP/MuLV control animals (p = 0.094; 

Figure 2c).

Stereological analysis of dopaminergic neuron survival within the SN following rotenone 

treatment revealed a ~38% loss of TH-expressing neurons in animals that received the 

control LV-GFP/MuLV vector (p < 0.05 versus vehicle-exposed LV-GFP/MuLV animals). In 

contrast, dopaminergic neuronal loss following rotenone exposure was significantly 

attenuated in animals overexpressing astrocytic hDJ-1 on the side of the brain ipsilateral to 

the vector injection (Figure 2d–e). Consequently, the number of nigral dopaminergic 

neurons in rats that received hDJ-1 and rotenone did not differ significantly from control rats 

that were treated with either LV-hDJ-1/MuLV or LV-GFP/MuLV but did not receive 

rotenone. Importantly, neither vector (LV-GFP/MuLV control or LV-DJ-1/MuLV) alone 

affected the number of dopaminergic neurons.

The density of dopaminergic neuronal terminals projecting to the dorsolateral striatum from 

the SN was estimated by quantitative near-infrared immunofluorescence to measure TH 

expression. Following rotenone exposure, animals receiving LV-DJ-1/MuLV showed 

approximately 10% more striatal TH expression that control animals (p < 0.05) indicating 

that dopaminergic terminals were protected by astrocytic DJ-1 over-expression (Figure 2d, 

f).

Neuronal mitochondrial dysfunction is attenuated by astrocytic hDJ-1

As a prototypical complex I inhibitor, rotenone induces significant mitochondrial 

dysfunction when administered in vivo. The reduction of complex I electron transfer and 

subsequent mitochondrial damage and oxidative stress is hypothesized to be the 

predominant cause of dopaminergic neuron death following rotenone exposure (Sherer et al., 

2003b). The complex I subunit, NADPH:Ubiquinone Oxidoreductase Core Subunit S3 
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(NDUFS3), is imported into the mitochondria following nuclear transcription, a process that 

is downregulated in dysfunctional mitochondria (Devi et al., 2008; Taurino et al., 2012; Di 

Maio et al., 2016). Measurement of the NDUFS3 protein within the dopamine neurons of the 

SN of animals following endpoint rotenone administration revealed a reduction in protein 

expression and colocalization with the mitochondrial marker TOM20 (Figure 3a). This 

reduction was significantly attenuated in animals that received the hDJ-1 transgene, 

indicating that astrocytic DJ-1 expression protected neuronal mitochondrial function (p < 

0.05; Figure 3b).

Astrocytic overexpression of hDJ-1 reduces dopaminergic neuron nitrosative stress

Oxidative stress produced by both the direct inhibition of complex I and downstream 

inflammatory signaling following rotenone treatment, produces significant damage to 

proteins and other cellular components. The production of peroxynitrite from NO and 

superoxide may lead to nitrosylation of proteins at tyrosine residues and is commonly 

assessed by 3-nitrotyrosine (3-NT) levels (Pennathur et al., 1999). Following rotenone 

treatment, 3-NT levels within dopamine neurons of the SN were significantly increased over 

vehicle treated animals; however, this was normalized in animals that received the hDJ-1 

transgene (p < 0.05; Figure 3c–d).

Astrocytic hDJ-1 overexpression suppresses rotenone-induced neuroinflammation

At baseline (no rotenone treatment), astrocytic hDJ-1 overexpression did not significantly 

alter IBA-1-positive microglial cell number within the SN (Figure 4c; p = 0.056). Following 

rotenone exposure, a robust activation of microglia was observed in the SN, which was 

indicated by a shift in morphology from a resting, ramified cell body expressing secondary 

and tertiary process branches to an amoeboid, phagocytic cell with little if any process 

branching (Figure 4a–c). The morphological shift to activated microglia was additionally 

measured using the lysosomal protein CD-68, indicating elevated phagocytic activity (p < 

0.001; Figure 4a, d). Astrocytic overexpression of hDJ-1 reduced the abundance of activated 

microglia in SN; both the total number of IBA-1-postitive microglial cells, as well as the 

amount of CD-68 expressed per cell were reduced (p < 0.05; Figure 4a–c). Astrocyte 

activation was measured using total GFAP-positive cell number within the SN, and was 

significantly increased in animals treated with rotenone and the control vector LV-GFP/

MuLV (p < 0.05), but suppressed in animals receiving rotenone and LV-hDJ-1/MuLV (p < 

0.01; Figure 4b, d).

DJ-1 reportedly modulates the expression of astrocytic inducible nitric oxide synthase 

(iNOS) (Waak et al., 2009), which affects the levels of NO, peroxynitrite, and superoxide 

within the midbrain (Iravani et al., 2002). To identify whether astrocytic hDJ-1 expression is 

protective against rotenone-induced iNOS induction, we measured the amount of iNOS 

expression within transduced astrocytes (LV-GFP/MuLV or LV-hDJ-1/MulV) in the striatum 

(Figure 4f–h). iNOS is highly expressed within reactive astrocytes, but also neurons (Heneka 

and Feinstein, 2001) and other glial cells (Dehmer et al., 2000). Therefore, we measured 

iNOS only in transduced cells to ensure cell-type specific measurement of the enzyme 

(Figure 4g). Animals treated with the control vector (LV-GFP/MuLV) displayed 

approximately a 3-fold induction of iNOS within GFP-positive astrocytes following 
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rotenone exposure (p < 0.01), however LV-hDJ-1/MuLV treated animals had significantly 

lower astrocytic iNOS in cells expressing the hDJ-1 transgene (p < 0.05; Figure 4h).

Astrocytic hDJ-1 overexpression prevents dopaminergic neuron α-synuclein pathology

Accumulation, aggregation, and phosphorylation at Ser-129 (S129) of endogenous wildtype 

α-synuclein within dopaminergic neurons are reproducible characteristics of the rotenone rat 

model (Cannon et al., 2009b; Di Maio et al., 2016). Accordingly, following rotenone 

treatment, animals receiving the LV-GFP/MuLV control vector displayed a significant 

increase in total α-synuclein protein in dopamine neurons of the SN (p < 0.0001; Figure 5a, 

b). Similarly, levels of S129-phosphorylated α-synuclein also increased in the dopaminergic 

cell bodies of the SN following rotenone treatment (Figure 5a, c). Astrocytic overexpression 

of hDJ-1 significantly attenuated the rotenone-induced increase in total and S129-

phosphorylated α-synuclein (p < 0.05; Figure 5c).

Astrocytic hDJ-1 overexpression prevents chaperone-mediated autophagy deficits

Recent evidence suggests that DJ-1 protects mitochondrial function, in part, through effects 

on chaperone-mediated autophagy (CMA; B. Wang et al., 2016). To investigate whether 

astrocytic DJ-1 may influence neuronal CMA following rotenone exposure, we examined 

the lysosomal surface protein LAMP-2A, a receptor for chaperones trafficking dysfunctional 

proteins destined for degradation (Massey et al., 2006; U. Bandyopadhyay and Cuervo, 

2008; U. Bandyopadhyay et al., 2008). In dopaminergic neurons within the SN, LAMP-2A 

protein levels were significantly reduced in control LV-GFP/MuLV-injected animals 

receiving rotenone (p < 0.001; Figure 6a). In contrast, in animals overexpressing hDJ-1 in 

astrocytes, LAMP-2A-positive immunostaining in dopamine neurons was substantially 

increased at baseline and significantly preserved after rotenone (p < 0.0001; Figure 6a–b). 

LAMP-2A protein levels were significantly elevated in microglia following rotenone 

treatment (p < 0.0001; Figure 6c–d), similar to another lysosomal protein, CD68 (Figure 4). 

Astrocytic overexpression of hDJ-1 attenuated this microglial inflammatory phenotype.

Discussion

PD presents an inviting target for gene therapy approaches designed to modify disease 

progression. In this regard, it is especially appealing to investigate a gene therapy vector that 

may ameliorate several aspects of PD pathogenesis, including oxidative/nitrosative stress, 

mitochondrial impairment, neuroinflammation, and α-synuclein accumulation. DJ-1 is often 

described as a multifunctional protein, both because it harbors a master regulator function 

controlling central physiological processes (i.e. interaction with mRNA; (van der Brug et al., 

2008; Blackinton et al., 2009a), and because it is directly involved in multiple protein 

functions key to cell survival under oxidative stress conditions (Shendelman et al., 2004; 

Girotto et al., 2012; Piston et al., 2017; Frøyset et al., 2018 ). For example, DJ-1 has been 

shown to interact with mitochondria to modulate mitophagy (Gao et al., 2012; McCoy and 

Cookson, 2014; Thomas et al., 2011), physically restrict α-synuclein monomers from 

oligomerizing (Zondler et al., 2017), and bind to p47(phox) of the NADPH oxidase complex 

(NOX), causing assembly disruption and degradation of NOX (Amatullah et al., 2017; Liu et 
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al., 2015). It is therefore plausible that overexpression of DJ-1 can act in multiple oxidation-

dependent pathways and exert protection against several aspects of PD pathology.

Elevated levels of DJ-1 immunoreactivity within activated astrocytes is a pathological 

feature of several neurodegenerative diseases (e.g. Alzheimer’s disease, multiple system 

atrophy, Pick’s disease, and progressive supranuclear palsy), and was originally thought to 

be a compensatory response to oxidative damage (Neumann et al., 2004; Rizzu et al., 2004 

Kumaran et al., 2007; reviewed in (Antipova and Bandopadhyay, 2017). However, evidence 

from primary astrocyte-neuron cocultures suggests that astrocytic DJ-1 maintains neuronal 

mitochondrial function following complex I inhibition, and this protection extends beyond 

augmenting antioxidant capacity (Mullett and Hinkle, 2011; 2009). Here, we show that 

human DJ-1, expressed specifically in astrocytes within the SN and striatum, prevents 

several PD-like neuropathological abnormalities caused by the prototypical complex I 

inhibitor rotenone. In LV-hDJ-1/MuLV-injected animals, the soma and axons of dopamine 

neurons within the nigrostriatal tract were significantly protected from rotenone-induced 

degeneration compared to controls (Figure 2).

As previously observed (Cannon et al., 2009b), the endpoint rotenone dosing paradigm 

induces rapid motor impairment as measured using a postural instability test (PIT; Woodlee 

et al., 2008; Khaing et al., 2013). Thus, it is not surprising that all rotenone-treated animals 

(LV-GFP/MuLV and LV-hDJ-1/MuLV) exhibited motor behavior deficits, as well as rapid 

weight loss, associated with rotenone-induced systemic toxicity and gastrointestinal 

neuropathology (Drolet et al., 2009) (Supplemental Figure 2). Stereotactic infusion of the 

LV-hDJ-1/MuLV vector resulted in local expression of astrocytic hDJ-1 (or GFP control 

vector; Figure 1b–c) therefore, it is unlikely that this targeted area would provide fully 

effective protection against rotenone toxicity. Interestingly, unilateral injection of LV-hDJ-1/

MuLV protected both the ipsilateral, and to a lesser extent, the contralateral SN and striatum 

from rotenone-induced neurodegeneration (Figure 2). These observations support previous 

hypotheses that soluble factors released from astrocytes are dynamically regulated by DJ-1 

expression, and may be manipulated to provide neuroprotection (Mullett and Hinkle, 2009; 

Hauser and Cookson, 2011; Mullett and Hinkle, 2011). To date, it remains unclear which 

signaling molecules are involved in this process. One hypothesized mechanism for bilateral 

protection by LV-hDJ-1/MuLV is via neurotrophic factor regulation (e.g., glial-derived 

neurotrophic factor; GDNF), which can be globally neuroprotective if elevated within the 

intraventricular space (Kobayashi et al., 1998; Lapchak et al., 1998). There is evidence that 

supports DJ-1 as a modulator of neurotrophic signaling (Foti et al., 2010), which may 

represent one pathway for bilateral protection in this model. In this regard, we observed 

transduced astrocytes adjacent to the lateral ventricle in the striatum (Figure 2c), providing a 

potential avenue for neurotrophic factor release into the intraventricular space. At present, 

physiologic limitations of this in vivo model prevented the measurement of GDNF, or other 

neurotrophic factors, within the ventricles or cerebrospinal fluid, however investigations into 

the specific signaling mechanisms of hDJ-1 overexpression in astrocytes are currently 

underway.

The strong association between complex I inhibition and PD (Schapira et al., 1989; 

Greenamyre et al., 2001; Keeney, 2006; Schapira, 2010), and the discovery that autosomal 

De Miranda et al. Page 9

Neurobiol Dis. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



recessive forms of parkinsonism are caused by mutations in PINK1 (Valente et al., 2004; 

2002) and Parkin (Lücking et al., 1998), suggest that protection against mitochondrial 

dysfunction may be a key target to prevent dopamine neuron degeneration (S. B. Larsen et 

al., 2018). DJ-1 has been linked with the PTEN-induced putative kinase-1 (PINK1)/Parkin 

pathway to confer mitochondrial protection through both antioxidant function and 

mitochondrial fusion (Moore et al., 2005; Thomas et al., 2011; Joselin et al., 2012). In our 

model, we found a significant preservation of the complex I subunit NDUFS3 within 

dopamine neurons that were in proximity to astrocytes overexpressing hDJ-1 (Figure 3). We 

did not observe increased DJ-1 expression in these same neurons (Figure 1); therefore, it is 

unlikely that the DJ-1 protein itself has directly influenced neuronal mitochondrial 

dynamics. Instead, astrocytic DJ-1 may protect neurons from rotenone-induced 

mitochondrial toxicity by modulating antioxidants with known astrocyte-to-neuron transfer, 

such as glutathione (Dringen et al., 2000; 1999; X. F. Wang and Cynader, 2000). New 

evidence confirms that overexpression of astrocytic DJ-1 upregulates genes/proteins 

involved in response to oxidative stress, such as Nrf2-reglated peroiredoxin 2, thioredoxin, 

and superoxide dismutase (Frøyset et al., 2018).

In addition, DJ-1 has been shown to modulate astrocyte inflammatory signaling by reducing 

the amount of inducible nitric oxide synthase (iNOS) produced following LPS treatment 

(Waak et al., 2009). Glial upregulation of iNOS is an abundant source of NO production 

within the brain, a contributor to nitrosative damage, and a pathological hallmark found in 

both human PD tissue as well as in animal models (Liberatore et al., 1999; Calabrese et al., 

2004; Chung et al., 2005). We found that rats receiving the hDJ-1 infusion had significantly 

less rotenone-induced nitrosative damage within TH-positive neurons than LV-GFP/MuLV 

control animals (Figure 3). Consistent with this, we observed that hDJ-1 expression 

attenuated iNOS protein levels within LV-hDJ-1/MuLV transduced striatal astrocytes (Figure 

4f–h), supporting that downregulation of iNOS within astrocytes is protective against 

neuronal nitrosative stress (Ebadi and Sharma, 2003; Tieu et al., 2003; Carreras et al., 2004). 

Of note, these results are consistent with a recently published report which showed that 

astrocytic DJ-1 overexpression in zebrafish reduced iNOS protein expression following 

exposure to MPP+ (compared to wildtype fish; Frøyset et al., 2018).

Oxidative stress is also a strong inducer of microglial activation, driving neuroinflammation 

within the ventral midbrain (Lull and Block, 2010; Peterson and Flood, 2012; Dias et al., 

2013). In addition to causing neurodegeneration, rotenone has also been shown to directly 

activate microglia via nuclear factor kappa (NF-κ)-B (Sherer et al., 2003a; Yuan et al., 2013; 

F. Zhou et al., 2017). A high degree of microglial activation was observed in the SN 

following rotenone treatment in animals receiving the control LV-GFP/MuLV infusion. This 

was marked by a morphological change to an amoeboid appearance and a substantial 

increase in the lysosomal protein CD68, which is associated with active phagocytosis in 

macrophages (Perego et al., 2011; Bodea et al., 2014; Figure 4). This inflammatory response 

was significantly attenuated in animals receiving rotenone and LV-hDJ-1/MuLV infusion. 

Gliosis following neurotoxic insult in models of PD is a well-characterized sequential event, 

with microglial activation typically preceding astrocytosis, and ultimately resulting in feed-

forward signaling that drives neurotoxicity (Iravani et al., 2005; Farina et al., 2007; Hirsch 

and Hunot, 2009). Mitigation of microglial activation has been unequivocally 
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neuroprotective in animal models of PD (Dehmer et al., 2003; Kim and Joh, 2006; Vijitruth 

et al., 2006). However, no small-molecule anti-inflammatory therapeutic has been successful 

in modulating the human disease, notably minocycline and pioglitazone, which showed no 

benefit over placebo in clinical trials (Glass et al., 2010; NINDS Exploratory Trials in 

Parkinson Disease (NET-PD) FS-ZONE Investigators, 2015; NINDS NET-PD Investigators, 

2008). In this context, the use of cell type-specific gene therapy may provide a way to 

examine blockade of inflammatory signaling within a given cell population. Astrocytic 

hDJ-1 expression presents several novel advantages in this regard: (i) reduction of oxidative 

stress produced by mitochondrial dysfunction, (ii) transcriptional activation of astrocytic 

anti-inflammatory proteins (i.e. Nrf2; Gan et al., 2010; Bell et al., 2011; Im et al., 2012; 

Zhang et al., 2017), and (iii) decreased α-synuclein aggregation (Figures 5–6), all of which 

have been shown to modulate glial activation (Hayashi et al., 2009; Gan et al., 2010; Zondler 

et al., 2017).

Whether DJ-1 directly interacts with α-synuclein has been controversial (Jin et al., 2007; 

Zhu et al., 2017). Despite this, there is evidence that DJ-1 plays a role in autophagy as well 

as the detoxification of α-synuclein (Batelli et al., 2008; Jaramillo-Gómez et al., 2015; 

Burbulla et al., 2017; Zondler et al., 2017). Neuropathological analysis of the first human 

PARK7 (L172Q DJ-1) case to come to autopsy confirms that Lewy body accumulation 

occurs when DJ-1 is dysfunctional (Taipa et al., 2016). The rotenone model employed in this 

study induces the accumulation of endogenous α-synuclein within dopamine neurons of the 

SN, an affect that was significantly ameliorated in hDJ-1 treated animals (Figure 5). As there 

is evidence for both neuron-to-astrocyte (H.-J. Lee et al., 2010; Loria et al., 2017), as well as 

astrocyte-to-astrocyte α-synuclein transfer (Rostami et al., 2017), astrocytic DJ-1 

overexpression may be protective against the propagation and aggregation of α-synuclein.

Rotenone treatment also caused a reduction in LAMP-2A expression within dopamine 

neurons, indicating dysfunction of chaperone mediated autophagy (CMA; U. 

Bandyopadhyay et al., 2008) – and this was prevented by overexpression of hDJ-1 (Figure 

6). In addition to its chaperone activity, DJ-1 has been shown to modulate mitochondrial 

fusion via autophagy, and it protects against mitochondrial fragmentation caused by an 

oxidative insult (Krebiehl et al., 2010; McCoy and Cookson, 2014). There is recent evidence 

that CMA-mediated protection of mitochondria against MPP+ is lost in DJ-1 deficient 

neurons (B. Wang et al., 2016), and knockdown of DJ-1 in microglia impairs phagocytosis 

of α-synuclein (Nash et al., 2017). Conversely, overexpression of DJ-1 was protective 

against mitochondrial dysfunction when CMA was blocked (B. Wang et al., 2016). In 

parallel, DJ-1 has been shown to increase cellular levels of HSP70, a protein chaperone 

inversely correlated with α-synuclein levels (Li et al., 2005; Batelli et al., 2008). In our 

study, astrocytic overexpression of hDJ-1 was associated with elevated levels of the CMA 

receptor, LAMP-2A, at baseline (without rotenone). Rotenone caused a reduction of 

LAMP-2A-positive lysosomes in nigrostriatal neurons, which was prevented by 

overexpression of hDJ-1 in astrocytes. It is notable that rotenone-induced loss of LAMP-2A 

(Figure 6) was associated with elevated levels of α-synuclein in the same neurons (Figure 5), 

which indicates that disruption of CMA may be pivotal for α-synuclein accumulation in the 

rotenone model. Moreover, these results suggest that astrocytic DJ-1 levels can influence 

neuronal autophagic processes.
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To some extent, the current study is consistent with prior evidence for modulating DJ-1 as a 

protective strategy. In a cell-autonomous system, DJ-1 is described to induce autophagy via 

activation of the ERK1/2 pathway following oxidative stress (Oh and Mouradian, 2017). In 

addition, DJ-1 has been explored as a therapeutic to restore autophagy and cardioprotection, 

using AAV9-mediated overexpression of hDJ-1 (B. Zhou et al., 2017). Alternately, the 

impaired ability of microglia deficient in DJ-1 to phagocytose α-synuclein (Nash et al., 

2017) may have multiple consequences for both protein aggregation and inflammation in 

dynamically regulated phagocytic cells. Together, these data imply that DJ-1 plays a 

pleomorphic role in the cellular activities regulating protein handling and degradation, in 

both cell and cell non-autonomous pathways.

Conclusions

We have shown that overexpression of hDJ-1 in astrocytes potently protects dopamine 

neurons against neurodegeneration, apparently by multiple mechanisms, including 

preservation of mitochondrial function, inhibition of nitrosative stress, suppression of 

neuroinflammation, preservation of CMA, and prevention of α-synuclein accumulation. The 

specific targeting of astrocytes with the MuLV-pseudotyped lentiviral gene therapy vector 

may mitigate neurodegeneration without over-burdening or relying on expression within a 

vulnerable population of neurons, and may provide a novel avenue for therapeutic 

development.
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Highlights

DJ-1 is a redox-sensitive protein, upregulated in astrocytes in Parkinson’s disease

Using a pseudotyped lentiviral vector, DJ-1 was overexpressed in astrocytes in 
vivo

Rats expressing astrocytic DJ-1 were protected from rotenone model of PD

Astrocytic DJ-1 attenuated rotenone-induced oxidative stress and 

neuroinflammation

Astrocyte DJ-1 expression decreased α-synuclein accumulation in dopaminergic 

neurons
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Figure 1. LV-hDJ-1/MuLV is expressed in astrocytes within the substantia nigra and striatum
A. The Moloney Murine Leukemia Virus (MuLV) protein coat encapsulates a lentiviral 

expression vector driving bicistronic expression of human DJ-1 (CMV promoter) and green 

fluorescent protein (GFP; iRES promoter) enabling GFP localization to distinguish cells co-

expressing human DJ-1 protein. B–C. Stereotaxic targets within the striatum and substantia 

nigra (SN) of adult male Lewis rats were selected as the areas most affected by dopamine 

neuron cell body and terminal loss following rotenone treatment. D. Glial fibrillary acidic 

protein (GFAP) marker for astrocytes (red) is colocalized with human DJ-1 (hDJ-1) 

overexpression (green) following LV-hDJ-1/MuLV expression vector transfection in the SN 

(100×). hDJ-1 immunoreactivity within the SN (60×) reveals hDJ-1 expression within 

astrocytic processes and cell bodies (hDJ-1, yellow) adjacent to dopamine neurons (TH, 

blue) but does not colocalize with TH; inset images of astrocytes overexpressing hDJ-1 

(100×). E. Striatal expression of MuLV vector GFP (green) indicates colocalization with 

GFAP (red), but is excluded from microglia (IBA-1, white). F. Quantification of total hDJ-1 

protein within cell types of the substantia nigra N=5 (F2,18 = 49.64, p < 0.0001). G. hDJ-1 

colocalizes with fibrillary (GFAP-positive) astrocytes more than protoplasmic (ALDH1L1-

positive) astrocytes within both the substantia nigra and striatum; N=5 (F3,30 = 16.26, p < 

0.0001). Statistical analysis; one-way ANOVA, followed by Tukey post-hoc test.
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Figure 2. Overexpression of astrocytic hDJ-1 attenuates rotenone-induced neurotoxicity
A. Dosing paradigm for MuLV injection followed by rotenone treatment. B. Animal survival 

following rotenone treatment in animals receiving hDJ-1 overexpression vector (MuLV-

DJ-1) or GFP control vector (LV-GFP/MuLV); N=5 (χ2 = 2.104, p = .147), log-rank 

(Mantel-Cox) comparison of survival curves. C. Postural instability test (PIT) motor 

behavior scores during endpoint rotenone dosing paradigm; N=5 (p < 0.0001). Statistical 

analysis; Kruskal-Wallis test, followed by Dunn’s multiple comparison test. D. 
Representative montage images (20×) of SN and striatal tissue from LV-GFP/MuLV and 

MuLV-DJ-1 animals receiving saline or rotenone treatment. E. Stereological analysis of TH-

positive neurons in the SN; N=5 (F7,26 = 9.61, p < 0.0001). F. Quantification of striatal TH 

intensity; N=5 (F3,382 = 21.44, p < 0.0001). Statistical analysis; one-way ANOVA, followed 

by Tukey post- hoc test (*p < 0.05, **p <0 .01, ***p < 0.001).
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Figure 3. Dopaminergic neuron mitochondrial dysfunction and oxidative stress produced by 
rotenone is decreased by astrocytic hDJ-1 expression
A. Representative images of the mitochondrial complex I protein NDUFS3 (NADH 

dehydrogenase [ubiquinone] iron-sulfur protein 3; red) in the SN, ipsilateral to LV/MuLV 

infusion. B. Quantification of NDUFS3 number of objects in TH-positive neurons ipsilateral 

to MuLV infusion; N=5 (F3,13 = 9.78, p < 0.0012). C. Quantification of 3-nitrotyrosine (3-

NT) number of objects in TH-positive neurons of the SN ipsilateral to MuLV infusion; N=5 

(F3,20 = 39.35, p < 0.0001). D. Representative images of 3-NT in TH-positive neurons (60×). 

Statistical analysis; one-way ANOVA, followed by Tukey post-hoc test (*p < 0.05, **p <0 .

01, ***p < 0.001).
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Figure 4. Astrocytic hDJ-1 overexpression suppresses neuroinflammation
A. Representative images (60×) of microglia (IBA-1, cyan) and CD68 (red), ipsilateral to 

MuLV infusion in the SN. B. High resolution (100×) images of resting versus reactive 

microglia (IBA-1; yellow) and astrocytes (GFAP; magenta) within the SN. C. Total number 

of microglia (IBA-1-positive cells) within the SN; N=5 (F3,12 = 7.5, p < 0.0044). D. 
Quantification of microglial activation as measured using the area of CD68 expression 

within IBA-1-positive microglia; N=5 (F3,12 = 29.39, p < 0.0001). E. Total number of 

astrocytes (GFAP-positive cells) following rotenone treatment or overexpression of 

astrocytic hDJ-1; N=5 (F3,12 = 10.65, p < 0.0011). F. Representative striatal images of 

astrocytes (magenta), transduced astrocytes (yellow), and iNOS (white). G. Representative 

images of iNOS measurement in transduced striatal astrocytes. H. Quantification of LV-

GFP/MuLV and LV- hDJ-1/MuLV striatal astrocyte iNOS expression; N=5 (F3,64 = 6.94, p < 

0.0004). Statistical analysis; one-way ANOVA followed by Tukey post-hoc test *p < 0.05, 

**p < 0.01, *** p < 0.001).
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Figure 5. Astrocytic hDJ-1 limits α-synuclein toxicity within dopaminergic neurons. A
Representative images (60×) within the SN of total α-synuclein (α-Syn; red) and 

phosphorylated α-synuclein (S129; cyan) ipsilateral to MuLV infusion. B–C. Animals 

receiving MuLV-DJ-1 have a significantly less total α-synuclein; N=5 (F3,20 = 14.7, p < 

0.0001), and a reduction in phosphorylated α-synuclein; N=5 (F3,7 = 8.03, p < 0.0115). 

Statistical analysis; one-way ANOVA followed by Tukey post-hoc test (*p < 0.05, *** p < 

0.001).
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Figure 6. Chaperone-mediated autophagy deficits in dopaminergic neurons induced by rotenone 
are ameliorated by astrocytic hDJ-1 overexpression
A. Representative images of dopamine neurons in the SN (60×) immunopositive for the 

lysosomal surface protein LAMP-2A (white) which is induced in chaperone mediated 

autophagy. B. Rotenone treatment causes a significant decrease in neuronal LAMP-2A 

expression, which is protected in hDJ-1 treated animals; N=5 (F3,427 = 47.32, p < 0.0001). 

C. Representative images (100×) of microglia in the SN (white) expressing LAMP-2A (red). 

D. Rotenone treatment significantly increases LAMP-2A protein levels in activated 

microglia; N=5 (F3,20 = 17.99, p < 0.0001). Statistical analysis; one-way ANOVA followed 

by Tukey post-hoc test (***p < 0.0001).
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Table 1

Antibodies for immunohistoche mistry.

Antibody Catalog Company

Tyrosine hydroxylase
Anti-Nitrotyrosine

AB1542
06-284 EMD Millipore (Burlington, MA)

Glial fibrillary acidic protein (GFAP) mAb #3670 Cell Signaling Technology (Danvers, MA)

Human DJ-1/PARK7
Ser129-α-Synuclein

Ab18257
Ab51253 Abcam (Cambridge, MA)

Iba1 019-19741 Wako Chemicals USA (Irvine, CA)

NDUFS3/OxPhos
LAMP-2A

459130
51-2200 Thermo Fisher (Waltham, MA)

TOM20 SC-11415 Santa Cruz Biotechnology (Santa Cruz, CA)

CD-68 (ED1) MCA341 BioRad (Hercules, CA)

α-Synuclein 610787 BD Biosciences (San Jose, CA)
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