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Abstract

Many recent literature studies have revealed interesting dynamics patterns of functional brain 

networks derived from fMRI data. However, it has been rarely explored how functional networks 

spatially overlap (or interact) and how such connectome-scale network interactions temporally 

evolve. To explore these unanswered questions, this paper presents a novel framework for spatio-

temporal modeling of connectome-scale functional brain network interactions via two main 

effective computational methodologies. First, to integrate, pool and compare brain networks across 

individuals and their cognitive states under task performances, we designed a novel group-wise 

dictionary learning scheme to derive connectome-scale consistent brain network templates that can 

be used to define the common reference space of brain network interactions. Second, the temporal 

dynamics of spatial network interactions is modeled by a weighted time-evolving graph, and then 

a data-driven unsupervised learning algorithm based on the dynamic behavioral mixed-

membership model (DBMM) is adopted to identify behavioral patterns of brain networks during 

the temporal evolution process of spatial overlaps/interactions. Experimental results on the Human 

Connectome Project (HCP) task fMRI data showed that our methods can reveal meaningful, 

diverse behavior patterns of connectome-scale network interactions. In particular, those networks’ 

behavior patterns are distinct across HCP tasks such as motor, working memory, language and 

social tasks, and their dynamics well correspond to the temporal changes of specific task designs. 

In general, our framework offers a new approach to characterizing human brain function by 

quantitative description for the temporal evolution of spatial overlaps/interactions of connectome-

scale brain networks in a standard reference space.
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1. Introduction

Recently, increasing evidence from neuroscience research has suggested that functional 

brain networks are intrinsically dynamic on multiple timescales. Even in the resting state, 

the brain undergoes dynamical changes of functional connectivity (Chang and Glover, 2010; 

Smith et al., 2012; Majeed et al., 2011; Gilbert and Sigman, 2007; Ekman et al., 2012; 

Zhang et al., 2013; Keilholz, 2014;Li et al., 2014; Zhang et al., 2014). Thus, computational 

modeling and characterization of time-dependent functional connectome dynamics and 

elucidating the fundamental temporal attributes of these connectome-scale interactions are of 

great importance to better understand the brain’s function. In the literature, a variety of 

approaches have been proposed to examine the dynamics of functional brain connectivities, 

such as ROI-based methods (e.g., Zhu et al., 2012; Li et al., 2014; Zhang et al., 2013; Ou et 

al., 2014; Zhang et al., 2014; Kucyi et al., 2015; Shakil et al., 2016; Xu et al., 2016; 

Thompson and Fransson, 2015; Kennis et al., 2016) and independent component analysis 

(ICA) based methods (e.g., Calhoun et al., 2001; Kiviniemi et al., 2011; Damoiseaux et al., 

2006; Allen et al., 2014). In these approaches, the time series of pre-selected ROIs or brain 

network components extracted from ICA are employed to model temporal brain dynamics. 

For instance, based on the ROIs defined by the Dense Individualized and Common 

Connectivity-based Cortical Landmarks (DICCCOL) (Zhu et al., 2012), functional 

connectomes based on resting-state fMRI data have been divided into temporally quasi-

stable segments via a sliding time window approach. Then, dictionary learning and sparse 

representation were used to identify common and different functional connectomes across 

healthy controls and PTSD patients (Li et al., 2014) and to differentiate the brain’s 

functional status into task-free or task performance states (Zhang et al., 2013).

Despite that previous studies have revealed interesting dynamics patterns of functional brain 

networks themselves, however, it has been rarely explored how functional networks spatially 
overlap or interact with each other, and it has been largely unknown how such connectome-

scale network interactions temporally evolve. In the neuroscience field, a variety of recent 

studies suggested that spatial overlap of functional networks derived from fMRI data is a 

fundamental organizational principle of the human brain (e.g., Fuster, 2009; Harris and 

Mrsic-Flogel, 2013; Xu et al, 2016). In general, the fMRI signal of each voxel reflects a 

highly heterogeneous mixture of functional activities of the entire neuronal assembly of 

multiple cell types in the voxel. In addition to the heterogeneity of neuronal activities, the 

convergent and divergent axonal projections in the brain and heterogeneous activities of 

intermixed neurons in the same brain region or voxel demonstrate that cortical microcircuits 

are not independent and segregated in space, but they rather overlap and interdigitate with 

each other (Harris and Mrsic-Flogel, 2013; Xu et al, 2016). For instance, researchers have 

explicitly examined the extensive overlaps of large-scale functional networks in the brain 

(Hermansen et al., 2007; Fuster, 2009; Fuster and Bressler, 2015). Several research groups 

have reported that task-evoked networks, such as in emotion, gambling, language and motor 

tasks, have large overlaps with each other (e.g., Hermansen et al., 2007; Fuster, 2009; Fuster 

and Bressler, 2015; Xu et al., 2016). Thus, development of effective computational methods 

that can faithfully reconstruct and model the spatial overlap patterns of connectome-scale 

functional networks is of significant importance.
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Recently, in order to effectively decompose the fMRI signals into spatially overlapping 

network components, we developed and validated a computational framework of sparse 

representations of whole-brain fMRI signals (Lv et al., 2015a; Lv et al., 2015b) and applied 

it to the HCP (Human Connectome Project) fMRI data (Q1 release) (Barch et al., 2013). The 

basic idea of our framework is to aggregate all of the hundreds of thousands of fMRI signals 

within the whole brain of one subject into a big data matrix (e.g., a quarter million voxels × 

one thousand time points), which is subsequently factorized into an over-complete 

dictionary basis matrix (each atom representing a functional network) and a reference 

weight matrix (representing this network’s spatial volumetric distribution) via an efficient 

online dictionary learning algorithm (Mairal et al., 2010). Then, the time series of each over-

complete basis dictionary represents the functional activities of a brain network and its 

corresponding reference weight vector stands for the spatial map of this brain network. A 

particularly important characteristic of this framework is that the reference weight matrix 

naturally reveals the spatial overlap and interaction patterns among those reconstructed brain 

networks. Our extensive experiments (Lv et al., 2015a; Lv et al., 2015b) demonstrate that 

this novel methodology can effectively and robustly uncover connectome-scale functional 

networks, including both task-evoked networks (TENs) and resting-state networks (RSNs) 

from task-based fMRI (tfMRI) data that can be well-characterized and interpreted in spatial 

and temporal domains. Extensive experiments also demonstrated the superiority of this 

methodology over other popular fMRI data modeling methods such as ICA and GLM 

(general linear model) (Lv et al., 2015a; Lv et al., 2015b). Experimental results on the HCP 

Q1 data show that these well-characterized networks are quite reproducible across different 

tasks and individuals and they exhibit substantial spatial overlap with each other, thus 

forming the Holistic Atlases of Functional Networks and Interactions (HAFNI) (Lv et al., 

2015a; Lv et al., 2015b). This computational framework of sparse representation of whole-

brain fMRI data provides a solid foundation to investigate the temporal dynamics of 

connectome-scale network interactions derived by sparse dictionary learning algorithms in 

this paper.

To leverage the dictionary learning and HAFNI methods’ superiority in reconstructing 

spatially overlapping functional networks while significantly advancing them towards 

modeling temporal brain dynamics, this paper presents a novel framework for spatio-

temporal modeling of connectome-scale functional brain network interactions via two main 

effective computational schemes. First, we designed a novel group-wise dictionary learning 

framework to derive connectome-scale consistent brain network templates that can be used 

to define the common reference space of brain networks and their interactions across fMRI 

scans and across different brains, in order to integrate, pool and compare these 

corresponding brain networks across individuals and their cognitive states under task 

performances. Second, the temporal dynamics of spatial network overlaps or interactions is 

computationally modeled by a weighted time-evolving graph, and then a data-driven 

unsupervised learning algorithm based on the dynamic behavioral mixed-membership model 

(DBMM) (Rossi et al., 2013) is adopted to identify behavioral patterns of brain networks 

during the temporal evolution processes of spatial overlaps/interactions. Extensive 

experimental results on four different HCP task fMRI datasets showed that our methods can 

effectively reveal meaningful, diverse behavior patterns of connectome-scale network 
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interactions. In particular, those networks’ behavior patterns are distinct across four HCP 

tasks including motor, working memory, language and social tasks, and their dynamics well 

correspond to the temporal changes of specific task designs. In general, our framework 

offers a new approach to characterizing human brain function by quantitative description for 

the temporal evolution of spatial overlaps/interactions of connectome-scale brain networks 

in a standard reference space.

2. Materials and Methods

2.1. Overview

As shown in Fig.1, the computational pipeline of the proposed framework consists of five 

main steps. In the first step, the whole-brain tfMRI time series of each subject are segmented 

into multiple overlapped sliding windows (Agcaoglu et al., 2016; Li et al., 2014), in order to 

capture the temporal dynamics of functional brain networks. Then, the tfMRI data in each 

window from each subject in HCP Q1 release are temporally concatenated to obtain 

corresponding group-wise tfMRI time series segments. In the second step, based on the 

temporally concatenated sparse coding (Lv et al., 2016), we extract the group-wise local 

temporal dynamics and the corresponding spatial profiles of functional brain networks at the 

same time, represented by the dictionary and the sparse weighting coefficients, respectively. 

In the third step, an affinity propagation (AP)-based hierarchical clustering method is 

proposed to generate the common group-wise functional networks (GFNs) from the spatial 

maps (or network components) learned in the second step. In the fourth step, spatio-temporal 

dynamics of functional interactions among brain networks is modeled by a weighted time-

evolving graph that incorporates connectivity relationships of the brain networks into a 

hierarchical structure, where each layer describes the spatial interactions among the GFNs in 

each sliding window and the sequence of layers represents dynamic change of the network 

interactions over time. At last, the behavioral roles of each GFN are identified by the 

effective DBMM-based role detection algorithm (Rossi et al., 2013), to model and 

characterize its spatio-temporal dynamic behaviors.

For the detailed description of the proposed methods in this paper, the following definitions 

and notations are used.

si(i = 1,2,⋯mj) The i-th sliding window.

|si| The size of si.

Xi(i = 1, 2,⋯mj) Concatenated input matrix for si.

Di = [d1, d2⋯dP], (i = 1, 2,⋯mj) Dictionary.

dq(q = 1,2, ⋯ p) Atom in the dictionary.

αi(i = 1, 2,⋯mj) Coefficient matrix.

GFNj The j-th group-wise functional network.

FNCk,p The p-th functional network component occurring in sk.

TEG = (V, F) Time-evolving graph with vertex set V and edge set E.

ek
i j

Edge between the vertices GFNi and GFNj in the k-th layer of TEG.

wk
i j Weight of the edge ek

i j.
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Fk ∈ ℝN×f (k = 1, 2, ⋯ M) Feature matrix of the k-th layer of TEG.

Gk ∈ ℝN×r (k = 1, 2, ⋯ M) Role membership matrix.

H ∈ ℝr×f Projection matrix from the role space to the feature space.

Qk ∈ ℝN×I Measure matrix.

E ∈ ℝr×I Contribution matrix of the measure index to the roles.

Ni = {GNF j|ek
i j ∈ E}

Neighbor vertices of GNFi.

N̄i = V \ GNFi ∪ Ni
Vertex set that does not contain GNFi and Ni.

‖·‖1 l-1 norm.

‖·‖F F norm.

2.2. Data Acquisition and Pre-processing

In this paper, we use the publicly released high quality tfMRI data in Human Connectome 

Project (HCP) (Q1release) to develop and evaluate the proposed pipeline. Four task-based 

fMRI datasets including motor, working memory, language and social tfMR data collected 

from 68 subjects are adopted as the test bed for method development and evaluation. The 

main acquisition parameters of tfMRI data are as follows: 90×104×72 dimension, 220mm 

FOV, 72 slices, TR=0.72s, TE=33.1ms, flip angle = 52°, BW=2290 Hz/Px, in-plane FOV = 

208×180 mm, 2.0mm isotropic voxels. The total time points of the four tasks are 284, 405, 

316 and 274, respectively. The tfMRI data preprocessing is performed using the FSL tools 

including motion correction, spatial smoothing, temporal pre-whitening, slice time 

correction and global drift removal (Barch et al., 2013; Smith et al., 2013).

2.3. Concatenated Sparse Representation of tfMRI Data

As shown in Fig.1, in order to accurately capture the dynamic characteristics of brain 

activities, we firstly use a sliding time window to segment the input time series (of 

dimension t × v, where t is the number of timepoints and v is the number of voxels) of each 

subject in the j-th (j = 1, 2, 3, 4) task into mj number of overlapping temporal segments 

{s1, s2, ⋯sm j
}, with the window length of W. In this work, the overlapping segment between 

two consecutive windows contains 4W/5 time points, while the overlapping length can be 

changed. Then, the tfMRI data from the i-th window si(i = 1, 2, ⋯ mj) of the j-th task across 

all subjects are concatenated to yield a group-wise input signal matrix Xi(i = 1, 2, ⋯ mj). 

The concatenated input matrix Xi is decomposed by a l-1 regularized online dictionary 

learning algorithm (Mairal et al., 2010) to learn a dictionary Di and a corresponding 

weighting coefficient matrix αi. Dictionary learning aims to create a sparse representation 

for the input signal Xi = [x1, x2 ⋯ xv]. The main process of dictionary learning is to learn an 

over-complete, representative basis set Di = [d1, d2⋯ dP], termed as “dictionary” and 

composed of “atoms” dq(q = 1,2, ⋯ p), such that each input signal vector xj(j = 1,2, ⋯ v) 

could be modeled as the form of a linear combination of basis signals (atoms) in the learned 

dictionary, i.e., xj ≈ Diαi,j or xi ≈ Diαi. In brief, the problem of dictionary learning can be 

viewed as a matrix factorization problem, equivalently represented by a minimization 

problem.
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f Di, αi = min
DiεCi, αiεℝp × v

1
2 Diαi − Xi F

+ λ αi 1
(1)

Ci ≜ {Diεℝ
n si × p

, s . t . ∀q = 1, 2, ⋯p, dq
Tdq ≤ 1} (2)

The loss function f(Di, αi) contains the reconstruction error term ‖Diαi − Xi‖F and a sparsity 

penalty term ‖αi‖1. By imposing sparsity constraint on the coefficient matrix αi, we can 

obtain sparse representation of the input signal Xi. p is the pre-defined number of dictionary 

atoms. λ regularizes the trade-off between sparsity (measured by l-1 norm of αi) and the 

reconstruction error. |si| is the size of the i-th temporal segment si and n|si| is the number of 

rows of the dictionary Di. In this work, the online dictionary learning method (Mairal et al., 

2010) is employed for solving the minimization problem in Eq.(1) with the constraint in Eq.

(2). The resultant dictionary Di and the coefficient matrix αi characterize the underlying 

temporal variation patterns and the spatial maps of functional network components of Xi, 

respectively (Lv et al., 2015a). As a result, p number of functional network components for 

each window of one task and p × ∑ j = 1
4 m j network components for all windows of the total 

n number of subjects across four task scans are achieved.

2.4. Generation of Group-wise Functional Networks

We cluster all the p × ∑ j = 1
4 m j functional network components to identify representative 

and common group-wise consistent functional brain networks across four tasks of all 

subjects. In the sparse representation of whole-brain fMRI signals, each functional network 

component can be represented by a high dimensional (more than 200 thousands) vector. To 

reduce the computational cost of the entire clustering process and produce meaningful 

intermediate results, a hierarchical AP clustering is employed. AP clustering is based on the 

concept of “message passing” between data points. Unlike other clustering algorithms, AP 

creates clusters by sending messages between pairs of samples until convergence. A dataset 

is described using a small number of exemplars (cluster centers), which are identified as 

those most representative of other samples. The messages sent between pairs represent the 

suitability for one sample to be the exemplar of the other, which is updated in response to 

the values from other pairs. This updating is performed iteratively until convergence, at 

which point the final exemplars are chosen, and hence the final clustering is given. More 

details are referred to (Frey and Dueck, 2007). Compared with other clustering algorithms, 

such as k-means or k-medoids, the AP clustering (Frey and Dueck, 2007) does not require 

the number of clusters to be pre-specified before running it. The cluster number can be 

automatically generated based on the data to be clustered. In addition, the AP clustering can 

achieve lower clustering errors than other algorithms and its results do not depend on the 

initialization (Frey and Dueck, 2007).

Yuan et al. Page 6

Neuroimage. Author manuscript; available in PMC 2019 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Based on the AP, we design a hierarchical clustering algorithm that can group the 

p × ∑ j = 1
4 m j network components to obtain their common GFNs. The proposed algorithm 

contains three tiers. In the first tier, the AP is applied to cluster the p number of network 

components learned from each concatenated segment in one task across all subjects to obtain 

GFNs of each segment. In the second tier, the resultant cluster centers of all concatenated 

segments for one task are pooled together and further clustered via the AP to yield GFNs of 

this task. In the third tier, using the resultant cluster centers of the second tier as the inputs, 

common group-wise functional networks {GNF1, GNF2, ⋯ GNFN} across all four tasks are 

obtained via the AP algorithm again. In this three-tier AP clustering, the similarity between 

two networks (or network components) (GNF1, GNF2) is measured by the spatial overlap 

rate (SOR), i.e., the Jaccard similarity coefficient (Lv et al., 2015b). The Jaccard similarity 

coefficient is defined as the size of the intersection divided by the size of the union of the 

two sets SM1 and SM2.

J(SM1, SM2) =
SM1 ∩ SM2
SM1 ∪ SM2

(3)

where SM1 and SM2 denote the spatial maps of the two networks GFN1 and GFN2, 

respectively.

Note that, the AP clustering is performed hierarchically for two reasons. First, sparse 

representation of tfMRI data produces p × ∑ j = 1
4 m j functional network components. In the 

experiments, p = 400, m1 = 90, m2 = 131, m3 = 101 and m4 = 87. Each network component 

is denoted by a 205,832-dimensional vector. If we directly perform the AP clustering for 

these p × ∑ j = 1
4 m j network components, the similarity matrix contains 

(p × ∑ j = 1
4 m j)

2
≈ 2.7 × 1010 entries, which incurs a quite huge computational cost. Thus, we 

decompose the entire AP clustering into three levels, which perform network-component-

level, time-window-level and task-level clustering, respectively. As a result, the 

computational complexity can be significantly reduced. Second, the results for clustering all 

network components simultaneously cannot be reused, if the number of time windows 

increases or more tasks are considered. As a result, re-clustering for all the samples has to be 

performed. In contrast, in our method, the intermediate clustering results of each level of the 

hierarchical AP can be directly reused in the above two cases. Thus, the proposed 

hierarchical structure has higher reusability.

2.5. Modeling of Temporal Evolution of Spatial Interactions among Group-wise Functional 
Networks

It has been shown in (Lv et al., 2015a) that multiple functional networks are simultaneously 

distributed in different neuroanatomic areas and substantially spatially overlapping with each 

other, which jointly response to external stimuli. As examples, Fig.2 shows spatial overlap/

interaction relationships of three GFNs. It can be observed that different networks interact 
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with each other with a high proportion of spatial overlaps within a specific cognitive or 

functional task.

Furthermore, spatial interactions of the networks exhibit remarkably dynamic 

characterizations, which have not been examined in our prior works (Lv et al., 2015a; Lv et 

al., 2015b). Fig.3 gives an example, where the overlapping area between two network 

components corresponding to the visual network and default mode network (DMN), 

respectively, changes over time, although overall distributions of the spatial maps of two 

components are relatively stable across three time windows.

To quantitatively describe the time-varying brain network dynamics, we propose a time-

evolving graph based approach to model temporal evolution of spatial interactions among 

the obtained group-wise brain networks. The time-evolving graph, a special type of the 

multilayer network, is a sequence of graphs over time denoted by multiple layers, 

respectively. We denote the time-evolving graph by TEG = (V, E), where V is the set of 

vertices and E is the set of edges. Let TEGk = (Vk, Ek) (k = 1, 2, ⋯ M) denote the k-th layer 

of TEG, where Vk = vk
i  are the vertices in TEGk and Ek = {ek

i j |vk
i , vk

j ∈ Vk} are the edges 

active in TEGk, as shown in Fig.4. In this study, the vertex sets are the same across the 

different layers, i.e., Vk = Vl = V for all k and l.

For each task, we model temporal evolution of spatial interactions among {GFN1, GFN2, ⋯ 
GFNN} by a undirected weighted time-evolving graph, which contains M (M = mj for the j-
th task) layers and each of them represents the interaction relationship of {GFN1, GFN2, ⋯ 
GFNN} within the corresponding sliding time window. In each layer, the vertices represent 

N number of GFNs, i.e., V = {GFNi, i = 1, 2, ⋯ N}, as shown in Fig.4. The edge ek
i j between 

two vertices GFNi and GFNj represents spatial interaction between them. Its weight wk
i j

measures to what extent GFNi and GFNj spatially overlap in TEGk (corresponding to the k-

th sliding time window sk). To compute wk
i j, we first find the two functional network 

components (spatial maps) from the current window sk, which have the highest similarity 

with the network templates GFNi and GFNj, respectively, and denote them by FNCk,p and 

FNCk,q. Then, we compute the normalized spatial overlap between FNCk,p and FNCk,q and 

use it as the weight wk
i j.

wk
i j =

FNCk, p ∩ FNCk, q
v (4)

The weight wk
i j of the edge ek

i j measures to what extent spatial interaction occurs between 

each pair of networks at the current time window and reflects the strength of functional 

interaction between them.

Note that, the brain network templates (GFNs) are time independent. They are obtained by 

clustering all functional network components of all 68 subjects across four tasks. That is, 
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they represent averaged and general brain activation states over time, subjects and tasks. 

Thus our premise is that those GFNs are not varying (as they are aggregated measurement 

across independent datasets), and can be used as “templates” for the nodes in TEG graphs. 

When computing the weight wk
i j of the edge ek

i j between two vertices GNFi and GNFj, spatial 

overlap rate of the two network components FNCk,p and FNCk,q, which have the highest 

similarity with the two templates (GNFi and GNFj), are used for the measurement.

Compared with other state-of-the-art graph-based brain connectivity models (e.g., Van Den 

Heuvel and Hulshoff Pol, 2010; Xu et al., 2016; Thompson and Fransson, 2015; Eddin et al., 

2013; Marrelec et al., 2006; Cassidy et al., 2015; De Domenico et al., 2016), a notable 

characteristic of the proposed time-evolving graph based brain dynamic model is that it 

quantifies evolution of the spatial interactions among brain networks over time (layers), and 

thus can comprehensively describe the temporally dynamic changes of the functional 

interactions of brain networks.

2.6. Identifying Behavioral Roles of Functional Networks from Topology of Time-varying 
Spatial Interactions

From Fig.2, it can be observed that different functional networks have significantly diverse 

spatial overlap rates. On the other hand, as shown in Fig.3, the same connection between two 

specific networks changes over time. Therefore, the functional networks play different 

behavioral roles involved in functional brain interactions in the sense of time-varying 

topology of these networks. Thus, identification for behavioral role patterns of the brain 

networks is of particular importance for revealing the functional principles of the human 

brain.

To characterize and model the roles’ temporal dynamics of individual functional networks, 

we adopt the DBMM-based role detection algorithm (Rossi et al., 2013) to identify the 

behavioral roles of the vertices in the time-evolving graph. The DBMM is essentially an 

unsupervised learning algorithm. It is fully automatic (no user-defined parameters), data-

driven (no specific functional form or parameterization) and interpretable (identifies 

explainable patterns), and thus it can automatically learn and discover behavioral roles of the 

vertices (GFNs). One of the main focuses of the DBMM is to discover different behavioral 

patterns of the vertices (GFNs) and model how these patterns change over time. The DBMM 

uses “roles” to represent behavioral patterns of the vertices. Intuitively, two vertices belong 

to the same role if they have similar structural behaviors in the graph. “Roles” can be viewed 

as sets of vertices that are more structurally similar to vertices inside the set than outside. 

The DBMM is a scalable, fully automatic, data-driven, interpretable and unsupervised 

learning approach to detecting roles from a time-evolving graph. Role identification contains 

two main steps, that is, feature extraction and role discovery.

In the feature extraction step, we describe each vertex as a feature vector. Any set of 

structural features deemed important can be used. In this paper, we choose three types of 

features, i.e., degree (refers to weighted degree, which is the weighted variant of the degree 

and defined as the sum of all neighboring edge weights (Rubinov et al, 2010)), egonet 

measures (Rossi et. al, 2013) and betweenness centrality (Freeman, 1977). Degree is one of 
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the most essential structural features of a vertex within graphs. The egonet of a vertex is a 

subgraph that consists of this vertex (ego) and the vertices to whom the ego is directly 

connected to plus the edges among them. The egonet serves as a local feature of the graph to 

measure local connectivity of each vertex. Betweenness is a centrality measure of a vertex 

within a graph, which quantifies the number of times a vertex acts as a bridge along the 

shortest path between two other vertices. It serves as a global feature to measure centrality of 

a vertex. In our functional brain interaction model, the betweenness centrality can capture 

the influence that one functional network has over the flow of information between all other 

functional networks. Then, we aggregate the three types of features using the mean of each 

vertex and its neighbors and create recursive features, until no new features can be produced. 

After each aggregation step, similar features are pruned using logarithmic binning. The 

resultant features are denoted by Fk ∈ ℝN×f (k = 1, 2, ⋯ M).

Note that, although a certain degree of correlation exists among the structural features used 

in graph theory, the step of feature pruning ensures that redundant or closely correlated 

features are removed. In the paper, degree, egonet, betweenness are selected to initialize the 

recursive process of feature generation for two main considerations. First, they are the most 

representative features in graph theory. The combination of them can provide initial 

topology characterization for vertices’ behaviors and fully represent various properties of 

structural features of graphs. Second, as emphasized in (Henderson et al., 2011), any real-

valued feature can be used to generate recursive features without restricting to a particular 

one. But on the other hand, we do not hope that too many artificial features are involved in 

the process of recursive feature generation and updating, as it may weaken the ability to 

discover latent roles from graph topology.

In the role discovery step, behavioral roles of the functional networks are automatically 

uncovered using the extracted features. For the concatenated feature matrix 

F = [F1
T, F2

T⋯FM
T ]T, where Fk ∈ ℝN×f (k = 1, 2, ⋯ M), a rank-r approximation is computed 

by minimizing Eq.(5) with nonnegative matrix factorization (NMF).

f G, H = 1
2 F − GH F

2
(5)

where G = [G1
T, G2

T, ⋯GM
T ]T, Gk ∈ ℝN×r(k = 1, 2, ⋯ M) is non-negative and denotes the role 

membership matrix, of which each row represents a vertex’s membership in each role, H ∈ 
ℝr×f is a non-negative projection matrix from the role space to the feature space. Note that, 

H acts on the whole feature matrix F of the entire TEG, rather than individual layers. Each 

column of H represents contributions of the membership of a specific role to the features. 

The set of role membership matrices {Gk (k = 1, 2, ⋯ M)} provides distributions of the role 

membership across all layers. The role number r is determined by the minimum description 

length criterion (Rissanen, 1978).

It is worth pointing out that the identified roles are obtained from an unified framework of 

the TEG in the statistical sense. They are the outcomes considering the entire interaction 
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process of all vertices across all layers of the TEG simultaneously, rather than the 

interactions in individual layers, which makes it possible to characterize and analyze the 

unified behavioral role dynamics of the functional networks over time.

The DBMM cannot directly present specific interpretations on the meaning of each role, 

although r number of roles are automatically generated. To quantitatively interpret the 

resultant roles with respect to well-known vertex’s indices in graph theory, such as degree, 

egodegree, betweenness, clustering coefficient, PageRank, effective size, constraint, 

eigenvector centrality, participation coefficient and within-module degree, a measure matrix 

Q = [Q1
T, Q2

T, ⋯QM
T ]T is constructed by aggregating these indices of each vertex in each layer 

together, where Qk ∈ ℝN×I(k = 1, 2, ⋯ M), I denotes the number of the indices. Then, given 

G and Q, a non-negative matrix E ∈ ℝr×I is computed by the NMF such that GE ≈ Q. The i-
th column of E interprets contributions of all roles to the i-th index. For instance, assume 

that the i-th measure index is betweenness, if the entry in the j-th row and i-th column of E is 

largest in the i-th column, i.e., the j-th role has the highest betweenness centrality, then we 

attempt to interpret the j-th role as a bridge between different vertices in the graph.

Actually, each role has multiple potential interpretations, which depends on the selected 

indices. The index with the highest contribution to a role gives the best interpretation of this 

role and reveals its major function in dynamic spatial interactions among functional brain 

networks. Note that, role interpretation has no any impact on the results of role 

identification. It only provides a potential meaning for each identified role.

3. Results and Discussions

3.1. Generation of Group-wise Functional Networks

To infer functional networks (Section 2.3), the dictionary size p is set as 400 and the sparsity 

level λ is set to 2.1 according to our prior experiences (Lv et al., 2015a). Our extensive 

observations show that as long as the sparsity level is within a reasonable range (in this 

study, from 1.8~2.5), the sparse representation results are largely the same. The length of the 

sliding window is W = 15. In this paper, we assume that transitions of brain states mainly 

result from alternations of external blocked task stimuli. To this end, we examine the 

duration of each block of task stimulus signals. For an instance, the duration of a single 

block in motor task spreads from 5TRs to 17TRs, while the other three tasks have somewhat 

longer block durations (the maximum durations of a single block in working memory, social 

and language tasks are 32TRs, 57TRs, and 39TRs, respectively). Based on these 

observations, we take 15TRs as the window length. Firstly, it can capture the abrupt 

transitions among brain states induced by the task stimulus signals. Secondly, it is 

reasonably long to prevent authentic fluctuations blinded by noises. Especially, the proposed 

GFN generation and role discovery are based on group-wise analysis, which is less sensitive 

to noises when taking a relatively small window length. In the experiments, we tried 

different window lengths (e.g., 30TRs on motor tfMRI data) and the results do not change 

significantly.
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After learning the group-wise network components by the concatenated sparse coding, we 

use the proposed three-tier AP algorithm to cluster these components into functional 

networks (Section 2.4). As a result, 54 GFNs are obtained, i.e., N = 54, which is 

automatically determined by the AP algorithm. Fig.5 shows several examples of the obtained 

GFNs, which are in consistency with the ten well-defined RSNs in the literature (Smith et 

al., 2009). The rest of 44 GFNs are shown in Supplemental Fig.1. The results in Fig.5 

suggest that the group-wise concatenated sparse representation and the proposed hierarchical 

AP clustering algorithm can achieve meaningful and high-quality functional networks.

3.2 Comparisons between Spatial and Temporal Patterns of GFNs and Their Interactions

In the paper, we use a time-evolving graph to model the temporal evolution processes of 

spatial overlaps among brain networks. It is a natural way to represent dynamic variations of 

states of the brain networks. The key points of this model are the spatial patterns of brain 

networks and their spatial interactions. To clarify the rationality of the choice for describing 

interactions among GFNs with spatial patterns, we perform two experiments. First, we 

examine correlations between the spatial activation areas of the 54 GFNs and the task 

contrast designs, and compare them with correlations between the temporal variations of the 

dictionary atoms and the task contrast designs. Specifically, for each task, we compute the 

activation areas of the 54 network components in each layer of the time-evolving graph. As 

stated in Section 2.5, the time-evolving graph contains M layers. Thus, each spatial brain 

network forms a M-dimentional activation area vector in each task. We calculate the Pearson 

correlation coefficient (PCC) between this vector and the task contrast designs, and then 

obtain the mean and standard deviation of the absolute value of PCCs over the 54 networks, 

as shown in Supplemental Tables 1–4. As for the temporal variation patterns of the network 

components, we also compute the correlation relationships between the corresponding 

dictionary atoms and the task contrast designs in the same way, and the results are also 

shown in Supplemental Tables 1–4. From this comparison, we find that the spatial variations 

of the brain networks exhibit distinctly closer correlations with all the task designs than the 

temporal variations in the motor, working memory and language tasks, while in the social 

task, two variations have similar correlations. Thus, the spatial patterns of the functional 

networks exhibit more consistent dynamic behaviors and variation rules with the task 

stimuli.

To further investigate the effectiveness of the proposed time-evolving graph model for 

characterization of spatial interaction patterns among functional networks, we compare the 

correlations between spatial interactions and task contrasts with those between temporal 

interactions and task contrasts. Specifically, for the spatial interactions, the weight of the 

edge between any pair of GFNs is computed by Eq.(4). The degree of each GFN is the sum 

of all neighboring edge weights. In contrast, the weight for the temporal interaction between 

two GFNs is obtained by computing the PCC between their corresponding dictionary atoms 

(Lv et al., 2016; Zhao et al., 2016), and the degree is computed in the same way as the 

spatial interactions. Then, for each task, we compute the degree of the 54 GFNs in each 

layer respectively for spatial and temporal interactions. As a result, each GFN has two 

degree vectors with M dimension. Then, the PCCs between the two degree vectors and the 

task contrasts are computed, respectively. The mean and standard deviation of the absolute 
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value of the PCCs over the 54 GFNs are given in Supplemental Tables 5–8. It can be seen 

that spatial interactions present larger correlations and consistency with the task contrasts 

than temporal interactions. Therefore, utilization of spatial patterns and their interactions to 

model dynamics of brain networks is more reasonable and effective.

3.3. Modeling and Role Discovery of Dynamic Spatial Interactions among GFNs

Temporal evolutions of spatial interactions among the identified 54 GFNs in each task are 

represented by a time-evolving graph (Section 2.5). The total time points of the motor, 

working memory, language and social tasks are 284, 405, 316 and 274, respectively. The 

time window length is W = 15 and the overlapping segment between two consecutive 

windows contains 4W/5 = 12 time points, i.e., the sliding step size is 3. As a result, the layer 

numbers, i.e., numbers of the time windows, of the four graphs are Mm = 90, Mw = 131, Ml 

= 101 and Ms = 87, respectively.

To focus on more meaningful interactions and reduce the influence of noises, 20% edges 

with low weights are removed from each layer. Then, the DBMM algorithm is applied on the 

time-evolving graph of each task to examine the roles’ temporal distributions and behavior 

patterns of each vertex. The role number is automatically decided by the minimum 

description length criterion. Eventually, all four tasks consistently have five roles (more 

details in the following paragraphs). Supplemental Fig.2 shows the role mixed-memberships 

of the 54 vertices (each vertex representing a GFN) in four tasks, respectively, where almost 

all functional networks simultaneously exhibit five roles during dynamic spatial interactions 

with other networks. Nevertheless, these five roles have different contributions among 

behavioral patterns of the networks in terms of role memberships. The major role of a 

network is considered as the one with the largest membership. Fig.6 gives the quantitative 

role interpretations for the five roles, where the measure indices contain degree, egodegree, 

betweenness centrality, clustering coefficient, PageRank, effective size, constraint, 

eigenvector centrality, participation coefficient, as well as within-module degree. Their 

definitions and interpretations are listed in Supplemental Table 9, where the clusters (or 

communities) involved in the computation of the participation coefficient and the within-

module degree are created by the community detection algorithm (Blondel et al., 2008). In 

order to offer specific interpretations for five roles, we calculate the contributions E of the 

measure indices to the roles by solving GE ≈ Q via the NMF. The average contributions over 

time windows are presented in Fig.6.

We can find from Fig.6 that the five behavioral roles have almost common interpretations 

across four tasks. The role 1 represents that the vertex has the highest degree, egodegree, 

clustering coefficient, PageRank, eigenvector centrality and participation coefficient. This 

behavior pattern is straightforward to interpret, which characterizes the centrality of the 

graph, i.e., the most influential vertex within the graph. In other words, if a vertex mainly 

takes on the role 1, it should be the centrality of the graph. For the role 2, it has the highest 

constraint degree. When a vertex GFNi mainly takes on the role 2, it largely depends on its 

neighbor vertices that are linked to GFNi by edges and denoted by Ni = {GFN j |ek
i j ∈ E. The 

connection relationship between the vertex GFNi and the vertices in N̄i = V \ GFNi ∪ Ni

(i.e., the vertex set that does not contain GFNi and its neighbor vertices Ni) mainly depends 
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on Ni. If we remove the edges between the vertex GFNi and some vertices in Ni, the 

connectivity between GFNi and the vertices in N̄i will be significantly reduced, while the 

connectivity between Ni and N̄i can be hardly affected. In addition, the vertex in the role 2 

has a relatively high participation coefficient. Thus, it seems that the vertex is locally 

connected with different clusters to a certain extent. As for the role 3, it has the highest 

betweenness centrality, which indicates that the vertex taking on the role 3 could be the 

bridge between the other vertices. Moreover, the effective size of such a vertex is relatively 

high, meaning that the subgraph composed of this vertex and its neighbors has little 

redundancy and information transfer within the subgraph largely depends on this vertex. 

Therefore, the vertex is likely to play a role of the center of a star subgraph.

For instance, the major role of the vertex #1 in the social task is the role 3 during most of the 

time. Likewise, the vertices #50 and #42 present a similar characteristic with the vertex #1, 

since the role 3 accounts for a high ratio in their memberships. We further examine the 

topological structure of the vertices #1, #42 and #50, as shown in Fig.7. In Fig.7(a), the 

vertex set N1,42 = {#20, #26, #36, #41, #48, #54} contains the neighbors with relatively high 

weights (larger than 2.0e−3) of the vertices #1 and #42. It can be observed that both vertices 

#1 and #42 constitute the centers of this subgraph. The edges that connect these two vertices 

with their neighbors have significantly higher weights, while the vertices in N1,42 

interconnect with each other by the edges with lower weights. Likewise, in Fig.7(b), the 

vertex #50 is the center of the subgraph composed of itself and its neighbor vertices N50 = 

{#4, #8, #9, #17, #25, #30, #35}. The roles 4 and 5 represent vertices with high within-

module degree as well as low participation coefficient and effective size, which implies that 

they are active within a local cluster but do not act as connectors between clusters. If a 

vertex mainly takes on the role 4 or the role 5, it builds strong connections with the other 

vertices in the same cluster, while it has weak connections with the vertices in other clusters. 

This type of vertices has an important influence within a cluster, whereas they cannot serve 

as the global centrality of the whole graph, e.g., the vertex #1 (RSN 1) in the motor and the 

language tasks, as well as the vertex #2 (RSN 2) in the motor task.

3.4. Analysis and Comparison of Behavioral Role Patterns of Functional Networks

We examine the major roles of each GFN across four tasks. Among the #1~#10 GFNs (10 

RSNs), the #1 GFN distinctly takes on the role 4 in the motor and language tasks. The #2 

GFN has high degree, within module degree in the language task, and hence serves as a local 

centrality or hub in a cluster. The #3 GFN mainly takes on both the role 2 and the role 1 in 

all four tasks. The #4, #5 and #6 GFNs take on the hybrid roles. They comprise at least three 

memberships that account for relatively high proportions. Note that, the #6 GFN is activated 

more frequently in the motor task than in the other three ones. Especially, the #6 GFN rarely 

occurs in the language task. Ratios of the role memberships 1, 3, 4 and 5 of the #6 GFN are 

approximately equal in the motor task. The #7 GFN distinctly takes on the centrality role in 

the motor, working memory and social tasks. The averaged ratios of the first membership are 

39.7%, 47.9% and 44.3%, respectively. The #8 and #9 GFNs mainly act as the centrality in 

the working memory task. Their averaged ratios of the first membership are 48.4% and 
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45.0%, respectively. Like the #3 GFN, the #10 GFN mainly takes on the roles 2 and 1 in 

four tasks.

We also notice that the #7 GFN (RSN 7) maintains almost consistent behavioral pattern 

dominated by the role 2 over time in the language task, while it mainly takes on the role 1 

(centrality of the graph) in the other three tasks. We visualize in Fig.8(a) the mean activated 

area of the #7 GFN, which is obtained by computing the averaged spatial map of its network 

components over all the time windows. We find that in the motor, working memory and 

social tasks, the mean activation areas of the #7 GFN cover 9447, 8972 and 8364 volume 

voxels, respectively, whereas only 7089 voxels are activated in the language task. Moreover, 

the mean ratios of the activation area of the #7 GFN to sum of the activation areas of all 54 

GFNs are 1.76%, 1.77%, 1.70% and 1.49% in motor, working memory, social and language 

tasks, respectively. Likewise, the mean ratios of the degree of the #7 GFN are 1.83%, 1.83%, 

1.75% and 1.31%, respectively. To evaluate the activation areas and their ratios of the GFN 

#7 in four tasks in a statistical sense, we perform a set of hypothesis tests. The results are 

shown in Supplemental Tables 10–11 and Figs. 3–4. From these experiments, we can find 

that the GFN #7 presents a significantly smaller activation area and its ratio in the language 

task than in other three tasks. We further check the overlapping activation area of the #7 

GFN of the four tasks, as shown in Fig.8(b). There are 3800 volume voxels in total activated 

in all four tasks and 1628 voxels exclusively activated in the language task. This reveals that 

the #7 GFN has a distinct activation pattern in the language task. In addition, the less 

activation area, ratio of activation area and ratio of degree of the #7 GFN lead to weaker 

spatial interactions with the other networks. As a result, the #7 GFN does not take on the 

centrality role in the language task, although it is fairly active.

Except 10 RSNs, there are some other GFNs that serve as the centrality of the time-evolving 

functional interaction graph, for instances, the #11 and #51 GFNs in all four task, as well as 

the #12 GFN in the working memory tasks. After further examining the time-evolving role 

mixed-memberships of each vertex, we find some distinct structural behavior patterns 

represented by these vertices. a) Several vertices have almost homogeneous behavioral 

patterns. In other words, the vertices for the most part take on a single role, e.g., the #24 

vertex consistently takes on the role 2 over time in both motor and working memory tasks, 

and the #28 vertex also takes on the role 2 in both working memory and language tasks. b) 

Some vertices’ behavioral patterns are relatively stable over time, e.g., the #4 and #8 vertices 

in the motor task, the #51 and #53 vertices in the language task. c) Some vertices’ role 

behaviors change frequently over time, which exhibit strong functional diversity and 

heterogeneity, e.g., the #1, #2 and #54 vertices in the working memory task, as well as the 

#46 vertex in the motor task.

A team of five experts quantitatively and qualitatively examined differences of time-evolving 

role mixed-memberships of each vertex across four tasks by both visual inspection and 

computation of similarity between mixed-memberships. They checked the mixed-

memberships separately, and the final results are based on the agreement reached by a voting 

procedure. Finally, 14 brain networks, including the #1, #4, #6, #7, #8, #9, #15, #16, #17, 

#30, #36, #41, #42 and #54 GFNs, exhibit remarkably different behavioral patterns across 

four tasks, while the other 40 GFNs have similar role distributions across four tasks. The 
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spatial maps and role mix-memberships of these 14 GFNs are given in Fig.9. Among them, 

#1, #4, #6, #7, #8 and #9 are from the standard RSNs. The #1 GFN is the medial visual area. 

It mainly takes on the role 4 in the motor and language tasks, and hence serves as an active 

vertex in a local cluster (or community). In the working memory task, the #1 GFN takes on 

role 1 and role 4 alternately. In the social task, the #1 GFN tends to play a role of the bridge 

between other GFNs, since roles 1, 3, 4 and 5 account for approximately equal proportions, 

as discussed in Sections 3.2 and 3.3. The #4 GFN is the DMN. It has relatively stable 

distributions on five role memberships. Specifically, the #4 GFN has high within-module 

degree, betweenness and constraint degree in the motor task. It is worthwhile to note that, 

the #4 GFN has large role membership 1 and approximately equal memberships of the other 

four roles in the working memory task, thus it may serve as a hub vertex in this task. The #6 

GFN is the sensorimotor area. It is a motor-related network, which occurs more frequently in 

the motor task, as shown in Supplemental Fig. 2. The #7 GFN corresponds to the auditory 

area. As discussed earlier, this network mainly acts as the centrality in the motor, working 

memory and social tasks, while it takes on the role 2 in the language task. The #8 GFN is the 

executive control area. It serves as the centrality almost all the time in the working memory 

task. In the other three tasks, the #8 GFN has high role memberships 1, 3 and 4, and they are 

stable over time. Thus, this network is more likely to act as a hub vertex. As for the #9 GFN, 

it is the frontoparietal area. Comparing the ratio of the role membership 1 in the working 

memory task with that in the other tasks, we find that the #9 GFN tends more clearly to 

serve as the centrality in the working memory task. Likewise, the #30 GFN also behaves 

more actively in the working memory task than in the other three tasks. For the #15 GFN, it 

has a larger membership of the role 3 and a smaller one of the role 2 in the motor task. The 

#17 GFN has a larger membership of the role 4 in the language task than in the other three 

tasks. The #16 GFN has a larger role membership 2 in the language task than in the other 

three ones. The #36 GFN has a similar behavioral pattern (role 4) in the motor and language 

tasks, where it is more active within a cluster, but it more tends to involve in different 

clusters in the other two tasks. The #41 and #42 GFNs present similar role patterns. They 

have high role membership 4, and hence they are more locally active in the motor and 

language tasks. In contrast, their role memberships 1 and 3 are large in the working memory 

and social tasks, thus they have a greater global influence in these two tasks. The #54 GFN 

mainly takes on role 4 in both the motor and the language tasks and hybrid roles in the other 

two tasks, respectively.

We also notice that some functional networks exhibit similar role patterns in all the four 

tasks. For instance, the #1, #41 and #42 GFNs, as well as the #24 and #28 GFNs. Their 

spatial maps and time-evolving role mixed-memberships are shown in Fig.10.

3.5. Role Dynamics of Functional Networks

As shown in Supplemental Fig.2., the behavioral roles of the networks exhibit remarkable 

temporal variations. Here, we investigate temporal dynamics of the roles and how likely the 

complex role dynamics stems from external task stimulus. To this end, we focus on the 

relationship between the role mixed-membership dynamics and the task contrast designs. By 

examining their temporal correlation, we find that the behavioral roles of the brain networks 

tend to follow task paradigm curves. In addition, different task contrast designs impose 

Yuan et al. Page 16

Neuroimage. Author manuscript; available in PMC 2019 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distinct influences on temporal change of the roles. Fig. 11 gives the temporal response 

curves of the #13 and #8 GFNs to the contrast designs in the language task. In Fig.11(a), the 

role 1 and the role 2 of the #13 GFN present opposite temporal variation patterns. The role 2 

varies with the task paradigm curve of contrast 1, whereas the role 1 is negatively correlated 

with the contrast 1. Likewise, for the contrast 2 in Fig. 11(b), the two roles also exhibit 

different correlations with the task design. In Fig. 11(c) and Fig.11(d), the #8 GFN has 

opposite temporal dynamics between the role 1 and role 2. By further comparing Fig.11(a) 

and Fig. 11(c), the role 1’ temporal dynamics of the #13 GFN is obviously opposite to that 

of the #8 GFN.

We examine the role dynamics of the 10 RSNs. Many RSNs present roles’ temporal 

variations induced by the task designs and different RSNs have diverse role patterns with 

respect to the task designs. Among the 10 RSNs, the #4 and #9 RSNs present notably 

temporal correlation with the task paradigms in all the four task. Fig.12 shows some 

temporal variations of the major roles of the #4 and #9 RSNs, wherein the PCC between the 

role variations and the task designs are given. It can be seen that the major roles of these two 

RSNs are closely correlated with the corresponding task designs. They are either excited or 

inhibited by the task stimuli. Except the RSNs, some task-related networks (Lv et al., 2015a) 

are strongly correlated with the task contrasts. Some of their roles’ temporal variations are 

shown in Supplemental Fig. 5.

In addition, in the motor task, the role 5 of almost all the GFNs has a similar response 

profile, which is induced by the task contrast 6 (tongue). Supplemental Fig. 6 shows the 

entire response curves of the five roles and the degree of the 10 RSNs to the contrast 6 of the 

motor task. We also find that the other four roles are affected by the contrast 6 to a large 

extent. They are either evoked or suppressed by this contrast. Furthermore, the degree of the 

10 RSNs increases when the tongue task is implemented, especially for the #1, #3, #6 and #9 

RSNs.

It can be observed from the role mixed-memberships of the 54 GFNs in Supplemental Fig.2 

and the role dynamics of the GFNs in Figs.11–12 that the GFNs exhibit evidently dynamic 

role fluctuations during their spatio-temporal interaction process. To examine the likelihood 

these fluctuations are neuronally relevant, rather than attributed to some exquisitely simple 

statistical process, we adopt the Fourier phase-randomization to generate surrogate of the 

original motor tfMRI data, and then carry out the remainder of the proposed pipeline on the 

surrogate data. This experiment is run five times to get better estimates of the statistics under 

interest. We compare the two groups of results obtained using and without using the phase-

randomization from two aspects. First, we examine the differences between the 54 GFNs’ 

activation areas computed by the original data and the surrogate data, respectively. 

Specifically, for each GFN, its activation areas in M layers of the time-evolving graph model 

constitute a M-dimensional vector. Then, we concatenate this vector of the 54 GFNs into a 

54 × M-dimensional activation area vector. We use the Kolmogorov-Smirnov statistic to 

measure the difference between the two activation area vectors corresponding to the original 

and surrogate data, respectively. The results of five runs are given in Supplemental Table 12. 

It can be seen that activation areas of the 54 GFNs present significant difference between the 

original and surrogate data. Second, we examine the differences between two groups of role 
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mixed-memberships of the 54 GFNs. We start with visual inspection to compare two groups 

of results and find obvious differences occur between them. To make a further quantitative 

comparison, Kolmogorov-Smirnov test is also adopted. Specifically, we concatenate the five 

rows of the role mixed-membership matrix of each GFN together to obtain a r × M-

dimensional vector. Then, the Kolmogorov-Smirnov test is employed for each GFN to 

quantify the difference between its two role mixed-memberships corresponding to the 

original data and the surrogate data. The results shown in Supplemental Table 13 imply that 

the role mixed-memberships of most GFNs extracted from the original tfMRI data are 

significantly different from those extracted from the surrogate data.

Likewise, the role dynamics induced by the task designs exhibits large differences between 

the results obtained from the original and surrogate data. Supplemental Fig.7 shows an 

example, where the roles 1 and 5 of the #5 GFN computed by the original tfMRI data have a 

strong correlation with the task design, while they are nearly uncorrelated with the task 

design in the result obtained by the surrogate data.

Comparisons between results of the original and surrogate data demonstrate that the 

observed variations of activation areas and fluctuations of the role mixed-memberships of 

the GFNs from the original fMRI data couldn’t come from merely random fluctuations and 

are more likely to represent dynamic neuronal connectivity changes.

3.6. Dynamic Overlaps among Functional Networks

As discussed in (Lv et al., 2015a), highly heterogeneous regions reveal the functional 

interaction patterns of the brain networks. Here, we examine highly heterogeneous regions 

and their dynamic attributes over different sliding time windows and across different tasks. 

We find that many pairs of networks have dramatically dynamic interactions and overlaps, 

which are affected by the task designs. For instance, dynamic spatial overlaps between the 

#2 and #54 GFNs in the motor and working memory tasks are shown in Fig. 13. The #2 

GFN is an RSN and the #54 GFN is a working memory task-related network. They have 

similar behavioral roles in the motor and working memory tasks. In the motor task, the 

Pearson correlation coefficient between the entire task contrast and the dynamic overlap of 

the two GFNs is 0.60. Fig. 13 (a) shows three spatial overlaps corresponding to two time 

points C1 and C2 within the task contrast 6 (tongue) and one time point I1 within the idle 

period, respectively. Obviously, the overlap between these two GFNs increases significantly 

when the task contrast 6 occurs and decreases to the minimum value at the idle period. In 

contrast, in the working memory task, the task contrasts and the overlap of the #2 and #54 

GFNs exhibit negative correlation. Fig. 13 (b) shows six spatial overlaps of the two GFNs at 

three time instants C1, C2 and C3within the contrast periods and around three switch points 

S1, S2 and S3 between two successive contrasts, respectively. The two networks present 

weak spatial overlaps/interactions at C1, C2 and C3, while their overlaps/interactions become 

significantly strong at S1, S2 and S3. These results show the dynamic attributes of the spatial 

overlaps/interactions of the brain networks and their dependence on the task design.

We also investigated the spatial overlap/interaction relationships among three networks. 

Dynamic characteristics similar to the case of two networks can be found in some three-

networks groups. For instance, the overlap area among the #25, #30 and #50 GFNs is 
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positively correlated with the contrast 1 of the language task, as shown in Fig. 14. Likewise, 

negative correlation occurs between the spatial overlap of the #1, #41 and #42 GFNs and the 

contrast design in the working memory task. Fig. 15 shows correspondence of the spatial 

overlap among these three GFNs to the contrast design.

3.7. Reproducibility Verification of the Proposed Methods

By using our computational pipeline, 54 group-wise functional networks are generated from 

all the four tasks by pooling the networks obtained from each task together to implement the 

third-tier AP clustering. We denote the set consisting of these 54 networks by GFNMWLS.

In this experiment for reproducibility verification, we only considered the motor and 

working memory tasks and re-performed the third-tier AP clustering on their individual 

networks. As a consequence, 45 group-wise common functional networks were obtained. 

They constitute the network set GFNMW. By comparing GFNMW with GFNMWLS, we find 

that 41 networks occur consistently in both sets and 4 and 13 networks exclusively appear in 

GFNMW and GFNMWLS, respectively. It can verify that the proposed concatenated sparse 

representation and the hierarchical AP clustering algorithm can not only achieve reasonably 

reproducible networks, but also identify distinguishing networks occurring in different tasks.

Assume that the time-evolving graph models containing 45 vertices and 54 vertices are 

denoted by TEG45 and TEG54, respectively. Afterwards, we performed the DBMM-based 

role discovery algorithm on TEG45 of the motor and working memory tasks, respectively. 

Like the result in Section 3.2, five roles are identified from both tasks. By comparing the 

role mixed-memberships of 41 concurrent GFNs in TEG45 with those in TEG54, we 

identified only one GFN (the #38 GFN in TEG54) and another GFN (the #31 GFN in 

TEG54) that have significantly distinct role distributions in the two graphs for the motor and 

working memory tasks, respectively. Table 1 and Table 2 give the detailed results. For the 

motor task, as shown in Table 2, the single one different network has a larger role 

membership 1 in TEG45 than in TEG54. And for the working memory task, as shown in 

Table 2, the identified one network has a larger role membership 1 and a less role 

membership 3 in TEG54. Except these two networks, the other ones exhibit almost the same 

role mixed-membership distributions across TEG45 and TEG54. This result demonstrates 

that our computational pipeline can produce consistent results of GFN generation and role 

discovery on both experiments.

To further verify the reproducibility of the proposed method, we performed another two 

experiments that consider the combination of the social and language tasks and that of the 

motor and social tasks, respectively. The results are given in the supplemental materials. The 

experimental results demonstrate that the proposed method presents good consistency and 

reproducibility on GFN generation and role discovery.

3.8 Validation for Consistency between Roles and Structural Fiber Connection Patterns

In addition to the analysis above, we also conduct an experiment for comparing the 

functional connectivity-based behavior role of the networks discovered by the proposed 

work with the structural connectomes of the corresponding regions. Diffusion Tensor 
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Imaging (DTI) data of the same 68 subjects are used to test the consistency between our 

results and the structural fiber connection patterns of the brain.

To examine structural fiber connections in the group-wise scale, we use Dense 

Individualized and Common Connectivity-based Cortical Landmarks (DICCCOL) (Zhu et 

al., 2013), namely dense and remarkably reproducible 358 cortical landmarks, which possess 

accurate intrinsically-established structural and functional cross-subject correspondences, as 

a brain reference system. For a DICCCOL landmark, if it is spatially covered by the k-th 

functional network in more than two-thirds of 68 individuals, we regard that the GFN #k 
contains this DICCCOL landmark. All the DICCCOL landmarks in the GFN #k constitute a 

structural connection graph, by linking each pair of these DICCCOL landmarks. In section 

3.4, thirteen GFNs that take the roles of centralities or hubs, including GFNs #1, #2, #4, #6, 

#7, #8, #9, #11, #12, #30, #41, #42 and #51, as shown in Supplemental Table 16, have been 

discussed. To evaluate their effects from the viewpoint of structural connectome, we 

compute both the density (Liu et al., 2009) and efficiency (Latora and Marchiori, 2001) for 

the structural connection graphs of the 54 GFNs, respectively. The distributions of density 

and efficiency over 54 GFNs are shown in Supplemental Fig.8 and Fig.9. The DICCCOL-

based structural connection graphs of the thirteen GFNs listed in Supplemental Table 16 are 

shown in Supplemental Fig.10. It can be found that the GFNs #1, #11, #12, #30, #41 and 

#42 have high values of both two indices. That means, these GFNs spatially cover the 

regions containing dense fiber connections and the information transfer among the 

DICCCOL landmarks within these GFNs are efficient. Therefore, the GFNs #1, #11, #12, 

#30, #41 and #42 not only take important roles in functional interactions and connectomes, 

but also have dense structural connections. Especially, the GFN #30 covers 46 DICCCOL 

landmarks and has high scores of density and efficiency. Except for the GFNs #1, #11, #12, 

#30, #41 and #42, the GFNs #17, #28, #34, #36, #37, #44, #47 and #48 that do not appear in 

Supplemental Table 16 also have significantly high scores of both density and efficiency. 

Their DICCCOL structural connection graphs are shown in Supplemental Fig.11. Note that, 

although the GFNs #34, #36, #44, #47 and #48 have very high density and efficiency, they 

only contain no more than ten DICCCOL landmarks. In contrast, the GFN #37 not only has 

distinctly high density and efficiency, but also contains 26 DICCCOL landmarks. We 

examine the roles of the GFN #37 in the spatial interaction process from Supplemental Fig. 

2 and find that it has high memberships of the role 1 in the motor, language and social tasks. 

That means, the GFN #37 potentially takes on an important role (e.g., centrality) in these 

three tasks, which is quite consistent with the characteristics of the GFN #37 in its 

DICCCOL-based structural connection graph. These results demonstrate that our analysis 

results for spatial interactions among functional networks are consistent with those on 

structural connectomes of the DICCCOL landmarks.

4. Conclusion and Discussion

From a technical perspective, a novel computational framework was proposed in this paper 

to model temporal evolution of spatial overlaps/interactions among connectome-scale 

functional brain networks. First, a concatenated sparse representation and online dictionary 

learning method have been employed to decompose the tfMRI data into concurrent 

functional network components. Then a hierarchical AP clustering algorithm has been 
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proposed to integrate the resultant network components into 54 common GFNs. By using 

them as vertices and their spatial overlap rate as edge weights, a time-evolving graph model 

has been employed to describe the temporal evolution process of spatial overlaps/

interactions and dynamics of brain networks. Behavioral roles and the dynamics of each 

GFN have been identified by the DBMM-based role discovery algorithm. The framework 

has been applied and evaluated on four HCP task fMRI datasets and interesting results have 

been achieved.

From a neuroscientific perspective, our experimental results on the HCP datasets revealed 

the following interesting observations. First, the derived connectome-scale GFNs can be 

well interpreted and they are in agreement with literature studies. It is inspiring that the same 

set of common GFNs can be found in all of the task fMRI scans of all studied HCP Q1 

subjects, which might suggest the existence of a common brain network space that can 

account for various network composition patterns of different cognitive states such as the 

four task performances studied in this paper. Second, the spatial patterns of the brain 

networks exhibit more consistent dynamic behaviors and variation rules with the task stimuli 

than the temporal patterns. Moreover, the spatial interactions exhibit higher consistency with 

the task stimuli than the temporal interactions. Therefore, utilization of the spatial patterns 

and their interactions to model dynamics of brain networks is reasonable and effective. 

Third, each of the connectome-scale GFNs simultaneously takes on multiple roles within the 

functional connectome such as the derived five roles reported in Section 3.3. These roles can 

be well interpreted according to current neuroscientific knowledge in the field. It is inspiring 

that almost all GFNs simultaneously exhibit five roles during dynamic spatial interaction 

processes with other networks in all of the four studied tasks, which might suggest a general 

versatility property of GFNs. It is equally inspiring that the role memberships of those GFNs 

vary in different cognitive tasks, which might suggest that the composition pattern of role 

memberships (essentially the spatial overlap patterns) of those connectome-scale GFNs can 

characterize the human brain’s function. Fourth, both behavioral roles and spatial overlaps 

of the GFNs exhibit remarkable temporal variations and dynamics that are largely in 

agreement with the external task stimuli, which partly suggest that our GFNs and their 

evolving graph models are effective and meaningful. The good interpretation and 

reproducibility suggest the validity of the evolving graph models of GFNs. Essentially, the 

quantification and visualization of the temporal evolution of spatial overlaps/interactions of 

connectome-scale GFNs via these time evolving graph models provide new understanding of 

the human brain function.

In future work, we will elaborately design a more effective fMRI data decomposition 

algorithm based on the sparse representation and dictionary learning to explore more fine-

grained functional connectome and role dynamics. Especially, functional connectome of the 

GFNs that take on dominant roles as well as the influence of these GFNs on others will be 

the key topics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig.1. 
Overall computational pipeline of the proposed framework. (a) The tfMRI data of each 

subject are divided into multiple overlapped sliding windows and then concatenated to yield 

group-wise tfMRI temporal segments. (b) The group-wise temporal dynamics and the 

corresponding spatial maps of brain network components are obtained by the dictionary 

learning and sparse representation. (c) Common group-wise functional networks (GFNs) are 

generated by a three-tier affinity propagation (AP) clustering. (d) Spatio-temporal brain 

network interactions are modeled via time-evolving graphs, where the vertices and edges 

denote the GFNs and their spatial interactions, respectively. (e) Behavioral roles of the GFNs 

are identified by the effective DBMM-based role detection algorithm.
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Fig.2. 
Spatial overlaps/interactions among three GFNs are plotted on the inflated cortical surface. 

The three networks (#3, #7 and #40) are color coded by three colors, respectively. They 

overlap with each other and the red area is jointly covered by all three networks. The color 

coding schemes are on the top right.
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Fig.3. 
Temporal evolution of the interaction between two network components in the language 

task. #1 and #4 network components correspond to RSN 1 and RSN 4 (Lv et al., 2015a) and 

are denoted by the blue and yellow areas, respectively. The red color represents the 

overlapping area between the two components. Their spatial interactions present different 

patterns across time windows. The color coding schemes are on the top right.
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Fig.4. 
Time-evolving graph model for the representation of interaction relationships among 

functional networks. In each layer, the vertices denote the GFNs and the edges denote spatial 

overlaps/interactions between the networks. The weights of the edges measure the 

interaction strength between two networks.
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Fig.5. 
The generated GFNs and templates of the 10 well-studied RSNs.
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Fig.6. 
Role interpretations of the vertices in four tasks. The horizontal axis represents various 

indices in graph theory and the vertical axis represents characteristics of five roles 

corresponding to individual indices. (a) Motor task. (b) Working memory task. (c) Language 

task. (d) Social task.
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Fig.7. 
Star subgraphs. The subgraphs contain one or two center vertices. The edges connecting the 

center with its neighbors have higher weights than the edges between the neighbor vertices 

of the center. (a) Both the vertex #1 and the vertex #42 serve as the centers of the subgraph 

composed of themselves and their six neighbors. (b) The vertex #50 is the center of the 

subgraph composed of itself and its seven neighbors.
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Fig.8. 
Activation areas of the #7 GFN. (a) Different activation areas of #7 GFN in four tasks. 

Compared with the other three tasks, the language task has a smaller activation area. (b) The 

red color denotes the overlapping area of the #7 GFN among all four tasks. The blue and 

green denote the activation area only in the language task and that only in the other three 

tasks, respectively.
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Fig.9. 
Fourteen GFNs which exhibit different behavioral patterns across four tasks. Each row 

presents time-evolving role mixed-memberships of four studied tasks of a GFN. The 

horizontal axis represents the time window (the layer of the time-evolving graph), while the 

vertical axis represents the role distribution in each time window. Five colors represent five 

different roles learned from the time-evolving graph model. The inactivity is represented by 

the white bars. According to interpretations on the roles in Fig.6, the role 1 represents the 

centrality of the time-evolving graph, which implies that the vertex in role 1 is the most 

influential in the graph. In contrast to the role 1, the role 2 represents that the vertex plays a 

less important role. The role 3 represents the bridge between other vertices of the graph. The 

roles 4 and 5 represent that the vertex has an important influence within a cluster, whereas it 

cannot serve as the global centrality of the whole graph.

Yuan et al. Page 35

Neuroimage. Author manuscript; available in PMC 2019 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig.10. 
GFNs which exhibit similar role patterns for all the four tasks, where the GFNs #1, #41 and 

#42 present obviously similar mixed-memberships distributions, and so do GFNs #24 and 

#28.
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Fig.11. 
Temporal response curves of the two roles of the #13 and #8 GFNs to the contrast designs in 

the language task. (a) Variation of the #13 GFN’s role 2 is evoked by the task contrast 1. The 

Pearson correlation coefficient (PCC) between the response curve of the role 2 and the 

paradigm of the contrast 1 is PCC=0.49, which implies that the role 2 of this network 

follows the task design closely. (b) The #13 GFN’s role 1 synchronously varies with the task 

contrast 2. The Pearson correlation coefficient between them is PCC=0.56. (c) Variation of 

the #8 GFN’s role 1 follows the task contrast 1. The Pearson correlation coefficient between 

them is PCC=0.55. (d) Response curve of the #8 GFN’s role 2 is induced by the contrast 

design 2. The Pearson correlation coefficient between them is PCC=0.46.
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Fig.12. 
Role dynamics of the #4 and #9 RSNs in all four tasks. Major roles of the #4 and #9 RSNs 

can follow the task paradigm curves. Roles of these two RSNs present either positive 

correlations or negative correlations with the contrast designs.
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Fig.13. 
Dynamic spatial overlaps/interactions between the #2 and #5 GFNs. (a) The spatial overlap 

between the two GFNs varies with the task contrast in the motor task. The contrast design 6 

excites the overlap area to increase dramatically at time point C1 and C2, while it decreases 

to almost zero at the idle time point I1. (b) The spatial overlap between the two GFNs is 

negatively correlated with the task contrast in the working memory task. That means the 

contrast design of the working memory task may inhibit the functional interaction of these 

two networks.
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Fig.14. 
Dynamic spatial overlaps/interactions among three GFNs #25, #30 and #50. The spatial 

overlap among them changes with the contrast 1 of the language task. The Pearson 

correlation coefficient between the overlap area and the contrast 1 is PCC = 0.58. At time 

points C1, C2 and C3 within the contrast designs, the overlap area of the three networks 

reaches a peak value, while at three idle time points I1, I2 and I3, the spatial overlap reduces 

to a minimal value.
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Fig.15. 
Dynamic spatial overlaps/interactions among three GFNs #1, #41 and #42. The spatial 

overlap among them is negatively correlated with the entire contrast design of the working 

memory task. The Pearson correlation coefficient is PCC = −0.43. At time points C1, C2, C3 

and C4 within the contrast designs, the overlap area of three networks reduces to a minimal 

value, while at two idle time points I1 and I2, which lie between C1 and C2, as well as C3 

and C4, respectively, the overlap area reaches a peak value.
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Table 1

The networks with different role mixed-memberships in two graphs of the motor task.
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Table 2

The networks with different role mixed-memberships in two graphs of the work memory task.
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