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Abstract

Uniform and strong expression of CD19, a cell surface antigen, on cells of B-cell lineage is unique 

to hematologic malignancies. Tumor-associated antigen (TAA) targets in solid tumors exhibit 

heterogeneity with regards to intensity and distribution, posing a challenge for chimeric antigen 

receptor (CAR) T-cell therapy. Novel CAR designs, such as dual TAA-targeted CARs, tandem 

CARs, and switchable CARs, in conjunction with inhibitory CARs, are being investigated as 

means to overcome antigen heterogeneity. In addition to heterogeneity in cancer-cell antigen 

expression, the key determinants for antitumor responses are CAR expression levels and affinity in 

T cells. Herein, we review CAR T-cell therapy clinical trials for patients with lung or pancreatic 

cancers, and provide detailed translational strategies to overcome antigen heterogeneity.

INTRODUCTION

Chimeric antigen receptors (CARs) are genetically engineered synthetic receptors that are 

transduced into patient T cells to recognize and bind to cancer cell surface antigens, thus 

resulting in T-cell activation and cancer cell lysis. CAR-transduced T cells are expanded ex 
vivo and adoptively transferred back to the patient with the goal of eliminating tumor cells 

and creating immunologic memory against the targeted antigen. CD19-targeted CAR T cells 

have demonstrated dramatic clinical responses in hematologic malignancies, such as B-cell 

acute lymphoblastic leukemia (B-ALL), and were approved for use by the U.S. Food and 

Drug Administration. Translating successful CAR T-cell therapies to solid tumors requires 

overcoming several barriers such as finding an ideal tumor-associated antigen (TAA) to 

target and overcoming antigen expression heterogeneity. In our review, we discuss potential 
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strategies to overcome the barrier of antigen heterogeneity to achieving effective CAR T-cell 

therapies for solid tumors using lung and pancreatic cancers as examples.

THE STRUCTURE AND EVOLUTION OF CAR DESIGNS

CARs consist of an antigen-binding domain that is derived from a single-chain variable 

fragment (scFv) of a monoclonal antibody, a flexible spacer/hinge region, a trans-membrane 

domain, and a CD3-ζ or Fc-γ intracellular signaling domain [1]. CARs can recognize TAAs 

on the surface of cancer cells without the need for antigen presentation through peptide-

major histocompatibility complexes. First generation CARs contain a target-specific 

receptor fused to an activation signaling domain and they have produced limited therapeutic 

responses [2]. Second and third generation CARs incorporate one or two co-stimulatory 

molecules such as CD28, 4-1BB, and OX40. Both second and third generation CAR T cells 

exhibit greater antitumor potency due to increased signaling strength and enhanced cell 

proliferation [3]. To improve efficacy, CARs that produce cytokines or are resistant to 

checkpoint inhibition and immunosuppressive signals in the tumor microenvironment have 

also been developed [4,5]. The inhibitory CAR (iCAR) fuses an antigen recognition domain 

(usually an antigen expressed on normal tissue) with an inhibitory intracellular domain 

(programmed cell death protein 1 [PD-1] or cytotoxic T-lymphocyte-associated protein 4 

[CTLA-4]). When co-transduced with a regular CAR, activation of the iCAR can inhibit the 

activity of the co-expressed CAR, which limits undesired CAR activation [6]. Novel designs, 

such as tandem CARs (TanCAR) [7] and switchable CARs [8,9], broaden the spectrum of 

TAAs that can be targeted simultaneously. Suicide genes, such as inducible caspase-9 or 

truncated EGFR, have also been incorporated into CAR design to improve safety [10,11]

CAR T-CELL THERAPY FOR LUNG AND PANCREATIC CANCERS

Our group has reported on the prognostic significance of a higher ratio of effector to 

suppressive cellular immune responses in non-small cell lung cancer (NSCLC) patients 

[12,13]. Promoting effector cellular immune responses by developing CAR T-cell therapy 

for solid tumors, such as lung and pancreatic cancers, poses challenges that include suitable 

tumor antigen target selection, promotion of efficient T-cell infiltration to the tumor, and 

generation of a potent and sustained cellular immune response in an immunologically 

suppressive tumor microenvironment. In finding a candidate target antigen for CAR T-cell 

therapy for NSCLC, our group and others have investigated mesothelin (MSLN), EGFR, 

HER2, mucin 1 (MUC1), and carcinoembryonic antigen (CEA) (Table 1) [14]. CAR T-cell 

therapies that target MSLN, prostate stem cell antigen (PSCA), MUC1, HER2, and EGFR 

are currently being evaluated in clinical trials for pancreatic cancer [15].

The desmoplastic matrix in pancreatic adenocarcinoma (PDA) can serve as a physical 

barrier to potentially impede CAR T-cell infiltration. Smith et al. described localized 

delivery of CAR T-cells to the surface of solid tumors via biopolymer implants [16]. CAR T 

cells that target stromal cells [17] and degrade the extracellular matrix component [18] can 

also promote T-cell infiltration and antitumor activity. Combining TAA-specific and stroma-

targeting CARs may synergize antitumor efficacy in stroma-rich solid tumors. In the 

presence of high antigen burden, tumor-infiltrating CAR T cells may be exhausted by 
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upregulation of PD-1. In order to rescue exhausted T cells and improve their functional 

persistence, CAR T cells are engineered to co-express a PD-1 dominant negative receptor 

(DNR) [5] or secret anti-PD-1 antibody [19]. Recent studies have shown that serial infusions 

of engineered T cells [20] or co-expression of cytokine receptors that reverse inhibitory 

signals to stimulating signals [21] can enhance T-cell functionality in the 

immunosuppressive tumor microenvironment of PDA.

Currently, there are more than 30 clinical trials evaluating CAR T-cell therapy in lung and 

pancreatic cancers (Table 1). In a Phase I clinical trial evaluating EGFR-targeted CAR T 

cells for refractory NSCLC (NCT01869166), 2 out of 11 patients obtained a partial response 

and 5 had stable disease for a period of 2 to 8 months [22]. In another study 

(NCT01355965), anti-MSLN CAR T cells were able to traffic to tumor tissue, elicit a 

cellular immune response, and induce humoral epitope spreading in a metastatic PDA 

patient [23]. A recent Phase I study using anti-HER2 CAR T cells to treat HER2-positive 

advanced biliary tract cancers and pancreatic cancer (NCT01935843) showed that 1 out of 

11 patients obtained a partial response and 5 achieved stable disease [24]. Pre-conditioning 

chemotherapy used in many of these trials (cyclophosphamide alone or in combination with 

fludarabine) can facilitate the engraftment of adoptively transferred T cells and help 

decrease suppressive immune cells, such as Tregs and MDSCs, in the tumor 

microenvironment.

HETEROGENEOUS EXPRESSION OF TARGETED TUMOR-ASSOCIATED 

ANTIGENS IN LUNG AND PANCREATIC TUMORS

Unlike B-ALL and other hematologic malignancies, the antigen heterogeneity (varying 

levels of expression intensity and distribution of antigen-positive cells) of solid tumors is a 

challenge to efficacious CAR T-cell therapy. We have published that, although MSLN is 

overexpressed in NSCLC compared with normal tissue, tumor cells exhibit varying levels of 

MSLN expression [10,25]. Compared with NSCLC, pleural mesothelioma and PDA tumor 

cells express relatively higher percentages and intensity of MSLN expression [10].

HER2 is another commonly targeted TAA in solid tumors. In a study of patients with 

advanced NSCLC, 40% of tumor samples showed HER2 overexpression with varying 

staining intensity, as demonstrated by immunohistochemical analysis [26]. The intratumoral 

heterogeneity of other CAR T-cell therapy targets, such as MUC1, PSCA, and epithelial cell 

adhesion molecule (EpCAM), has also been reported [27-31]. In vitro experiments have 

demonstrated that tumor cells expressing high levels of a specific antigen were preferentially 

eliminated, whereas those with the lowest expression survived [32,33]. Conversely, the 

presence of multiple TAAs within the same tumor, such as co-expression of MSLN and 

EpCAM [16], MSLN and MUC16 [34], and PSCA and MUC1 in pancreatic cancer [32], 

creates an opportunity for using dual-antigen CAR T cells to simultaneously target multiple 

TAAs.
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CAR DENSITY AND BINDING AFFINITY, AND T-CELL ACTIVATION 

STRENGTH

In addition to the heterogeneous distribution and density of TAAs on tumor cells, CAR T-

cell variables, such as CAR density and scFv affinity, can also influence their efficacy. Due 

to central and peripheral tolerance mechanisms, naturally occurring T-cell receptors (TCRs) 

usually have a lower affinity to tumor-associated self-antigens than foreign antigens. 

However, TCRs can recognize very low levels of antigens via the serial triggering 

mechanism [35]. By contrast, CAR T-cell activation requires TAA density to be above a 

certain threshold [36]. A higher density is required to induce cytokine production and cell 

proliferation (activating threshold) compared with triggering cytolytic activity (lytic 

threshold) [37,38]. Above the lytic threshold, CAR T-cell cytotoxicity correlates with 

antigen density until a plateau is reached.

CAR T-cell activation is also regulated by the expression level of CARs on the T-cell surface 

[39]. Lower CAR density results in sub-activation of the CAR T cells, whereas CAR 

overexpression can result in antigen independent activation, accelerated cell differentiation 

and exhaustion, or apoptosis [40]. Additionally, CAR density is also affected by antigen-

mediated downregulation of CARs from the cell surface [41-43]. The level of 

downregulation is independent of CAR affinity and associated with tumor-cell antigen 

density and T-cell CAR density [44]. Depending on the CAR design, CAR downregulation 

rates range from minutes to hours after antigen encounter and downregulation levels range 

from 50% to a near complete loss of CAR surface expression. Downregulation of CAR 

surface expression below critical levels may increase antigen threshold and limit sequential 

killing of targets, thus preventing CAR T cells from eliminating tumor cells with lower 

antigen expression. Potentially, the outcome may depend on CAR density pre-antigen 

encounter; CAR T cells that do not initially express a sufficient number of CARs may 

experience impaired effector function following post-antigen exposure-mediated CAR 

downregulation.

The scFv in CARs usually has a higher affinity than TCRs. Since most TAAs are 

overexpressed self-antigens that are also expressed on normal tissue, CAR T cells containing 

high-affinity scFvs can initiate an undesired attack on normal tissue [45]. This raises safety 

concerns over the on-target, off-tumor toxicities. Recent studies have focused on tuning 

scFvs to an optimal affinity to enable CAR T cells to preferentially target tumor cells with 

overexpressed TAAs [46,47]. Although the optimal scFv affinity reported varied depending 

on targets and CAR design, it seems that the Kd in a range of 10-6 to 10-7M, which is close 

to TCR “natural affinity,” best distinguishes overexpressed TAAs on tumor cells and 

antigens expressed on normal cells. Notably, using the light-chain exchange technology, a 

large panel of new antibodies that target the same epitope with a wide range of affinity can 

be generated, thus making it a feasible approach to screen many different scFvs 

simultaneously to determine the optimal scFv affinity for CAR T-cell activation [48].
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STRATEGIES TO OVERCOME TUMOR-ASSOCIATED ANTIGEN 

HETEROGENEITY AND TUMOR IMMUNE ESCAPE

Given the heterogeneous nature of solid tumors, single-antigen CAR T-cell therapy can lead 

to tumor resistance due to outgrowth of target TAA-negative cancer cells or tumor relapse 

due to antigen escape (Figure 2). Recent studies suggest that simultaneously targeting two 

TAAs may serve as an effective therapeutic strategy (Table 2). In a B-ALL relapse model, 

combining anti-CD19 and anti-CD123 CAR T-cells effectively eliminated CD19+ tumor 

cells and CD19-CD123+ B-ALL precursors, prevented CD19 antigen loss, and suppressed 

tumor progression [49]. Natural killer (NK) cells that express a CAR that recognizes a 

common epitope in EGFR and EGFRvIII showed superior antitumor activity compared with 

single-specific CAR-NK cells that target EGFR or EGFRvIII alone in a glioblastoma (GBM) 

model [50]. Similarly, simultaneously targeting PSCA and MUC1 in pancreatic cancer and 

NSCLC [32,51], and sequential infusion of anti-EGFR and anti-CD133 CAR T cells in a 

patient with advanced cholangiocarcinoma [52], has resulted in enhanced antitumor efficacy. 

Clinical trials have been designed to test combined or sequential infusion of two CAR T 

cells that treat B-cell malignancies (NCT02903810, NCT02737085, and NCT03207178).

The novel design of tandem CARs (TanCARs) fuses two TAA-specific scFvs with one 

intracellular signaling moiety. The “proof of concept” TanCAR that targets CD19 and HER2 

recognizes each antigen individually and enables synergistic activation when both scFvs are 

simultaneously engaged with the antigens [53]. Importantly, TanCAR T cells exhibit 

functional persistence upon losing one antigen expression on tumor cells, which suggests 

that TanCAR is a valid approach to address tumor immune escape due to antigen loss. In an 

orthotopic GBM model, TanCARs that target HER2 and IL13Rα2 exhibited superior 

antitumor activity compared with other combinations (TanCAR > co-expressed CAR > 

pooled CAR > individual CAR). This effect is, at least partially, attributed to the ability of 

TanCARs to induce high-density clustering of HER2 and IL13Rα2 in the bivalent immune 

synapse [7]. A study conducted by Zah et al. revealed that the length of linker and spacer has 

a great impact on the activity of TanCARs [54], thus highlighting the importance of 

designing the optimal configuration for TanCARs.

The development of antibody-based switchable CARs connects TAA-specific antibodies 

with CAR T cells. This expands the possibility of targeting multiple TAAs with one CAR 

construct. By incorporating a “tag” (peptide neo-epitope or fluorescein isothiocyanate) into a 

TAA-specific antibody, tag-specific CAR T cells were redirected to and eliminated TAA-

expressing tumor cells in vitro and in vivo [8,9]. The activation of CAR T cells has been 

shown to be antigen-specific and dose-titratable. However, unlike T cells that can actively 

enter extravascular spaces and migrate into the tumor nest, the distribution of an antibody is 

mainly through diffusion. Therefore, the antitumor efficacy of the switchable CAR T cells 

may be largely dependent on the capacity of the “tagged” antibodies penetrating the tumor 

nest.
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CONCLUSIONS

Expanding knowledge of cancer cell antigen expression heterogeneity matched with 

understanding the dynamic interplay between tumor-cell antigen density, T-cell CAR 

density, and affinity helps develop strategies to improve CAR T-cell therapy for solid 

tumors.
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HIGHLIGHTS

• Solid tumor-specific antigen expression is a limitation for CAR T-cell therapy.

• Affinity of CARs can significantly influence T-cell effector function.

• Novel CAR design and targeting strategies can overcome above obstacles.
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Figure 1. 
(A) CAR structure: First generation CARs contain an antigen recognition domain fused with 

an intracellular activation domain. Second and third generation CARs integrate one or two 

co-stimulatory signals such as CD28, 4-1BB, or OX40. (B) Novel strategies to augment the 

antitumor efficacy of CARs: CAR T cells rendered resistant to immune checkpoint blockade 

by co-expression of a dominant negative receptor, armored CARs that secret antitumor-

potentiating cytokines, tandem CARs that express two linked scFvs to recognize different 

antigens, and switchable CARs that recognize a tagged epitope on therapeutic antibodies 

binding to the cell surface antigen on cancer cells. Co-expression of two CARs enables T 

cells to simultaneously recognize two TAAs. iCARs (inhibitory CARs that inhibit T-cell 

activation) express an intracellular inhibitory domain that is fused with an extracellular scFv 

that recognizes a “safety antigen” expressed on normal cells.

CAR, chimeric antigen receptor; scFv, single chain variable fragment; TAA, tumor-

associated antigen
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Figure 2. 
(A) Multiplex immunofluorescent staining of a human lung adenocarcinoma that 

demonstrates heterogeneous antigen expression of MSLN and MUC16 on tumor cells. (B) 

Addressing TAA heterogeneity in solid tumors: (1) Single TAA-targeted CAR T-cell therapy 

may result in antigen escape or the outgrowth of tumor cells that either express very low 

levels of TAA (below CAR T-cell activation threshold) or do not express the targeted TAA. 

Targeting two TAAs simultaneously, either by co-administration of CAR T cells targeting 
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different antigens (2) or using a TanCAR (3), can mitigate tumor escape. A broad spectrum 

of TAAs can be targeted simultaneously with switchable CAR-transduced T cells (4).

CAR, chimeric antigen receptor; MSLN, mesothelin; MUC16, mucin 16; TAA, tumor-

associated antigen; TanCAR, tandem CAR
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Table 2

Dual-Antigen Targeting Tumors with CAR T cells

Target antigens Malignancy Clinical Setting Co-stimulatory Signal (★CD28❖4-1BB) Reference (PMID)

CD19 / CD20 B-cell Leukemia - ❖ 26759369

CD19 / CD20 B-cell Lymphoma - ❖ 27059623

CD19 / CD22 Acute Lymphoblastic Leukemia - ❖ 26759368

CD19 / CD123 Relapsed B-cell Acute Leukemia - ❖ 27571406

HER2 / IL13Rα2 Glioblastoma - ★ 27427982

EGFR / EGFRvIII Glioblastoma - ★ 27141401

MUC1 / PSCA Non-small cell Lung Cancer - ★ 28405515

MUC1 / PSCA Pancreatic Cancer - ★ 24213558

EGFR / CD133 Cholangiocarcinoma + ❖ 28057014

CD19 / CD20 Diffuse Large B-cell Lymphoma + NCT02737085

CD19 / CD20 Recurrent/Refractory B-cell malignancy + NCT03207178

CD19 / CD22 B-cell Hematologic Malignancy + ❖ NCT02903810

Non-clinical (in vivo animal models); + Clinical trial

Abbreviations: MUC1, mucin 1; PSCA, prostate stem cell antigen
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