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Abstract
We consider an excitatory population of subthreshold Izhikevich neurons which cannot fire spontaneously without noise.

As the coupling strength passes a threshold, individual neurons exhibit noise-induced burstings. This neuronal population

has adaptive dynamic synaptic strengths governed by the spike-timing-dependent plasticity (STDP). However, STDP was

not considered in previous works on stochastic burst synchronization (SBS) between noise-induced burstings of sub-

threshold neurons. Here, we study the effect of additive STDP on SBS by varying the noise intensity D in the Barabási–

Albert scale-free network (SFN). One of our main findings is a Matthew effect in synaptic plasticity which occurs due to a

positive feedback process. Good burst synchronization (with higher bursting measure) gets better via long-term potenti-

ation (LTP) of synaptic strengths, while bad burst synchronization (with lower bursting measure) gets worse via long-term

depression (LTD). Consequently, a step-like rapid transition to SBS occurs by changing D, in contrast to a relatively

smooth transition in the absence of STDP. We also investigate the effects of network architecture on SBS by varying the

symmetric attachment degree l� and the asymmetry parameter Dl in the SFN, and Matthew effects are also found to occur

by varying l� and Dl. Furthermore, emergences of LTP and LTD of synaptic strengths are investigated in details via our

own microscopic methods based on both the distributions of time delays between the burst onset times of the pre- and the

post-synaptic neurons and the pair-correlations between the pre- and the post-synaptic instantaneous individual burst rates

(IIBRs). Finally, a multiplicative STDP case (depending on states) with soft bounds is also investigated in comparison with

the additive STDP case (independent of states) with hard bounds. Due to the soft bounds, a Matthew effect with some

quantitative differences is also found to occur for the case of multiplicative STDP.

Keywords Spike-timing-dependent plasticity � Stochastic burst synchronization � Scale-free network � Subthreshold
neurons

Introduction

Recently, brain rhythms in health and disease have

attracted much attention (Buzsáki 2006; Traub and Whit-

tington 2010; Khodagholy et al. 2017; Roux et al. 2017;

Oliva et al. 2016; Taxidis et al. 2015; Buzsáki and Wang

2012; Saleem et al. 2017; Veit et al. 2017; Michalareas

et al. 2016; Garcia-Rill 2015; Ujma et al. 2015; Miyawaki

and Diva 2016; Ploner et al. 2017; Swann et al. 2017).

These brain rhythms appear through synchronization

between individual firings in neural circuits. Population

synchronization of neural firing activities may be used for

efficient sensory and cognitive processing (e.g., feature

integration, selective attention, and memory formation)

(Wang 2010; Gray 1994), and it is also correlated with

pathological rhythms associated with neural diseases (e.g.,

epileptic seizures and tremors in the Parkinson’s disease)

(Hammond et al. 2007; Uhlhaas and Singer 2006). This

kind of neural synchronization has been intensively studied

for the case of suprathreshold neurons exhibiting sponta-

neous regular firings like clock oscillators (Wang 2010).

On the other hand, the case of subthreshold neurons (which
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cannot fire spontaneously) has received little attention.

With the help of noise, subthreshold neurons exhibit

irregular firings like Geiger counters. Here, we are con-

cerned about neural synchronization between noise-in-

duced firings.

Noise-induced firing patterns of subthreshold neurons

were investigated in many physiological and pathophysi-

ological aspects (Huber and Braun 2006). For example,

sensory receptor neurons were found to use noise-induced

firings for encoding environmental electric or thermal

stimuli, which are generated through the ‘‘constructive’’

interplay of subthreshold oscillations and noise (Braun

et al. 1994; Longtin and Hinzer 1996). A distinct charac-

teristic of noise-induced firings is occurrence of ‘‘skipping’’

of spikes at random integer multiples of a basic oscillation

period (i.e., occurrence of stochastic phase locking) (Huber

and Braun 2006; Braun et al. 1994; Longtin and Hinzer

1996; Longtin 1997). These noise-induced firings of a

single subthreshold neuron become most coherent at an

optimal noise intensity, which is called coherence reso-

nance (or autonomous stochastic resonance without peri-

odic forcing) (Longtin 1997). Furthermore, array-enhanced

coherence resonance was also found to occur in an

ensemble of subthreshold neurons (Wang et al. 2000; Hu

and Zhou 2000; Zhou et al. 2001; Zhou and Kurths 2002;

Shinohara et al. 2002). In this way, noise may play a

constructive role in the emergence of dynamical order in

certain circumstances.

Particularly, we are interested in noise-induced firings of

subthreshold bursting neurons. There are several repre-

sentative bursting neurons; for example, intrinsically

bursting neurons and chattering neurons in the cortex

(Connors and Gutnick 1990; Gray and McCormick 1996),

thalamic relay neurons and thalamic reticular neurons in

the thalamus (Llinás and Jahnsen 1982; McCormick and

Huguenard 1992; Lee et al. 2007), hippocampal pyramidal

neurons (Su et al. 2001), Purkinje cells in the cerebellum

(Womack and Khodakhah 2002), pancreatic b-cells (Chay
and Keizer 1983; Kinard et al. 1999; Pernarowski et al.

1992), and respiratory neurons in the pre-Bötzinger com-

plex (Butera et al. 1999; Del Negro et al. 1998). Due to a

repeated sequence of spikes in the bursting, there are many

hypotheses on the importance of bursting activities in

neural computation (Izhikevich 2004, 2006; Krahe and

Gabbian 2004; Lisman 1997; Izhikevich et al. 2003); for

example, (a) bursts are necessary to overcome the synaptic

transmission failure, (b) bursts are more reliable than single

spikes in evoking responses in post-synaptic neurons,

(c) bursts evoke long-term potentiation/depression (and

hence affect synaptic plasticity much greater than single

spikes), and (d) bursts can be used for selective commu-

nication between neurons. As is well known, burstings

occur when neuronal activity alternates, on a slow

timescale, between a silent phase and an active (bursting)

phase of fast repetitive spikings (Izhikevich 2000, 2006;

Coombes and Bressloff 2005; Rinzel 1985, 1987; Izhike-

vich 2007). This kind of bursting activity occurs due to the

interplay of the fast ionic currents leading to spiking

activity and the slower currents modulating the spiking

activity. Thus, the dynamics of bursting neurons have two

timescales: slow bursting timescale and fast spiking time-

scale. Consequently, bursting neurons exhibit two different

patterns of synchronization due to the slow and the fast

timescales of bursting activity: burst synchronization

(synchrony on the slow bursting timescale) which charac-

terizes a temporal coherence between the (active phase)

burst onset times (i.e., times at which burstings start in

active phases) and spike synchronization (synchrony on the

fast spiking timescale) which refers to a temporal coher-

ence between intraburst spikes fired by bursting neurons in

their respective active phases (Rubin 2007; Omelchenko

et al. 2010). Recently, burst and spike synchronizations

have been studied in many aspects (Elson et al. 1998; Stern

et al. 1998; Varona et al. 2001; van Vreeswijk and Hansel

2001; Dhamala et al. 2004; Ivanchenko et al. 2004; Shil-

nikov and Cymbalyuk 2005; Shi and Lu 2005; Tanaka

et al. 2006; Pereira et al. 2007; Batista et al. 2007, 2009;

Shi and Lu 2009; Wang et al. 2009, 2011a, b, 2013; Batista

et al. 2010; Sun et al. 2011; Yu et al. 2011; Batista et al.

2012; Lameu et al. 2012; Duan et al. 2013; Meng et al.

2013; Prado et al. 2014; Ferrari et al. 2015). However,

most of these studies were focused on the suprathreshold

case, in contrast to subthreshold case of our concern.

Here, we study stochastic burst synchronization (SBS)

(i.e. population synchronization between noise-induced

burstings of subthreshold neurons) which may be associ-

ated with brain functions of encoding sensory stimuli in the

noisy environment. Recently, such SBS has been found to

occur in an intermediate range of noise intensity through

competition between the constructive and the destructive

roles of noise (Kim et al. 2012; Kim and Lim 2015a). As

the noise intensity passes a lower threshold, a transition to

SBS occurs due to a constructive role of noise stimulating

coherence between noise-induced burstings. However,

when passing a higher threshold, another transition from

SBS to desynchronization takes place due to a destructive

role of noise spoiling the SBS. We note that synaptic

coupling strengths were static in the previous works on

SBS (Kim et al. 2012; Kim and Lim 2015a). However, in

real brains synaptic strengths may be potentiated (Hebb

1949; Kornoski 1948; Shatz 1992) or depressed (Stent

1973; von der Malsburg 1973; Sejnowski 1977; Bienen-

stock et al. 1982) for adaptation to the environment. These

adjustments of synapses are called the synaptic plasticity

which provides the basis for learning, memory, and

development (Abbott and Nelson 2000). In contrast to
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previous works where synaptic plasticity was not consid-

ered (Kim et al. 2012; Kim and Lim 2015a), as to the

synaptic plasticity, we consider a Hebbian spike-timing-

dependent plasticity (STDP) (Markram et al. 1997; Zhang

et al. 1998; Bi and Poo 1998; Debanne et al. 1998; Egger

et al. 1999; Tzounopoulos et al. 2004; Wittenberg and

Wang 2006; Birtoli and Ulrich 2004; Harnett et al. 2009;

Song et al. 2000; Bi and Poo 2001; Kepecs et al. 2002;

Dan and Poo 2004, 2006; Caporale and Dan 2008; Feldman

2012; Markram et al. 2012). For the STDP, the synaptic

strengths change through a Hebbian plasticity rule

depending on the relative time difference between the pre-

and the post-synaptic burst onset times. When a pre-sy-

naptic burst precedes a post-synaptic burst, long-term

potentiation (LTP) occurs; otherwise, long-term depression

(LTD) appears. Through the process of LTP and LTD in

synaptic strengths, STDP controls the efficacy of diverse

brain functions. Many models for STDP have been

employed to explain results on synaptic modifications

occurring in diverse neuroscience topics for health and

disease [e.g., temporal sequence learning (Abbott and

Blum 1996), temporal pattern recognition (Feldman 2000),

coincidence detection (Gerstner et al. 1996), navigation

(Blum and Abbott 1996), direction selectivity (Mehta and

Wilson 2000), memory consolidation (Ji and Wilson 2007),

competitive/selective development (Song and Abbott

2001), and deep brain stimulation (Lourens et al. 2015)].

Recently, the effects of STDP on population synchroniza-

tion for the case of coupled (spontaneously-firing)

suprathreshold neurons were studied in various aspects

(Borges et al. 2016, 2017; Popovych and Tass 2012;

Popovych et al. 2013), and in the case of subthreshold

spiking neurons (which cannot fire spontaneously without

noise) stochastic spike synchronization (i.e., population

synchronization between noise-induced spikings) was also

studied in a small-world network with STDP (Kim and Lim

2018).

In this paper, we consider an excitatory population of

subthreshold Izhikevich neurons (Izhikevich 2003, 2004;

Kim et al. 2012). As the coupling strength passes a

threshold, individual neurons exhibit noise-induced burst-

ings. In the absence of STDP, SBS between noise-induced

burstings of subthreshold neurons for the globally-coupled

case was found to occur over a large range of intermediate

noise intensities through competition between the con-

structive and the destructive roles of noise, as shown in our

previous work (Kim et al. 2012). Here, we investigate the

effect of additive STDP (independent of states) on the SBS

by varying the noise intensity D in the Barabási–Albert

scale-free network (SFN) with symmetric preferential

attachment with the same in- and out-degrees

[lin ¼ lout ¼ l� ð¼ 10Þ� (Barabási and Albert 1999; Albert

and Barabási 2002), and compare its results with those in

the absence of STDP. This type of SFNs exhibit a power-

law degree distribution (i.e., scale-free property), and

hence they become inhomogeneous ones with a few

‘‘hubs’’ (i.e., super-connected nodes), in contrast to statis-

tically homogeneous networks such as random graphs and

small-world networks. One of our main findings is a

Matthew effect in synaptic plasticity which occurs due to a

positive feedback process, similar to the case of stochastic

spike synchronization (Kim and Lim 2018). Good burst

synchronization with higher bursting measure gets better

(i.e. the synchronization degree increases) via LTP of

synaptic strengths, while bad burst synchronization with

lower bursting measure gets worse (i.e. the synchronization

degree decreases) via LTD. As a result, a step-like rapid

transition to SBS occurs by changing D, in contrast to the

relatively smooth transition in the absence of STDP. In the

presence of additive STDP, we also investigate the effect

of network architecture on the SBS for a fixed D by varying

the symmetric attachment degree l� and the asymmetry

parameter Dl (tuning the asymmetrical attachment of new

nodes with different in- and out-degrees) (lin ¼ l� þ Dl and
lout ¼ l� � Dl; l� ¼ 10). Similar to the above case of the

symmetric attachment with l� ¼ 10, Matthew effects also

occur by changing l� and Dl (i.e., step-like rapid transitions

to SBS take place, in contrast to the case without STDP).

Moreover, for the symmetric attachment with l� ¼ 10,

emergences of LTP and LTD of synaptic strengths are

intensively studied through our own microscopic methods

based on both the distributions of time delays fDtijg
between the pre- and the post-synaptic bursting onset times

and the pair-correlations between the pre- and the post-

synaptic IIBRs (instantaneous individual burst rates). To

the best of our knowledge, there were no microscopic

studies of this type in previous works on STDP. Hence, via

these microscopic investigations, we also obtain another

following main results, in addition to the Matthew effect.

We can clearly understand how microscopic distributions

for fDtijg contribute to the population-averaged synaptic

modification hJiji, and microscopic correlations between

synaptic pairs are also found to be directly associated with

appearance of LTP/LTD. Finally, we consider a multi-

plicative STDP (which depends on states) (Popovych and

Tass 2012; Rubin et al. 2001). For the multiplicative case,

a change in synaptic strengths scales linearly with the

distance to the higher and the lower bounds of synaptic

strengths, and hence the bounds for the synaptic strength

become ‘‘soft,’’ in contrast to the hard bounds for the

additive case. The effects of multiplicative STDP on SBS

for l� ¼ 10 are investigated and discussed in comparison

with the case of additive STDP. For this case of multi-

plicative STDP, a Matthew effect is also found to occur, as

in the case of additive STDP. However, some quantitative
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differences arise, due to the effect of soft bounds. Conse-

quently, a relatively less rapid transition occurs near both

ends in comparison to the additive case, and the degrees of

SBS in most plateau-like top region (corresponding to most

cases of LTP) also become a little larger than those in the

additive case.

This paper is organized as follows. In ‘‘Excitatory scale-

free network of subthreshold neurons with synaptic plas-

ticity’’ section, we describe an excitatory Barabási–Albert

SFN of subthreshold Izhikevich neurons, and the governing

equations for the population dynamics are given. Then, in

‘‘Effects of STDP on the stochastic burst synchronization’’

section we investigate the effects of STDP on SBS for both

cases of the additive and the multiplicative STDP. Finally,

in ‘‘Summary’’ section a summary is given.

Excitatory scale-free network
of subthreshold neurons with synaptic
plasticity

Synaptic connectivity in neural circuits has been found to

have complex topology which is neither regular nor com-

pletely random (Sporns 2011; Buzsáki et al. 2004;

Chklovskii et al. 2004; Song et al. 2005; Sporns and Honey

2006; Larimer and Strowbridge 2008; Bullmore and Sporns

2009; Sporns et al. 2000; Bassett and Bullmore 2006).

Particularly, brain networks have been found to exhibit

power-law degree distributions (i.e., scale-free property) in

the rat hippocampal networks (Bonifazi et al. 2009;

Wiedemann 2010; Li et al. 2010; Morgan and Soltesz

2008) and the human cortical functional network (Eguı́luz

et al. 2005). Moreover, robustness against simulated

lesions of mammalian cortical anatomical networks

(Young 1993; Young et al. 1994; Scannell et al.

1995, 1999; Felleman and Van Essen 1991; Sporns et al.

2004) has also been found to be most similar to that of an

SFN (Kaiser et al. 2007). Many recent works on various

subjects of neurodynamics (e.g., coupling-induced burst

synchronization, delay-induced burst synchronization, and

suppression of burst synchronization) have been done in

SFNs with a few percent of hub neurons with an excep-

tionally large number of connections (Batista et al.

2007, 2009; Wang et al. 2009, 2011a; Batista et al. 2010;

Ferrari et al. 2015).

We consider an excitatory SFN composed of N sub-

threshold neurons equidistantly placed on a one-dimen-

sional ring of radius N=2p. We employ a directed

Barabási–Albert SFN model (i.e. growth and preferential

directed attachment) (Barabási and Albert 1999; Albert and

Barabási 2002). At each discrete time t, a new node is

added, and it has lin incoming (afferent) edges and lout
outgoing (efferent) edges via preferential attachments with

lin (pre-existing) source nodes and lout (pre-existing) target

nodes, respectively. The (pre-existing) source and target

nodes i (which are connected to the new node) are pref-

erentially chosen depending on their out-degrees d
ðoutÞ
i and

in-degrees d
ðinÞ
i according to the attachment probabilities

PsourceðdðoutÞi Þ and PtargetðdðinÞi Þ, respectively:

PsourceðdðoutÞi Þ ¼ d
ðoutÞ
i

PNt�1
j¼1 d

ðoutÞ
j

and

PtargetðdðinÞi Þ ¼
d
ðinÞ
i

PNt�1
j¼1 d

ðinÞ
j

;

ð1Þ

where Nt�1 is the number of nodes at the time step t � 1.

Hereafter, the cases of lin ¼ loutð� l�Þ and lin 6¼ lout will be

referred to as symmetric and asymmetric preferential

attachments, respectively. For generation of an SFN with N

nodes, we start with the initial network at t ¼ 0, consisting

of N0 ¼ 50 nodes where the node 1 is connected bidirec-

tionally to all the other nodes, but the remaining nodes

(except the node 1) are sparsely and randomly connected

with a low probability p ¼ 0:1. Then, the processes of

growth and preferential attachment are repeated until the

total number of nodes becomes N. For our initial network,

the node 1 will be grown as the head hub with the highest

degree. As elements in the SFN, we choose the Izhikevich

neuron model which combines the biological plausibility of

the Hodgkin–Huxley-type models and the computational

efficiency of the integrate-and-fire model (Izhikevich

2003, 2004).

The following Eqs. (2)–(7) govern the population

dynamics in the SFN:

dvi

dt
¼ f ðviÞ � ui þ IDC;i þ Dni � Isyn;i; ð2Þ

dui

dt
¼ a ðbvi � uiÞ; i ¼ 1; . . .;N; ð3Þ

with the auxiliary after-spike resetting:

if vi� vp; then; vi  c and ui  ui þ d; ð4Þ

where

f ðvÞ ¼ 0:04v2 þ 5vþ 140; ð5Þ

Isyn;i ¼
1

d
ðinÞ
i

XN

j¼1ðj 6¼iÞ
Jij wij sjðtÞ ðvi � VsynÞ; ð6Þ

sjðtÞ ¼
XFj

f¼1
Eðt � t

ðjÞ
f � slÞ;

EðtÞ ¼ 1

sd � sr
ðe�t=sd � e�t=sr ÞHðtÞ:

ð7Þ
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Here viðtÞ and uiðtÞ are the state variables of the ith neuron

at a time t which represent the membrane potential and the

recovery current, respectively. This membrane potential

and the recovery variable, viðtÞ and uiðtÞ, are reset

according to Eq. (4) when viðtÞ reaches its cutoff value vp.

The parameter values used in our computations are listed in

Table 1. More details on the Izhikevich neuron model, the

external stimulus to each Izhikevich neuron, the synaptic

currents and plasticity, and the numerical method for

integration of the governing equations are given in the

following subsections.

Izhikevich neuron model

The Izhikevich model matches neuronal dynamics by

tuning the parameters (a, b, c, d) instead of matching

neuronal electrophysiology, unlike the Hodgkin–Huxley-

type conductance-based models (Izhikevich 2003, 2004).

The parameters a, b, c, and d are related to the time scale of

the recovery variable u, the sensitivity of u to the sub-

threshold fluctuations of v, and the after-spike reset values

of v and u, respectively. Depending on the values of these

parameters, the Izhikevich neuron model may exhibit 20 of

the most prominent neuro-computational features of corti-

cal neurons, as in the Hodgkin–Huxley-type models. Here,

we use the parameter values for the regular-spiking (RS)

neurons, which are listed in the 1st item of Table 1.

External stimulus to each Izhikevich neuron

Each Izhikevich RS neuron is stimulated by both a DC

current IDC;i and an independent Gaussian white noise ni
[see the 3rd and the 4th terms in Eq. (2)]. The Gaussian

white noise satisfies hniðtÞi ¼ 0 and

hniðtÞ njðt0Þi ¼ dij dðt � t0Þ, where h� � �i denotes an ensem-

ble average. Here, the intensity of the Gaussian noise ni is
controlled by the parameter D. For D ¼ 0, the Izhikevich

RS neurons exhibit the type-II excitability. A type-II

neuron exhibits a jump from a resting state to a spiking

state through a subcritical Hopf bifurcation when passing a

threshold by absorbing an unstable limit cycle born via fold

limit cycle bifurcation, and hence the firing frequency

begins from a non-zero value (Izhikevich 2000; Hodgkin

1948). Throughout the paper, we consider a subthreshold

case (where only noise-induced firings occur) such that the

value of IDC;i is chosen via uniform random sampling in the

range of [3.55, 3.65], as shown in the 2nd item of Table 1.

Synaptic currents and plasticity

The 5th term in Eq. (2) denotes the synaptic couplings of

Izhikevich neurons. Isyn;i of Eq. (6) represents the synaptic

current injected into the ith neuron, and Vsyn is the synaptic

reversal potential. The synaptic connectivity is given by the

connection weight matrix W (=fwijg) where wij ¼ 1 if the

neuron j is presynaptic to the neuron i; otherwise, wij ¼ 0.

Here, the synaptic connection is modeled in terms of the

directed Barabási–Albert SFN. Then, the in-degree of the

ith neuron, d
ðinÞ
i (i.e., the number of synaptic inputs to the

neuron i) is given by d
ðinÞ
i ¼

PN
j¼1ð6¼iÞ wij.

The fraction of open synaptic ion channels at time t is

denoted by s(t). The time course of sjðtÞ for the jth neuron

is given by a sum of delayed double-exponential functions

Eðt � t
ðjÞ
f � slÞ [see Eq. (7)], where sl is the synaptic delay,

and t
ðjÞ
f and Fj are the fth spiking time and the total number

of spikes of the jth neuron (which occur until time t),

respectively. Here, E(t) [which corresponds to contribution

of a pre-synaptic spike occurring at time 0 to sjðtÞ in the

absence of synaptic delay] is controlled by the two synaptic

time constants: synaptic rise time sr and decay time sd, and
HðtÞ is the Heaviside step function: HðtÞ ¼ 1 for t� 0 and

0 for t\0. For the excitatory AMPA synapse, the values of

sl, sr, sd , and Vsyn are listed in the 3rd item of Table 1

(Brunel and Wang 2003).

Table 1 Parameter values used

in our computations; units of the

potential and the time are mV

and ms, respectively

(1) Single Izhikevich Neurons (Izhikevich 2003, 2004)

a ¼ 0:02 b ¼ 0:2 c ¼ � 65 d ¼ 8 vp ¼ 30

(2) External Stimulus to Izhikevich Neurons

IDC;i 2 ½3:55; 3:65� D: Varying

(3) Excitatory Synapse Mediated by The AMPA Neurotransmitter (Brunel and Wang 2003)

sl ¼ 1 sr ¼ 0:5 sd ¼ 2 Vsyn ¼ 0

(4) Synaptic Connections between Neurons in The Barabási–Albert SFN

l�: Varying (symmetric preferential attachment)

Dl: Varying (asymmetric preferential attachment)

(5) Hebbian STDP Rule

Aþ ¼ 1:0 A� ¼ 0:6 sþ ¼ 15 s� ¼ 30

d ¼ 0:005 Jij 2 ½0:0001; 5:0�
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The coupling strength of the synapse from the jth pre-

synaptic bursting neuron to the ith post-synaptic bursting

neuron is Jij. The values of Jij are obtained from the

Gaussian distribution with the mean J0 and the standard

deviation r0 ð¼ 0:02Þ. As J0 passes a threshold, sub-

threshold Izhikevich RS neurons exhibit noise-induced

burstings, which will be discussed in Fig. 1. We are

interested in SBS between these noise-induced burstings.

Here, we consider a Hebbian STDP for the synaptic

strengths fJijg and investigate effects of STDP on SBS.

Initial synaptic strengths are normally distributed with the

mean J0 ð¼ 2:5Þ and the standard deviation r0 ð¼ 0:02Þ.
With increasing time t, the synaptic strength for each

synapse is updated with an additive nearest-burst pair-

based STDP rule (Popovych and Tass 2012; Morrison et al.

2007):

Jij ! Jij þ dDJijðDtijÞ; ð8Þ

where d ð¼ 0:005Þ is the update rate and DJij is the

synaptic modification depending on the relative time dif-

ference Dtij ð¼ t
ðpostÞ
i � t

ðpreÞ
j Þ between the nearest burst

onset times of the post-synaptic bursting neuron i and the

(a)

(b) (c) (c)

(e)

(g1) (g2) (g3)

(f)

Fig. 1 SFN for the case of

symmetrical attachment with

lin ¼ lout ¼ l� ¼ 10 when

N ¼ 103. a Schematic diagram

of an inhomogeneous SFN with

50 nodes equidistantly placed

on a ring. b Histogram for

fraction of nodes versus the in-

degree dðinÞ. c Plot of the out-

degree dðoutÞ versus the in-

degree dðinÞ. d Plot of the in-

degree hdðinÞir versus the neuron
index i. In c, d the head hub is

represented by the open circle.

Single Izhikevich RS neuron

exhibiting type-II excitability. e
Plot of the mean firing rate f

versus IDC for D ¼ 0. f Time

series of the membrane potential

v(t) for IDC ¼ 3:6 and D ¼ 0:3.
Coupling-induced transition

from noise-induced spikings to

noise-induced burstings for D ¼
0:3 in the directed SFN of Nð¼
103Þ excitatory subthreshold

Izhikevich RS neurons for the

case of symmetrical attachment

with l� ¼ 10. g1–g3 Time series

of the membrane potential v1ðtÞ
and the recovery variable u1ðtÞ
of the first neuron, where the

mean values J0 of synaptic

coupling strengths fJijg are g1
1.0, g2 1.3, and g3 1.5
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pre-synaptic bursting neuron j. The synaptic modification

DJij in Eq. (8) for the case of burst synchronization is in

contrast to the case of spike synchronization where DJij
changes depending on the relative time difference between

the nearest spike times of the post-synaptic and the pre-

synaptic spiking neurons (Kim and Lim 2018). For a mixed

case where neurons exhibit spikes and bursts, one can

apply DJij in Eq. (8) by treating each spike time as a burst

onset time, because a spike may be regarded as a burst

composed of only one spike. To avoid unbounded growth,

negative conductances (i.e. negative coupling strength),

and elimination of synapses (i.e. Jij ¼ 0), we set a range

with the upper and the lower bounds: Jij 2 ½0:0001; 5:0�.
We use an asymmetric time window for the synaptic

modification DJijðDtijÞ (Song et al. 2000):

DJij ¼ Aþ e
�Dtij=sþ forDtij [ 0

�A� eDtij=s� forDtij\0

�

; ð9Þ

where Aþ ¼ 1:0, A� ¼ 0:6, sþ ¼ 15 ms, and s� ¼ 30 ms

(these values are also given in the 5th item of Table 1), and

DJijðDtij ¼ 0Þ ¼ 0.

Numerical method for integration

Numerical integration of stochastic differential Eqs. (2)–

(7) with a Hebbian STDP rule of Eqs. (8) and (9) is done

by employing the Heun method (San Miguel and Toral

2000) with the time step Dt ¼ 0:01 ms. For each realization

of the stochastic process, we choose random initial points

½við0Þ; uið0Þ� for the ith ði ¼ 1; . . .;NÞ neuron with uniform

probability in the range of við0Þ 2 ð� 50;� 45Þ and

uið0Þ 2 ð10; 15Þ.

Effects of STDP on the stochastic burst
synchronization

We consider a directed Barabási–Albert SFN model with

growth and preferential directed attachment (Barabási and

Albert 1999; Albert and Barabási 2002). For reference, an

inhomogeneous SFN (with 50 nodes equidistantly placed

on a ring) is schematically depicted in Fig. 1a. There are a

few of super-connected hubs with higher degrees, along

with the majority of peripheral nodes with lower degrees.

The head hub with the highest degree is denoted by the

open circle, and two other secondary hubs are represented

by the stars. We note that long-range connections (for

global communication between distant nodes) emerge from

these hubs.

Figure 1b–d show the degree distributions for the case of

symmetric attachment with lin ¼ lout ¼ l� ¼ 10 in the

directed Barabási–Albert SFN. The histogram for fraction

of nodes versus the in-degree dðinÞ is shown in Fig. 1b; this

histogram is obtained through 30 realizations, and the bin

size is 1. This in-degree distribution exhibits a power-law

decay PðdðinÞÞ � dðinÞ
�c

with the exponent c ¼ 3 (Barabási

and Albert 1999; Albert and Barabási 2002; Kim and Lim

2015c). Hence, the majority of peripheral nodes have their

degrees near the peak at dðinÞ ¼ 10, while the minority of

hubs have their degrees in the long-tail part. Based on the

degree distribution (showing a power-law decay), we

classify the nodes into the hub group (composed of the

head hub with the highest degree and the secondary hubs

with higher degrees) and the peripheral group (consisting

of a majority of peripheral nodes with lower degrees) in the

following way (Kim and Lim 2015c, 2016). We choose an

appropriate threshold d
ðinÞ
th separating the hub and the

peripheral groups in the distribution of in-degrees dðinÞ in
Fig. 1b. For convenience, when the fraction of nodes is

smaller than 0:2%, such nodes are regarded as hubs. To this

end, the threshold is chosen as d
ðinÞ
th ¼ 56 (denoted by the

vertical dotted line in Fig. 1b) whose fraction of nodes is

0.002 (i.e., 0:2%). Figure 1c shows a plot of the out-degree

dðoutÞ versus the in-degree dðinÞ. The in- and out-degrees are

distributed nearly symmetrically around the diagonal.

Hence, we choose the threshold d
ðoutÞ
th for the out-degree as

d
ðoutÞ
th ¼ 56, which is the same as d

ðinÞ
th . For visualization,

the peripheral group is enclosed by a rectangle (determined

by both thresholds d
ðinÞ
th and d

ðoutÞ
th ). The hub group (outside

the rectangle) consists of 87 nodes (i.e., 8:7% of the total

number N ð¼ 103Þ of neurons), where the node 1 (denoted

by the open circle) corresponds to the head hub with the

highest degree and the other ones are secondary hubs. This

type of degree distribution is a ‘‘comet-shaped’’ one; the

peripheral and the hub groups correspond to the coma

(surrounding the nucleus) and the tail of the comet,

respectively. Moreover, to find out which group (hub or

peripheral) the neuron i (i ¼ 1; . . .; 1000Þ belongs to, we

get a plot of the in-degree dðinÞ versus the neuron index i in

Fig. 1d; h� � �ir denotes an average over 30 realizations.

Here, nodes with smaller (larger) i appear in the early (late)

stage of the network evolution. The horizontal line repre-

sents the threshold ðdðinÞ ¼ 56Þ separating the hub and the

peripheral neurons. Neurons with smaller i are hubs, while

those with larger i are peripheral neurons

As elements in the SFN, we consider the Izhikevich RS

neuron model (Izhikevich 2003, 2004). In the absence of

noise (D ¼ 0), a single Izhikevich RS neuron exhibits a

jump from a resting state to a spiking state via subcritical

Hopf bifurcation at a higher threshold IDC;hð’ 3:80Þ by

absorbing an unstable limit cycle born through a fold limit

cycle bifurcation for a lower threshold IDC;lð’ 3:78Þ (Kim
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et al. 2012). For this case, a plot of the mean firing rate f

versus the external DC current IDC is shown in Fig. 1e;

each f is obtained via an average for 105 ms after a transient

time of 103 ms. The Izhikevich RS neuron exhibits type-II

excitability because it begins to fire with a non-zero fre-

quency. As an example, we consider a subthreshold case of

IDC ¼ 3:6 in the presence of noise with D ¼ 0:3. This

subthreshold Izhikevich RS neuron (which cannot fire

spontaneously without noise) exhibits noise-induced spik-

ings, as shown in Fig. 1f for a time series of the membrane

potential v. Our SFN consists of N ð¼ 103Þ excitatory

subthreshold Izhikevich RS neurons for the case of sym-

metrical attachment with lin ¼ lout ¼ l� ¼ 10. The value of

IDC;i for the ith neuron is chosen via uniform random

sampling in the range of [3.55, 3.65]. The values of

synaptic coupling strengths Jij between synaptic pairs are

obtained from the Gaussian distribution with the mean J0
and the standard deviation r0 ð¼ 0:02Þ, and they are static

(i.e. absence of STDP). As shown in Fig. 1g1–g3, with

increasing J0 for a fixed value of D ¼ 0:3, coupling-in-

duced transition from noise-induced spikings to noise-in-

duced burstings occurs when passing a threshold

J�0 ’ 1:207 (Kim et al. 2012). Figure 1g1 shows the time

series of the membrane potential v1 and the recovery

variable u1 of the first neuron (in the population) for

J0 ¼ 1:0. The fast membrane potential v1 exhibits a spiking

or quiescent state depending on the slow recovery variable

u1 which provides a negative feedback to v1 and can be

regarded as an adaptation parameter (Izhikevich

2000, 2007; Omelchenko et al. 2010). For the case of J0 ¼
1:0 (which is less than the critical value J�0), spiking v1
pushes u1 outside the spiking area. Then, u1 makes a slow

decay into the quiescent area (see Fig. 1g1), which leads to

termination of spiking. The quiescent v1 pushes u1 outside

the quiescent area, and then u1 revisits the spiking area,

which results in spiking of v1. Via repetition of this pro-

cess, noise-induced spikings appear successively in v1 for

J0 ¼ 1:0. However, when passing a threshold J�0 , the

coherent synaptic input to the first neuron becomes so

strong that the first spike in v1 cannot push u1 outside the

spiking area. As an example, see the case of J0 ¼ 1:3 in

Fig. 1g2. In this case, after the 1st spike in v1, u1 at first

decreases only a little, and then it increases abruptly.

Unlike the case of J0 ¼ 1:0, after the 1st spike, u1 remains

inside the spiking area, and hence a second spike appears in

v1. After the 2nd spike, u1 is pushed away from the spiking

area and slowly decays into the quiescent area, which leads

to termination of repetitive spikings. Consequently, noise-

induced burstings, composed of two spikes (doublets),

appear in v1 for J0 ¼ 1:3. With further increasing J0, the

coherent synaptic input becomes stronger, and hence the

number of spikes in a noise-induced bursting increases

[e.g., see the noise-induced triplets in Fig. 1g3 for

J0 ¼ 1:5].

SBS in the absence of STDP

First, we are concerned about the SBS in the absence of

STDP for the case of symmetric attachment with lin ¼
lout ¼ l� ¼ 10 in the SFN of N excitatory subthreshold

Izhikevich neurons. The coupling strengths fJijg are static,
and their values are chosen from the Gaussian distribution

where the mean J0 is 2.5 and the standard deviation r0 is

0.02. We investigate emergence of SBS (i.e., population

synchronization between noise-induced burstings) by

varying the noise intensity D. Figure 2a1–a6 show the time

series of v1 of the 1st neuron for various values of D. For

sufficiently small D [which is less than the lower threshold

D�l ð’ 0:1173Þ�, individual neurons exhibit sparse noise-

induced spikings because there are no coherent synaptic

inputs. When passing D�l , noise-induced (‘‘regular’’)

burstings appear due to strong coherent synaptic inputs

(resulting from a constructive role of noise to stimulate

coherence between noise-induced firings) (e.g., see

Fig. 2a1, a2). However, with further increase in D, some

irregularities begin to occur in both the number of spikes

and the interspike intervals within the noise-induced

burstings due to a destructive role of noise to spoil the

population coherence, as shown in Fig. 2a3–a6. Eventu-

ally, when passing the higher threshold D�h ð’ 18:4Þ, such
irregularities become so intensified that individual neurons

exhibit irregular mixed (noise-induced) burstings and

spikings.

Population synchronization may be well visualized in

the raster plot of neural spikes which is a collection of

spike trains of individual neurons. Raster plots of spikes are

shown in Fig. 2b1–b6 for various values of D. Such raster

plots of spikes are fundamental data in experimental neu-

roscience. As a collective quantity showing population

behaviors, we also consider the population-averaged

membrane potential VG (corresponding to the global

potential):

VGðtÞ ¼
1

N

XN

i¼1
viðtÞ: ð10Þ

Global potentials VG for various values of D are shown in

Fig. 2c1–c6. For the synchronous case, ‘‘stripes’’ (com-

posed of spikes and indicating population synchronization)

are found to be formed in the raster plot of spikes, and an

oscillating global potential VG appears (see Fig. 2b1–b6,

c1–c6). On the other hand, in the desynchronized case for

D\D�l or D [ D�h, spikes are completely scattered in the

raster plot of spikes, and VG is nearly stationary. For a clear
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view, magnifications of a single bursting band and VG are

given in Fig. 2d1–d3 for D ¼ 0:3, 5, and 9, respectively.

As mentioned in ‘‘Introduction’’ section, bursting neu-

rons exhibit two different types of synchronization due to

the slow and the fast timescales of bursting activity. Burst

synchronization (synchrony on the slow bursting timescale)

refers to a temporal coherence between burst onset times

(i.e., times at which burstings begin in bursting bands),

while spike synchronization (synchrony on the fast spiking

timescale) characterizes a temporal coherence between

intraburst spikes fired by bursting neurons in their respec-

tive active phases (Rubin 2007; Omelchenko et al. 2010).

When both burst synchronization with the slow timescale

and intraburst spike synchronization with the fast timescale

occur, we call it as complete synchronization. For D ¼ 0:3,

slow burst synchronization occurs, because bursting bands

appear regularly in the raster plot (see Fig. 2b2). Further-

more, since each burst band is composed of intraburst

spiking stripes (see Fig. 2d1), fast intraburst spike syn-

chronization also occurs. Consequently, complete syn-

chronization (including both slow burst synchronization

and fast intraburst spike synchronization) occurs for

D ¼ 0:3. Hence, the global potential VG for D ¼ 0:3

exhibits a bursting activity like the individual membrane

(a1)

(b1) (b2) (b3) (b4) (b5) (b6)

(c1)

(d1)

(e1) (e2) (e3) (e4) (e5) (e6)

(f1)

(g) (h)

(f2) (f3) (f4) (f5) (f6)

(d2) (d3)

(c2) (c3) (c4) (c5) (c6)

(a2) (a3) (a4) (a5) (a6)

Fig. 2 SBS in the absence of STDP for the case of symmetrical

attachment with l� ¼ 10; N ¼ 103 except for the case in (g). Time

series of the membrane potential v1ðtÞ of the 1st neuron in (a1–a6),
raster plots of spikes in (b1–b6), and time series of the global

potential VGðtÞ in (c1–c6) for various values of D. Raster plots of

spikes and time series of the global potential VGðtÞ for a single

magnified burst for D ¼ (d1) 0.3, (d2) 5, and (d3) 9. Raster plots of

burst onset times in (e1–e6) and IPBR kernel estimates RbðtÞ in (f1–
f6) for various values of D. g Plots of the thermodynamic bursting

order parameter log10hObir versus D. h Plot of the statistical-

mechanical bursting measure hMbi versus D
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potentials (i.e., fast spikes appear on a slow wave) (see

Fig. 2d1). However, as D is increased, loss of spike syn-

chronization occurs due to smearing of spiking stripes in

each burst band. As an example, see the case of D ¼ 5

where magnifications of a single burst band and VG are

given in Fig. 2d2. Smearing of spiking stripes is well seen

in the magnified burst band, and hence the amplitudes of

spikes on the slow wave in VG decrease. As D is further

increased and passes a (higher) threshold D
ðsÞ
h ð’ 7:7),

complete loss of spike synchronization occurs in each burst

band (i.e., a transition from complete synchronization to

burst synchronization occurs). As a result, only burst syn-

chronization (without spike synchronization) occurs, as

shown in Fig. 2d3 for D ¼ 9. In this case, VG exhibits a

slow-wave oscillation without fast spikes. We also note

that for small D just above the lower threshold D�l (e.g., see

the case of D ¼ 0:1175), only burst synchronization

occurs, as shown in Fig. 2b1, c1 where no spiking stripes

are formed in each burst band, and hence only a slow-wave

oscillation appears in VG. As D is a little more increased

and passes a (lower) threshold D
ðsÞ
l ð’ 0:1196Þ, a transition

from burst synchronization to complete synchronization

occurs. Consequently, burst synchronization emerges in the

whole range of D�l\D\D�h, while complete synchroniza-

tion (including both burst and spike synchronization)

appears in a sub-range of D
ðsÞ
l \D\D

ðsÞ
h .

Hereafter, we pay attention to only burst synchroniza-

tion (i.e., population synchronization on the slow bursting

timescale) without considering fast (intraburst) spike syn-

chronization. For more direct visualization of just bursting

behaviors, we consider another raster plot of burst onset

times (i.e., times at which burstings begin in bursting

bands). For convenience, we choose the 1st spike time in

each bursting band as the burst onset time. In this way, the

burst onset time (i.e., the 1st spike time) becomes a rep-

resentative bursting time in each bursting band. A collec-

tion of all trains of burst onset times of individual neurons

forms a raster plot of burst onset times (e.g., see Fig. 2e1–

e6), which is in contrast to raster plots of spikes (i.e.,

collections of spike trains of individual neurons) where all

intraburst spike times are considered (e.g., see Fig. 2b1–

b6). The raster plot of burst onset times contains all

essential information on the bursting behaviors. Fig-

ure 2e10–e6 show raster plots of burst onset times for

various values of D. To see emergence of burst synchro-

nization, we employ an (experimentally-obtainable)

instantaneous population burst rate (IPBR) which is often

used as a collective quantity showing bursting behaviors.

This IPBR may be obtained from the raster plot of burst

onset times (Kim and Lim 2015a, b, 2016). To obtain a

smooth IPBR, we employ the kernel density estimation

(kernel smoother) (Shimazaki and Shinomoto 2010). Each

burst onset time in the raster plot is convoluted (or blurred)

with a kernel function KhðtÞ to obtain a smooth estimate of

IPBR RbðtÞ:

RbðtÞ ¼
1

N

XN

i¼1

Xni

b¼1
Khðt � t

ðiÞ
b Þ; ð11Þ

where t
ðiÞ
b is the bth burst onset time of the ith neuron, ni is

the total number of burst onset times for the ith neuron, and

we use a Gaussian kernel function of band width h:

KhðtÞ ¼
1
ffiffiffiffiffiffi
2p
p

h
e�t

2=2h2 ; �1\t\1 ð12Þ

Throughout the paper, the band width h of KhðtÞ is 5 ms.

Figure 2f1–f6 show IPBR kernel estimates RbðtÞ for vari-
ous values of D. For the synchronous case, ‘‘bursting

stripes’’ (composed of burst onset times and indicating

burst synchronization) are formed in the raster plot of burst

onset times (see Fig. 2e1–e6), and the corresponding IPBR

kernel estimates RbðtÞ exhibit oscillations, as shown in

Fig. 2f1–f6. The bursting frequency fb [i.e., the oscillating

frequency of RbðtÞ] increases with increasing D. (e.g., for

D ¼ 0:1175; fb ’ 2:8 Hz, while for D ¼ 17:5; fb ’ 16:7

Hz). In contrast, in the desynchronized case for D\D�l or

D[D�h, burst onset times are completely scattered in the

raster plot, and RbðtÞ is nearly stationary.

Recently, we introduced a realistic bursting order

parameter, based on RbðtÞ, for describing transition from

desynchronization to burst synchronization (Kim and Lim

2015b). The mean square deviation of RbðtÞ,

Ob � ðRbðtÞ � RbðtÞÞ2; ð13Þ

plays the role of an order parameter Ob; the overbar rep-

resents the time average. This bursting order parameter

may be regarded as a thermodynamic measure because it

concerns just the macroscopic IPBR kernel estimate RbðtÞ
without any consideration between RbðtÞ and microscopic

individual burst onset times. In the thermodynamic limit of

N !1, the bursting order parameter Ob approaches a

non-zero (zero) limit value for the synchronized (desyn-

chronized) state. Hence, the bursting order parameter can

determine synchronized and desynchronized states for the

case of the burst synchronization. Figure 2g shows plots of

log10hObir versus D. In each realization, we discard the

first time steps of a stochastic trajectory as transients for

103 ms, and then we numerically compute Ob by following

the stochastic trajectory for 3	 104 ms. Hereafter, h� � �ir
denotes an average over 20 realizations. For D\D�l
ð’ 0:1173), desynchronized states exist because the

bursting order parameter Ob tends to zero as N !1. As D

passes the lower threshold D�l , a transition to SBS occurs

due to a constructive role of noise stimulating coherence
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between noise-induced burstings of subthreshold neurons.

However, for large D[D�h ð’ 18:4Þ such synchronized

states disappear (i.e., a transition to desynchronization

occurs when D passes the higher threshold D�h) due to a

destructive role of noise spoiling the SBS. In this way, SBS

appears in an intermediate range of D�l\D\D�h through

competition between the constructive and the destructive

roles of noise. For D\D�l burst onset times are scattered

without forming any stripes in the raster plot, and hence the

IPBR kernel estimate RbðtÞ is nearly stationary. On the

other hand, when passing D�l , synchronized states appear.

As shown in Fig. 2e1, f1 for D ¼ 0:1175; wide bursting

stripes (indicating burst synchronization) appear succes-

sively in the raster plot of burst onset times, and the IPBR

kernel estimate RbðtÞ exhibits an oscillatory behavior. With

a little increase in D, the degree of SBS is abruptly

increased because clearer narrowed bursting stripes appear

in the raster plot (e.g., see the case of D ¼ 0:3). As a result,

the amplitude of RbðtÞ also increases so rapidly. However,

with further increase in D, bursting stripes become smeared

gradually, as shown in the cases of D ¼ 5; 9, 13, and 17.5,

and hence the amplitudes of RbðtÞ decreases in a slow way.

Eventually, when passing D�h; desynchronization occurs

due to overlap of smeared bursting stripes.

We characterize SBS by employing a statistical-me-

chanical bursting measure Mb (Kim and Lim 2015b). For

the case of SBS, bursting stripes appear regularly in the

raster plot of burst onset times. The bursting measure M
ðbÞ
i

of the ith bursting stripe is defined by the product of the

occupation degree O
ðbÞ
i of burst onset times (denoting the

density of the ith bursting stripe) and the pacing degree P
ðbÞ
i

of burst onset times (representing the smearing of the ith

bursting stripe):

M
ðbÞ
i ¼ O

ðbÞ
i � P

ðbÞ
i : ð14Þ

The occupation degree O
ðbÞ
i of burst onset times in the ith

bursting stripe is given by the fraction of bursting neurons:

O
ðbÞ
i ¼

N
ðbÞ
i

N
; ð15Þ

where N
ðbÞ
i is the number of bursting neurons in the ith

bursting stripe. For the case of full synchronization, all

bursting neurons exhibit burstings in each bursting stripe in

the raster plot of burst onset times, and hence the occu-

pation degree O
ðbÞ
i of Eq. (15) in each bursting stripe

becomes 1. On the other hand, in the case of partial syn-

chronization, only some fraction of bursting neurons show

burstings in each bursting stripe, and hence the occupation

degree O
ðbÞ
i becomes less than 1. In our case of SBS,

O
ðbÞ
i ¼ 1, independently of D. For this case of full

synchronization, M
ðbÞ
i ¼ P

ðbÞ
i . The pacing degree P

ðbÞ
i of

burst onset times in the ith bursting stripe can be deter-

mined in a statistical-mechanical way by taking into

account their contributions to the macroscopic IPBR kernel

estimate RbðtÞ. Central maxima of RbðtÞ between neigh-

boring left and right minima of RbðtÞ coincide with centers

of bursting stripes in the raster plot. A global cycle starts

from a left minimum of RbðtÞ, passes a maximum, and ends

at a right minimum. An instantaneous global phase UðbÞðtÞ
of RbðtÞ was introduced via linear interpolation in the

region forming a global cycle [for details, refer to Eqs. (14)

and (15) in (Kim and Lim 2015b)]. Then, the contribution

of the kth microscopic burst onset time in the ith bursting

stripe occurring at the time t
ðbÞ
k to RbðtÞ is given by cosUðbÞk ,

where UðbÞk is the global phase at the kth burst onset time

[i.e., UðbÞk � UðbÞðtðbÞk Þ]. A microscopic burst onset time

makes the most constructive (in-phase) contribution to

RbðtÞ when the corresponding global phase UðbÞk is 2pn
(n ¼ 0; 1; 2; . . .), while it makes the most destructive (anti-

phase) contribution to RbðtÞ when UðbÞk is 2pðn� 1=2Þ. By
averaging the contributions of all microscopic burst onset

times in the ith bursting stripe to RbðtÞ, we obtain the

pacing degree of burst onset times in the ith stripe:

P
ðbÞ
i ¼

1

Bi

XBi

k¼1
cosUðbÞk ; ð16Þ

where Bi is the total number of microscopic burst onset

times in the ith stripe. By averaging P
ðbÞ
i over a sufficiently

large number Nb of bursting stripes, we obtain the realistic

statistical-mechanical bursting measure Mb, based on the

IPBR kernel estimate RbðtÞ:

Mb ¼
1

Nb

XNb

i¼1
P
ðbÞ
i : ð17Þ

We follow 3	 103 bursting stripes in each realization and

get hMbir via average over 20 realizations. Figure 2h shows
a plot of hMbir (denoted by open circles) versus D. When

passing D�l a rapid increase in hMbir occurs, then hMbir
decreases slowly near the region of complete synchro-

nization (including both burst and spike synchronization)

because spike synchronization is first destroyed, and finally

hMbir decreases in a relatively rapid way in a larger region

of (pure) burst synchronization.

We now fix the value of D at D ¼ 13 where only the

burst synchronization (without intraburst spike synchro-

nization) occurs for the case of symmetric attachment with

l� ¼ 10 (see Fig. 2e5, f5), and investigate the effect of

scale-free connectivity on SBS by varying (1) the degree of

symmetric attachment l� (i.e., lin ¼ lout ¼ l�) and (2) the
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asymmetry parameter Dl of asymmetric attachment [i.e.,

lin ¼ l� þ Dl and lout ¼ l� � Dl (l� ¼ 10)].

As the first case of network architecture, we consider the

case of symmetric attachment, and study its effect on SBS

by varying the degree l�. Figure 3a1–a5 show the raster

plots of burst onset times for various values of l�. Their
corresponding IPBR kernel estimates RbðtÞ are also given

in Fig. 3b1–b5. As l� is increased from 10 (i.e., the case

studied above), bursting stripes in the raster plots of burst

onset times become clearer (e.g., see the cases of l� ¼ 15

and 20), and hence the oscillating amplitudes of RbðtÞ
become larger than that for the case of l� ¼ 10. In this way,

with increasing l� from 10, the degree of SBS becomes

better. On the other hand, as l� is decreased from 10,

bursting stripes become more smeared (e.g., see the case of

l� ¼ 4), which results in decrease in the oscillating

amplitude of RbðtÞ. Thus, with decreasing l� from 10, the

degree of SBS becomes worse. Eventually, the population

state becomes desynchronized for l� ¼ 2, as shown in

Fig. 3a1, b1 where burst onset times are completely scat-

tered and RbðtÞ becomes nearly stationary.

Effects of l� on network topology were characterized in

Refs. (Kim and Lim 2015c, 2016), where the group prop-

erties of the SFN were studied in terms of the average path

length Lp and the betweenness centralization Bc by varying

l�. The average path length Lp (representing typical

(a1) (a2) (a3) (a4) (a5)

(b1)

(c1)

(d)

(c2)

(e1)

(f1) (f2) (f3)

(g1)

(h)

(g2)

(e2) (e3)

(b2) (b3) (b4) (b5)

Fig. 3 Effect of network architecture on the SBS in the absence of

STDP for D ¼ 13; N ¼ 103. Symmetric preferential attachment with

lin ¼ lout ¼ l�. Raster plots of burst onset times in (a1–a5) and IPBR

kernel estimates RbðtÞ in (b1–b5) for various values of l�. Plots of c1
population-averaged MBRs hhfbiir and c2 standard deviations hrbir
from hfbi versus l�. d Plot of the statistical-mechanical bursting

measure hMbir versus l�. Asymmetric preferential attachment with

lin ¼ l� þ Dl and lout ¼ l� � Dl (l� ¼ 10). Raster plots of burst onset

times in (e1–e3) and IPBR kernel estimates RbðtÞ in (f1–f3) for

various values of Dl. g1 Plots of population-averaged MBRs hhfbiir
and g2 standard deviations hrbir from hfbi versus Dl. h Plot of the

statistical-mechanical bursting measure hMbir versus Dl

326 Cognitive Neurodynamics (2018) 12:315–342

123



separation between two nodes in the network) is obtained

via the average of the shortest path lengths of all nodal

pairs [see Eq. (A.17) in Kim and Lim 2016], and it char-

acterizes global efficiency of information transfer between

distant nodes (Albert and Barabási 2002). With increasing

l�, Lp decreases monotonically due to increase in the total

number of inward and outward connections [see Fig. 11(c)

in Kim and Lim 2016]. Next, we consider the betweenness

centrality Bi of the node i, denoting the fraction of all the

shortest paths between any two other nodes that pass the

node i [see Eq. (A.18) in Kim and Lim 2016]. The

betweenness centrality Bi characterizes the potentiality in

controlling communication between other nodes in the rest

of the network (Freeman 1977, 1978). In our SFN, the head

hub (i.e., node 1) has the maximum betweenness centrality

Bmax, and hence it has the largest load of communication

traffic passing through it. To examine how much the load

of communication traffic is concentrated on the head hub,

we get the group betweenness centralization Bc, denoting

the degree to which the maximum betweenness centrality

Bmax of the head hub exceeds the betweenness centralities

of all the other nodes [see Eq. (A.19) in Kim and Lim

2016]. Large Bc implies that load of communication traffic

is much concentrated on the head hub, and hence the head

hub tends to become overloaded by the communication

traffic passing through it. Consequently, it becomes diffi-

cult to obtain efficient communication between nodes due

to destructive interference between many signals passing

through the head hub (Nishikawa et al. 2003). Decrease in

Lp with increasing l� leads to reduction in intermediate

mediation of nodes controlling the communication in the

whole network. Hence, as l� is increased, the total cen-

trality Btot, given by the sum of betweenness centralities Bi

of all nodes, is reduced. Particularly, with increasing l� the
maximum betweenness Bmax of the head hub is much more

reduced than betweenness centralities of any other nodes,

which leads to decrease in differences between Bmax of the

head hub and Bi of other nodes. Consequently, with

increasing l� the betweenness centralization Bc decreases

monotonically [see Fig. 11(e) in Kim and Lim 2016]. In

this way, as l� is increased, the average path length Lp
becomes smaller and the betweenness centralization Bc

also becomes smaller, due to increase in the total number

of connections. Hence, typical separation between neurons

(placed at nodes) becomes shorter, and load of communi-

cation traffic concentrated on the head neuron (placed at

the head hub) also becomes smaller. Consequently, with

increasing l�, efficiency of global communication between

neurons (i.e., global transfer of neural information between

neurons via synaptic connections) becomes better, which

may lead to increase in the degree of SBS.

In addition to network topology, we also consider

individual dynamics which vary depending on the synaptic

inputs with the in-degree dðinÞ of Eq. (6). As l� is increased,

the average in-degree hdðinÞi (=1
N

PN
i¼1 d

ðinÞ
i ) increases, and

hence average synaptic inputs to individual neurons

become more coherent. Consequently, with increasing l�,
burstings of individual neurons become intensified (i.e.,

both the average number of spikes per burst and the

average interburst interval increase), similar to the case of

increasing J0 in Fig. 1g1–g3. Thus, as l� is increased, both
the population-averaged mean bursting rate (MBR) hhfbiir
and the standard deviation hrbir (for the distribution of

MBRs ffbg) decrease (i.e., population-averaged individual

dynamics become better) due to more coherent synaptic

inputs (resulting from the increased hdðinÞi), as shown in

Fig. 3c1, c2, which may also result in increase in the

degree of SBS.

Figure 3d shows a plot of the bursting measure hMbir
versus l�. With increasing l� from 10, hMbir increases due
to both better individual dynamics and better efficiency of

global communication between nodes (resulting from the

increased number of total connections). On the other hand,

as l� is decreased from 10, both individual dynamics and

effectiveness of communication between nodes become

worse (resulting from the decreased number of total con-

nections), and hence hMbir decreases.
As the second case of network architecture, we consider

the case of asymmetric attachment; lin ¼ l� þ Dl and lout ¼
l� � Dl (l� ¼ 10). We note that for the case of asymmetric

attachment, the total number of inward and outward con-

nections is fixed (i.e., lin þ lout ¼ 20 =constant), in contrast

to the case of symmetric attachment where with increasing

l� the number of total connections increases. We investi-

gate the effect of asymmetric attachment on SBS by

varying the asymmetry parameter Dl.
Figure 3e1–e3 show the raster plots of burst onset times

for Dl ¼ � 8; 0, and 8, respectively. Their corresponding

IPBR kernel estimates RbðtÞ are also given in Fig. 3f1–f3.

As Dl is increased from 0, bursting stripes in the raster plots

of burst onset times become clearer (e.g., see the cases of

Dl ¼ 8), and hence the oscillating amplitudes of RbðtÞ
become larger than that for the case of Dl ¼ 0. In this way,

with increasing Dl from 0, the degree of SBS becomes

better. On the other hand, as Dl is decreased from 0,

bursting stripes become more smeared (e.g., see the case of

Dl ¼ � 8), which leads to decrease in the oscillating

amplitudes of RbðtÞ. Thus, as Dl is decreased from 0, the

degree of SBS becomes worse. For the present case of

l� ¼ 10, the minimum value of Dl to be decreased is � 9; in

this case SBS persists.

As jDlj (the magnitude of Dl) is increased, both Lp and

Bc increase symmetrically, independently of the sign of Dl,
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due to increased mismatching between the in- and the out-

degrees (see Fig. 13c, d in Kim and Lim 2016). The values

of Lp and Bc for both cases of different signs but the same

magnitude (i.e., Dl and �Dl) become the same because

both inward and outward connections are involved equally

in computations of Lp and Bc. As results of effects of Dl on
Lp and Bc, with increasing jDlj, efficiency of global com-

munication between nodes becomes worse, independently

of the sign of Dl. However, individual dynamics vary

depending on the sign of Dl due to different average in-

degrees hdðinÞi. As Dl is increased (decreased) from 0,

hdðinÞi increases (decreases), which leads to more (less)

coherent synaptic inputs to individual neurons. Hence, with

increasing (decreasing) Dl from 0, both the population-

averaged MBR hhfbiir and the standard deviation hrbir (for
the distribution of MBRs ffbg) decrease (increase), as

shown in Fig. 3g1, g2, which may result in better (worse)

individual dynamics. Figure 3h shows a plot of the bursting

measure hMbir versus Dl. With decreasing Dl from 0, hMbir
decreases because both individual dynamics and efficiency

of communication between nodes are worse. On the other

hand, as Dl is increased from 0, hMbir increases mainly

because of better individual dynamics overcoming worse

efficiency of communication.

Effects of additive STDP on SBS

We study the effect of additive STDP on SBS. The initial

values of synaptic strengths fJijg are chosen from the

Gaussian distribution where the mean J0 is 2.5 and the

standard deviation r0 is 0.02. Then, Jij for each synapse is

updated according to the additive nearest-burst pair-based

STDP rule of Eq. (8), in contrast to the static case without

STDP in ‘‘SBS in the absence of STDP’’ section.

Figure 4a shows the time window for the synaptic

modification DJij of Eq. (9) (i.e., plot of DJij versus Dtij).
Here, DJij varies depending on the relative time difference

Dtij ð¼ t
ðpostÞ
i � t

ðpreÞ
j Þ between the nearest burst onset times

of the post-synaptic neuron i and the pre-synaptic neuron j

(Popovych and Tass 2012; Morrison et al. 2007). When a

post-synaptic burst onset time follows a pre-synaptic burst

onset time (i.e., Dtij is positive), LTP of synaptic strength

appears; otherwise (i.e., Dtij is negative), LTD occurs. A

schematic diagram for the nearest-burst pair-based STDP

rule is given in Fig. 4b, where i ¼ 1 and 2 correspond to

the post- and the pre-synaptic neurons, respectively. Here,

gray boxes represent bursting stripes in the raster plot, and

burst onset times in the bursting stripes are denoted by

solid circles. When the post-synaptic neuron (i ¼ 1) fires a

bursting, LTP (denoted by solid lines) occurs via STDP

between the post-synaptic burst onset time and the previous

nearest pre-synaptic burst onset time. In contrast, when the

pre-synaptic neuron (i ¼ 2) fires a bursting, LTD (repre-

sented by dashed lines) occurs through STDP between the

pre-synaptic burst onset time and the previous nearest post-

synaptic bust onset time. We note that such LTP/LTD may

occur between the pre- and the post-synaptic burst onset

times in the same bursting stripe or in the different nearest-

neighboring bursting stripes; solid/dashed lines connect

pre- and post-synaptic burst onset times in the same or in

the different nearest-neighboring bursting stripes.

Figure 5a shows time-evolutions of population-averaged

synaptic strengths hJiji for various values of D for the case

of symmetric attachment with l� ¼ 10; h� � �i represents an
average over all synapses. In each case of D ¼ 0:3; 5, 9 and

13, hJiji increases monotonically above its initial value J0
(= 2.5), and it approaches a saturated limit value hJ�iji
nearly at t ¼ 2000 s. As a result, LTP occurs for these

values of D. On the other hand, for D ¼ 0:1175 and 17.5

hJiji decreases monotonically below J0, and converges to a

saturated limit value hJ�iji. Consequently, LTD takes place

for these values of D. Figure 5b1–b6 show histograms for

fraction of synapses versus J�ij (saturated limit values of Jij

at t ¼ 2000 s) in black color for various values of D; the

bin size for each histogram is 0.02. For comparison, initial

distributions of synaptic strengths fJijg (i.e., Gaussian

(a)

(b)

Fig. 4 a Time window for the Hebbian STDP. Plot of synaptic

modification DJij versus Dtij ð¼ t
ðpostÞ
i � t

ðpreÞ
j Þ for Aþ ¼ 1, A� ¼ 0:6,

sþ ¼ 15 ms and s� ¼ 30 ms. b Schematic diagram for the nearest-

burst pair-based STDP rule; i ¼ 1 and 2 correspond to the post- and

the pre-synaptic bursting neurons. Gray boxes and solid circles denote

bursting stripes and burst onset times, respectively. Solid and dashed

lines denote LTP and LTD, respectively
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distributions whose mean J0 and standard deviation r0 are

2.5 and 0.02, respectively) are also shown in gray color.

For the cases of LTP (D ¼ 0:3; 5, 9 and 13), their black

histograms are located on the right side of the initial gray

histograms, and hence their population-averaged values

hJ�iji become larger than the initial value J0 (=2.5). On the

other hand, the black histograms for the cases of LTD

(D ¼ 0:1175 and 17.5) are shifted to the left side of the

initial gray histograms, and hence their population-aver-

aged values hJ�iji become smaller than J0. For both cases of

LTP and LTD, their black histograms are so much wider

than the initial gray histogram [i.e., the standard deviations

r are very larger than the initial one r0ð¼ 0:02Þ]; for clear
views of broad black histograms, ‘‘breaks’’ are inserted on

the vertical axes. Figure 5c shows a plot of population-

averaged limit values of synaptic strengths hhJ�ijiir versus

D. Here, the horizontal dotted line denotes the initial

average value of coupling strengths J0 (= 2.5), and the

lower and the higher threshold values eDl ð’ 0:1179Þ and
eDh ð’ 17:336Þ for LTP/LTD (where hhJ�ijiir ¼ J0) are

(a)

(b1) (b2) (b3)

(c)

(d1) (d2) (d3) (d4) (d5) (d6)

(e1) (e2)

(f)

(e3) (e4) (e5) (e6)

(b4) (b5) (b6)

Fig. 5 Effect of additive STDP on SBS for the case of symmetric

attachment with l� ¼ 10; N ¼ 103. a Time-evolutions of population-

averaged synaptic strengths hJiji for various values of D. b1–b6
Histograms for the fraction of synapses versus J�ij (saturated limit

values of Jij) are shown in black color for various values of D; for

comparison, initial distributions of synaptic strengths fJijg are also

shown in gray color. c Plot of population-averaged limit values of

synaptic strengths hhJ�ijiir versus D. Raster plots of burst onset times

in (d1–d6) and IPBR kernel estimates RbðtÞ in (e1–e6) for various
values of D after the saturation time, where t ¼ t� (saturation time) ?
et. f Plot of the statistical-mechanical bursting measure hMbir
(represented by open circles) versus D in the saturated limit case.

For comparison, hMbir in the absence of STDP are also shown in

crosses
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represented by solid circles. Hence, LTP occurs in the

range of (eDl, eDh); otherwise, LTD appears. We note that

the range of (eDl, eDh) is strictly contained in the range of

(D�l , D
�
h) (D

�
l ’ 0:1173 and D�h ’ 18:4) where SBS appears

in the absence of STDP. Therefore, in most range of the

SBS, LTP occurs, while LTD takes place only near both

ends.

We now consider the effects of LTP/LTD on SBS after

the saturation time t�ð¼ 2000 s) in the case of symmetric

attachment with l� ¼ 10. Burst synchronization may be

well visualized in the raster plot of bust onset times, and

the corresponding IPBR kernel estimate RbðtÞ shows the

population bursting behaviors well. Figure 5d1–d6, e1–e6

show raster plots of burst onset times and the corre-

sponding IPBR kernel estimates RbðtÞ for various values of
D, respectively. In comparison with Fig. 2e1–e6 and

Fig. 2f1–f6 in the absence of STDP, the degree of SBS for

the case of LTP (D ¼ 0:3 5, 9 and 13) is increased so

much. On the other hand, for the case of LTD (D ¼ 0:1175

and 17.5) the population states become desynchronized.

We also characterize the SBS in terms of the statistical-

mechanical bursting measure Mb of Eq. (17). Figure 5f

shows the plot of hMbir (denoted by open circles) versus D;
for comparison, hMbir in the absence of STDP is also

shown in crosses. A Matthew effect in synaptic plasticity

occurs via a positive feedback process. Good burst syn-

chronization with higher Mb gets better via LTP, while bad

burst synchronization with lower Mb gets worse via LTD.

As a result, a rapid step-like transition to SBS occurs, in

contrast to the relatively smooth transition in the absence of

STDP.

The effect of scale-free connectivity on SBS for the

static case of fixed coupling strengths is studied for D ¼ 13

by varying the degree of symmetric attachment l� and the

asymmetry parameter Dl, and the results in the absence of

STDP are shown in Fig. 3. From now on, we take into

consideration the synaptic plasticity and investigate the

effect of network architecture on the SBS for D ¼ 13 in

both cases of symmetric and asymmetric attachments by

changing l� and Dl, respectively. We first consider the case

of symmetric attachment (i.e., lin ¼ lout ¼ l�). Figure 6a

shows time-evolutions of population-averaged synaptic

strengths hJiji for various values of l�. For each case of

l� ¼ 6; 10, and 20, hJiji increases monotonically above its

initial value J0 (=2.5), and it converges toward a saturated

limit value hJ�iji nearly at t ¼ 2000 s. Consequently, LTP

occurs for these values of l�. In contrast, for l� ¼ 4 hJiji
decreases monotonically below J0, and approaches a sat-

urated limit value hJ�iji. Accordingly, for this case LTD

takes place. Figure 6b shows a plot of population-averaged

limit values of synaptic strengths hhJ�ijiir versus l�; the

horizontal dotted line represents the initial average value of

coupling strengths J0 (= 2.5). For l� � 6 LTP occurs, while

for l� 
 5 LTD takes place. We also consider the effects of

LTP/LTD on the SBS after the saturation time t� (= 2000

s). Figure 6c1–c4, d1–d4 show raster plots of burst onset

times and the corresponding IPBR kernel estimates RbðtÞ
for various values of l�, respectively. The degrees of SBS

for the case of LTP (l� ¼ 10; 15, and 20) are increased so

much when compared with Fig. 3a3–a5, b3–b5 in the

absence of STDP. In contrast, for the case of LTD (l� ¼ 4)

the population states become desynchronized. The SBS is

characterized in terms of the statistical-mechanical bursting

measure Mb of Eq. (17). Figure 6e shows the plot of hMbir
(denoted by open circles) versus l�; for comparison, hMbir
in the absence of STDP is also shown in crosses. Like the

case in Fig. 5f, a Matthew effect in synaptic plasticity

occurs via a positive feedback process. Thus, good burst

synchronization with higher Mb gets better via LTP, while

bad burst synchronization with lower Mb gets worse via

LTD. Consequently, a rapid step-like transition to SBS

occurs, in contrast to the relatively smooth transition in the

absence of STDP.

Next, we consider the case of asymmetric attachment

[i.e., lin ¼ l� þ Dl and lout ¼ l� � Dl (l� ¼ 10)]. Time-

evolutions of population-averaged synaptic strengths hJiji
for various values of Dl are shown in Fig. 6f. In each case

of Dl ¼ � 7; 0, and 8, hJiji increases monotonically above

its initial value J0 (=2.5), and it approaches a saturated

limit value hJ�iji nearly at t ¼ 2000 s. As a result, LTP

occurs for these values of l�. On the other hand, for Dl ¼
� 8; hJiji decreases monotonically below J0, and converges

toward a saturated limit value hJ�iji. Accordingly, for this
case LTD takes place. A plot of population-averaged limit

values of synaptic strengths hhJ�ijiir versus Dl is shown in

Fig. 6g; the horizontal dotted line represents the initial

average value of coupling strengths J0 (= 2.5). For Dl� �
7 LTP occurs, while for Dl
 � 8 LTD takes place. We

consider the effects of LTP/LTD on the SBS after the

saturation time t� (= 2000 s). Figure 6h1–h3, i1–i3 show

raster plots of burst onset times and the corresponding

IPBR kernel estimates RbðtÞ for various values of Dl,
respectively. The degrees of SBS for the case of LTP

(Dl ¼ 0 and 8) are increased so much when compared with

Fig. 3e2–e3, f2–f3 in the absence of STDP. On the other

hand, in the case of LTD (Dl ¼ � 8) the population state

becomes desynchronized. We also characterize the SBS in

terms of the statistical-mechanical bursting measure Mb.

Figure 6j shows the plot of hMbir (denoted by open circles)

versus Dl; for comparison, hMbir in the absence of STDP is

also shown in crosses. As in the case in Fig. 6e, a Matthew

effect in synaptic plasticity occurs via a positive feedback

process. Hence, good burst synchronization with higher Mb

gets better via LTP, while bad burst synchronization with
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lower Mb gets worse via LTD. As a result, a rapid step-like

transition to SBS occurs, in contrast to the relatively

smooth transition in the absence of STDP.

From now on, we consider the case of symmetric

attachment with l� ¼ 10, and investigate emergences of

LTP and LTD of synaptic strengths intensively through our

own microscopic methods based on the distributions of

time delays fDtijg between the pre- and the post-synaptic

burst onset times. Population-averaged histograms HðDtijÞ
for the distributions of time delays fDtijg are shown in

Fig. 7a1–a6 for various values of D: for each synaptic pair,

its histogram for the distribution of fDtijg during the time

interval from t ¼ 0 to the saturation time t� (¼ 2000 s) is

obtained, and then we get the population-averaged his-

togram through averaging over all synaptic pairs. Black

and gray regions in the histograms denote LTP and LTD,

respectively. For the case of LTP (D ¼ 0:3; 5, 9, and 13),

there exist 3 peaks in each histogram: one main central

peak and two left and right minor peaks. When the pre- and

the post-synaptic burst onset times appear in the same

bursting stripe in the raster plot of burst onset times, its

time delay Dtij lies in the main peak. For this case, LTP/

LTD may occur depending on the sign of Dtij; for

Dtij [ 0 ð\0Þ, LTP (LTD) takes place. In contrast, time

(a) (b)

(c1) (c2) (c3) (c4)

(d1) (d2) (d3) (d4)

(e)

(f)

(h1)

(i1) (i2) (i3)

(j)
(h2) (h3)

(g)

Fig. 6 Effect of network architecture on SBS in the presence of

additive STDP for D ¼ 13; N ¼ 103. Symmetric preferential attach-

ment with lin ¼ lout ¼ l�. a Time-evolutions of population-averaged

synaptic strengths hJiji for various values of l�. b Plot of population-

averaged limit values of synaptic strengths hhJ�ijiir (J�ij : saturated limit

values of Jij) versus l
�. Raster plots of burst onset times in (c1–c4) and

IPBR kernel estimates RbðtÞ in (d1–d4) for various values of l� after

the saturation time, where t ¼ t� (saturation time) ? et. e Plot of the

statistical-mechanical bursting measure hMbir (represented by open

circles) versus l� in the saturated limit case. Asymmetric preferential

attachment with lin ¼ l� þ Dl and lout ¼ l� � Dl (l� ¼ 10). f Time-

evolutions of population-averaged synaptic strengths hJiji for various
values of Dl. g Plot of population-averaged limit values of synaptic

strengths hhJ�ijiir versus Dl. Raster plots of burst onset times in (h1–

h3) and IPBR kernel estimates RbðtÞ in (i1–i3) for various values of

Dl after the saturation time, where t ¼ t� (saturation time) ? et. j Plot
of the statistical-mechanical bursting measure hMbir (represented by

open circles) versus Dl in the saturated limit case. For comparison,

hMbir in the absence of STDP are also shown in crosses in (e, j)
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delay Dtij lies in the minor peak when the pre- and the post-

synaptic burst onset times appear in the different nearest-

neighboring bursting stripes. If the pre-synaptic (post-sy-

naptic) bursting stripe precedes the post-synaptic (pre-sy-

naptic) bursting stripe, then its time delay Dtij lies in the

right (left) minor peak; LTP (LTD) occurs in the right (left)

minor peak. However, for the case of LTD (D ¼ 0:1175

and 17.5), the population states become desynchronized

due to overlap of bursting stripes in the raster plot of burst

onset times. As a result, the main peak in the histogram

becomes merged with the left and the right minor peaks,

and then only one broadened single peak appears, in con-

trast to the case of LTP (D ¼ 0:3; 5, 9, and 13). Then, the

population-averaged synaptic modification hhDJijiir [dur-

ing the time interval from t ¼ 0 to the saturation time t�

(¼ 2000 s)] may be directly obtained from the above his-

togram HðDtijÞ:

hhDJijiir ’
X

bins

HðDtijÞ � DJijðDtijÞ: ð18Þ

A plot of hhDJijiir is shown in Fig. 7b. Here, solid circles

represent the lower and the higher thresholds eDl and eDh for

LTP/LTD (where hhDJijiir ¼ 0), which are the same as

those in Fig. 5c. LTP occurs in the range of (eDl, eDh)

because hhDJijiir [ 0, while LTD appears in the remaining

region where hhDJijiir\0. Then, population-averaged

saturated limit values of synaptic strengths hhJ�ijiir (given

by J0 þ d hhDJijiir) agree well with the directly-obtained

values in Fig. 5c.

Finally, in the case of symmetric attachment with

l� ¼ 10, we investigate the effect of STDP on the micro-

scopic dynamical pair-correlation CijðsÞ between the pre-

and the post-synaptic IIBRs (instantaneous individual burst

rates) for the (i, j) synaptic pair. Each train of burst onset

times for the ith neuron is convoluted with a Gaussian

kernel function KhðtÞ of band width h to get a smooth

estimate of IIBR riðtÞ:

riðtÞ ¼
Xni

b¼1
Khðt � t

ðiÞ
b Þ; ð19Þ

where t
ðiÞ
b is the bth burst onset time of the ith neuron, ni is

the total number of burst onset times for the ith neuron, and

KhðtÞ is given in Eq. (12). Then, the normalized temporal

cross-correlation function CijðsÞ between the IIBR kernel

estimates riðtÞ and rjðtÞ of the (i, j) synaptic pair is given

by:

CijðsÞ ¼
Driðt þ sÞDrjðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Dr2i ðtÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffi

Dr2j ðtÞ
q ; ð20Þ

where DriðtÞ ¼ riðtÞ � riðtÞ and the overline denotes the

time average. Then, the microscopic correlation measure

Mc; representing the average ‘‘in-phase’’ degree between

the pre- and the post-synaptic pairs, is given by the average

value of Cijð0Þ at the zero-time lag for all synaptic pairs:

Mc ¼
1

Nsyn

X

ði;jÞ
Cijð0Þ; ð21Þ

where Nsyn is the total number of synapses. Time-evolu-

tions of the microscopic correlation measures McðtÞ for the
population states are shown in Fig. 8a1–a2. Data for cal-

culation of McðtÞ are obtained through averages during

successive 5 global cycles of the IPBR kernel estimate

(a1) (a2) (a3) (a4) (a5) (a6)

(b)

Fig. 7 Distributions of microscopic time delays fDtijg between the

pre- and the post-synaptic burst onset times and synaptic modifica-

tions for the case of symmetric attachment with l� ¼ 10; N ¼ 103.

a1–a6 Population-averaged histograms HðDtijÞ for the distributions of
time delays fDtijg during the time interval from t ¼ 0 to the saturation

time t� (¼ 2000 s) for various values of D; black and gray regions

represent LTP and LTD, respectively. b Plot of the population-

averaged synaptic modifications hhDJijiir [during the time interval

from t ¼ 0 to the saturation time t� (¼ 2000 s)] versus D. The values

of hhDJijiir are obtained from the population-averaged histograms

HðDtijÞ in (a)

332 Cognitive Neurodynamics (2018) 12:315–342

123



RbðtÞ for both cases of LTP and LTD. In Fig. 8a1, we

consider two small values of D (= 0.3 and 0.1175 corre-

sponding to the cases of LTP and LTD, respectively). The

initial values of Mc for D ¼ 0:3 and 0.1175 are 0.95 and

0.17, respectively. With increase in time t, Mc for D ¼ 0:3

increases, and it approaches a limit value (Mc ¼ 0:99). In

contrast, Mc for D ¼ 0:1175 decreases with time t, and it

seems to converge toward zero. Similarly, we also consider

two large values of D (= 13 and 17.5 corresponding to the

cases of LTP and LTD, respectively) in Fig. 8a2. As the

time t increases, Mc for D ¼ 13 increases to a limit value

(Mc ¼ 0:92), while Mc for D ¼ 17:5 tends to decrease to

zero. Enhancement (suppression) in Mc leads to increase

(decrease) in the average in-phase degree between the pre-

and the post-synaptic pairs. Then, widths of bursting stripes

in the raster plot of burst onset times decrease (increase)

due to enhancement (suppression) of Mc. Time-evolutions

of the width wbðtÞ of the bursting stripes are shown in

Fig. 8b1, b2. Here, wbðtÞ is obtained through averaging the

widths of bursting stripes during successive 5 global cycles

of RbðtÞ. For D ¼ 0:3 and 13, wbðtÞ decreases due to

enhancement in Mc, which results in narrowed distribution

of time delays fDtijg between the pre- and the post-sy-

naptic burst onset times. As a result, LTP may occur. On

the other hand, for D ¼ 0:1175 and 17.5, wbðtÞ increases
due to suppression in Mc (calculations of wbðtÞ for D ¼
0.1175 and 17.5 are made until t ’ 669 and 406 s,

respectively, when bursting stripes begin to overlap), which

leads to widened distribution of time delays fDtijg. Con-
sequently, LTD may take place.

Figure 8c1–c5 for D ¼ 13 and Fig. 8d1–d5 for D ¼ 17:5

show time-evolutions of normalized histograms HðDtijÞ for
the distributions of time delays fDtijg; the bin size in each

histogram is 2 ms. Here, we consider 5 stages, represented

by I (12–342 ms for D ¼ 13 and 15–315 ms for D ¼ 17:5),

II (100,008–100,428 ms for D ¼ 13 and 100,012–100,302

ms for D ¼ 17:5), III (300,012–300,532 ms for D ¼ 13,

and 300,002 –300,287 ms for D ¼ 17:5), IV (500,004–

500,624 ms for D ¼ 13 and 500,005–500,285 ms for

D ¼ 17:5), and V (1,000,006–1,000,646 ms for D ¼ 13 and

(a1)

(a2)

(c1) (c2) (c3)

(e) (f)

(c4) (c5)

(d1) (d2) (d3) (d4) (d5)

(b1)

(b1)

Fig. 8 Microscopic pair-correlations for the case of symmetric

attachment with l� ¼ 10; N ¼ 103. Time-evolutions of the micro-

scopic correlation measures McðtÞ for a1 D ¼ 0.1175 and 0.3 and a2
D ¼ 13 and 17.5. Time-evolutions of the widths wbðtÞ of the bursting
stripes in the raster plot of burst onset times for b1 D ¼ 0.1175 and

0.3 and b2 D ¼ 13 and 17.5. Time-evolutions of the normalized

histograms HðDtijÞ for the distributions of time delays fDtijg between
the pre- and the post-synaptic burst onset times for D ¼ 13 in (c1–c5)

and for D ¼ 17:5 in (d1–d5); 5 stages are shown in I (starting from �
0 s), II (starting from � 100 s), III (starting from � 300 s), IV

(starting from � 500 s), and V (starting from � 1000 s). e Time-

evolutions of population-averaged synaptic modifications hDJijðtÞi for
D ¼ 13 (black line) and for D ¼ 17:5 (gray line). f Plot of hMcir
(represented by open circles) versus D in the saturated limit case. For

comparison, hMcir in the absence of STDP are also shown in crosses
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1,000,002–1,000,282 ms for D ¼ 17:5). At each stage, we

obtain the distribution for fDtijg for all synaptic pairs

during the 5 global cycles of the IPBR RbðtÞ and get the

normalized histogram by dividing the distribution with the

total number of synapses (¼ 20;000). For the case of D ¼
13 (LTP), 3 peaks appear in each histogram; main central

peak and two left and right minor peaks. With increase in

time t (i.e., with increasing the level of stage), peaks

become narrowed, and then they become sharper. The

intervals between the main peak and the two minor peaks

also increase a little because the bursting frequency fb of

RbðtÞ decreases with the stage. Moreover, with increasing

the stage, the main peak becomes more and more sym-

metric, and hence the effect of LTP in the black part tends

to cancel out nearly the effect of LTD in the gray part at the

stage V. In the case of D ¼ 17:5 (LTD), as the level of the

stage is increased, peaks become wider and the merging-

tendency between the peaks is intensified. For the stages IV

and V, only one broad central peak seems to appear. At the

stage V, the effect of LTP in the black part tends to nearly

cancel out the effect of LTD in the gray part because the

broad peak is nearly symmetric. From these normalized

histograms HðDtijÞ, we also obtain the population-averaged

synaptic modification hDJiji [’
P

bins HðDtijÞ � DJijðDtijÞ].
Figure 8e shows time-evolutions of hDJiji for D ¼ 13

(black curve) and D ¼ 17:5 (gray curve). hDJiji for D ¼ 13

is positive. On the other hand, it is negative for D ¼ 17:5.

For both cases, they converge toward nearly zero at the

stage V ðt� 1000 s) because the normalized histograms

become nearly symmetric. Then, the time evolution of

population-averaged synaptic strength hJiji is given by

hJiji ¼ J0 þ d
P

khDJijðkÞi; where J0(initial average

synaptic strength)= 2.5 and k represents the average for the

kth 5 global cycles of RbðtÞ. Time-evolutions of hJiji (ob-
tained in this way) for D ¼ 13 and 17.5 agree well with

directly-obtained ones in Fig. 5a. Consequently, LTP

(LTD) occurs for D ¼ 13 (17.5).

Figure 8f shows plots of hMcir versus D in the presence

(open circles) and the absence (crosses) of STDP. The

number of data used for the calculation of each temporal

cross-correlation function CijðsÞ (the values of Cijð0Þ at the
zero time lag are used for calculation of Mc) is 216

(¼ 65;536) after the saturation time t� (¼ 2000 s) in each

realization. As in the case of hMbir in Fig. 5f, a Matthew

effect also occurs in hMcir: good pair-correlation with

higher Mc gets better, while bad pair-correlation with lower

Mc gets worse. Hence, a step-like transition occurs, in

contrast to the case without STDP.

Effects of multiplicative STDP on SBS

Here, we consider the case of symmetric attachment with

l� ¼ 10 and investigate the effect of multiplicative STDP

(depending on states) on SBS in comparison with the

(above) additive case (independent of states). The coupling

strength for each synapse is updated with a multiplicative

nearest-burst pair-based STDP rule (Popovych et al. 2013;

Rubin et al. 2001):

Jij ! Jij þ d ðJ� � JijÞ jDJijðDtijÞj: ð22Þ

Here, d ð¼ 0:005Þ is the update rate, DJij is the synaptic

modification depending on the relative time difference Dtij

ð¼ t
ðpostÞ
i � t

ðpreÞ
j Þ between the nearest burst onset times of

the post-synaptic neuron i and the pre-synaptic neuron j

[time window for DJij is given in Eq. (9)], and J� ¼ Jh ðJlÞ
for the LTP (LTD) [Jhð¼ 5:0Þ and Jlð¼ 0:0001Þ is the

higher (lower) bound of Jij (i.e., Jij 2 ½Jl; Jh�Þ]. For the case
of multiplicative STDP, the bounds for the synaptic

strength Jij become soft, because a change in synaptic

strengths scales linearly with the distance to the higher and

the lower bounds, in contrast to hard bounds for the case of

additive STDP.

Figure 9a shows time-evolutions of population-averaged

synaptic strengths hJiji for various values of D. For D ¼
0:3; 5, 9, and 13, hJiji increases above its initial value J0 (=
2.5), and converges toward a saturated limit value hJ�iji
nearly at t ¼ 500 s. Consequently, LTP occurs for these

values of D. In contrast, for D ¼ 0:1175 and 17.5 hJiji
decreases below J0, and approaches a saturated limit value

hJ�iji. As a result, LTD occurs for these values of D. For this

multiplicative case, the saturation time is shorter and

deviations of the saturated limit values J�ij from J0 are

generally (except for the case of small D) smaller due to

the soft bounds, in comparison with the additive case in

Fig. 5a; for small D ¼ 0:1175 and 0.3, the values of J�ij are

the same in both the additive and the multiplicative cases.

Histograms for fraction of synapses versus J�ij (saturated

limit values of Jij at t ¼ 500 s) are shown in black regions

for various values of D in Fig. 9b1–b6; the bin size for each

histogram is 0.02. For comparison, distributions of fJ�ijg for
the case of additive STDP and initial Gaussian distributions

(mean J0 = 2.5 and standard deviation r0 = 0.02) of fJijg
are also shown in gray regions and in black curves,

respectively; for clear views of gray wide histograms,

breaks are inserted on the vertical axes. Like the case of

additive STDP, LTP occurs for D ¼ 0:3; 5, 9, and 13,

because their black histograms lie on the right side of the

initial black-curve histograms. The black histograms for

the multiplicative case lie generally on the left side of the

gray histograms for the case of additive STDP (except for
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the case of D ¼ 0:3 where peaks of nearly symmetric

distributions for both the additive and the multiplicative

cases coincide nearly). Hence, the population-averaged

values hJ�iji for the multiplicative case are generally smaller

than those for the additive case, due to soft bounds; in the

exceptional case of D ¼ 0:3 hJ�iji is nearly the same for

both the multiplicative and the additive cases. Particularly,

the black histograms for the multiplicative case (with soft

(a)

(b1) (b2) (b3) (b4) (b5) (b6)

(e1) (e2) (e3) (e4)

(c) (d)

(e5) (e6)

(f1) (f2)

(g)

(f3) (f4) (f5) (f6)

Fig. 9 Effects of multiplicative STDP on SBS for the case of

symmetric attachment with l� ¼ 10; N ¼ 103. a Time-evolutions of

population-averaged synaptic strengths hJiji for various values of D.
b1–b6 Histograms for the fraction of synapses versus J�ij (saturated

limit values of Jij) for various values of D (black region); for

comparison, distributions of fJ�ijg for the case of additive STDP and

the initial distributions of fJijg are also shown in gray regions and in

black curves, respectively. c Plot of population-averaged limit values

of synaptic strengths hhJ�ijiir (denoted by open circles) versus D. For

comparison, hhJijiir in the case of additive STDP are also shown in

crosses. d Plot of standard deviations hrir (denoted by open circles)

for the distribution of saturated limit coupling strengths fJ�ijg versus
D; for comparison, the values of hrir in the case of additive STDP are

also shown in crosses. Raster plots of burst onset times in (e1–e6) and
IPBR kernel estimates RbðtÞ in (f1–f6) for various values of D after

the saturation time, where t ¼ t� (saturation time) ? et. g Plot of

average maximum values hhRðmaxÞb iir of the IPBR kernel estimate

RbðtÞ (denoted by open circles) versus D (=0.3, 5, 9, and 13); for

comparison, values of hhRðmaxÞb iir for the case of additive STDP are

represented in crosses
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bounds) are much narrower than the gray histograms for

the additive case (with hard bounds). As a result, standard

deviations r for distributions of fJ�ijg in the black his-

tograms are much smaller than those for the additive case,

because their variations in Jij are restricted due to soft

bounds in comparison with hard bounds for the additive

case. These standard deviations r for the multiplicative

case are even smaller than the initial ones r0 (= 0.02). On

the other hand, for D ¼ 0:1175 and 17.5 LTD occurs

because the black histograms are shifted to the left side of

the initial black-curve histograms. But, the black his-

tograms for the multiplicative case lie generally on the

right side of the gray histograms for the case of additive

STDP (except for the case of D ¼ 0:1175 where peaks of

nearly symmetric distributions for both the additive and the

multiplicative cases become nearly the same). Hence, the

population-averaged values hJ�iji for the multiplicative case

are generally larger than those for the additive case, due to

soft bounds; for the exceptional case of D ¼ 0:1175 hJ�iji is
nearly the same in both the multiplicative and the additive

cases. Like the case of LTP, the histograms for the multi-

plicative case are much narrower than those for the additive

case. Consequently, standard deviations r for distributions

of fJ�ijg in the multiplicative case are much smaller than

those for the additive case. Furthermore, these standard

deviations r are even smaller than the initial ones

r0ð¼ 0:02Þ, as in the case of LTP.

A plot of population-averaged limit values hhJ�ijiir (de-
noted by open circles for the multiplicative case) of

synaptic strengths versus D is shown in Fig. 9c. Here, the

horizontal dotted line represents the initial average value of

coupling strengths J0 (= 2.5), and the lower and the higher

thresholds eD�l ð’ 0:1179Þ and eD�h ð’ 17:338Þ for LTP/

LTD (where hhJ�ijiir ¼ J0) are denoted by solid circles.

Hence, LTP occurs in the range of (eD�l , eD�h); otherwise,

LTD appears. For comparison, the values of hhJ�ijiir for the
additive case are also represented by crosses, and their

lower and higher thresholds eDl ð’ 0:1179Þ and eDh ð’
17:336Þ are denoted by stars. When passing eD�l , a transition

to LTP occurs for the multiplicative case, and then hhJ�ijiir
increases a little less rapidly, in comparison with the rapid

(step-like) transition for the additive case (see the left inset

in Fig. 9c). In the top region, a small ‘‘plateau’’ appears,

then hhJ�ijiir decreases slowly (particularly, much slowly

near the higher threshold eD�h when compared with the

additive case, as shown in the right inset in Fig. 9c), and a

transition to LTD occurs as eD�h is passed. Due to this rel-

atively gradual transition, eD�h becomes a little larger than

eDh. Hence, LTP for the multiplicative case occurs in a little

wider range in comparison with the additive case. For most

cases of LTP, the values of hhJ�ijiir are smaller than those

for the additive case, due to soft bounds.

In addition to the population-averaged values hhJ�ijiir,
we are also concerned about the standard deviations r for

distributions of fJ�ijg. Figure 9d shows plots of hrir versus
D for the multiplicative (represented by open circles) and

the additive (denoted by crosses) cases; the horizontal

dotted line denotes the initial standard deviation

r0ð¼ 0:02Þ, corresponding to case without STDP. As

shown in histograms in Fig. 9b1–b6, standard deviations r
for distributions of fJ�ijg in the multiplicative case are much

smaller than those for the additive case, due to the soft

bounds for the multiplicative case. Moreover, the values of

r for the multiplicative case are even smaller than r0 in the

absence of STDP.

The effects of LTP/LTD on SBS may be well visualized

in the raster plot of burst onset times. Figure 9e1–e6, f1–f6

show raster plots of burst onset times and their corre-

sponding IPBR kernel estimates RbðtÞ for various values of
D, respectively. When compared with Fig. 2e1–e6 and

Fig. 2f1–f6 in the absence of STDP, like the additive case,

the degree of SBS for the case of LTP (D ¼ 0:3; 5, 9, and

13) is increased so much due to increased hhJ�ijiir, while in
the case of LTD (D ¼ 0:1175 and 17.5) the population

states become desynchronized due to decreased hhJ�ijiir.
For the case of LTP, we also make comparison with the

additive case shown in Fig. 5d2–d5 and Fig. 5e2–e5. As

shown in Fig. 9d, the standard deviations r of fJ�ijg for the
multiplicative case are much smaller than those for the

additive case, although their values of the population-av-

eraged coupling strength hhJ�ijiir are also smaller (except

for the case of D ¼ 0:3 where the values of hhJ�ijiir are

nearly the same for both the multiplicative and the additive

cases). Effect of smaller r (increasing the degree of SBS)

competes with effect of smaller hhJ�ijiir (decreasing the

degree of SBS). As a result, due to so much smaller stan-

dard deviations r, the average maximum hhRðmaxÞb iir of the
IPBR kernel estimate RbðtÞ becomes a little larger for the

multiplicative case, as shown in Fig. 9g. It is not easy to

directly compare the amplitudes of RbðtÞ for both the

multiplicative and the additive cases in the scales of

Figs. 5e2–e5, 9f2–f5. Instead, in each realization, we

obtain hRðmaxÞb i via average over 3	 103 global bursting

cycles of RbðtÞ after the saturation time t� (= 500 s for the

multiplicative case and 2000 s for the additive case), and

h� � �ir represents an average over 20 realizations. For the

cases of LTP (D ¼ 0:3, 5, 9, and 13), the values of

hhRðmaxÞb iir for the multiplicative case (denoted by open

circles) are a little larger than those for the additive case

(denoted by crosses). Consequently, as a whole, the degree
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of SBS for the multiplicative case seems to be a little

higher than that for the additive case, which will be dis-

cussed below in more details.

Finally, we investigate the effects of multiplicative

STDP on the statistical-mechanical bursting measure Mb of

Eq. (17) and the microscopic correlation measure Mc of

Eq. (21). Figure 10a shows plots of hMbir (denoted by open
circles for the multiplicative case) versus D; for compar-

ison, the values of hMbir for the additive case and the case

without STDP are also represented by pluses and crosses,

respectively. Here, we get hMbir by following 3	 103

bursting stripes in the raster plot of burst onset times after

the saturation time t� (¼ 500 s) in each realization. Like the

case of additive STDP, a Matthew effect in synaptic

plasticity occurs via a positive feedback process, when

compared with the static case without STDP. Good burst

synchronization with higher Mb gets better via LTP, while

bad burst synchronization with lower Mb gets worse via

LTD. Consequently, a rapid transition to SBS occurs, in

contrast to the relatively smooth transition in the absence of

STDP. However, due to soft bounds, changes near both

ends are a little less rapid than those for the additive case,

which are shown well in the insets of Fig. 10a. As a result

of the effects of soft bounds, in most region of the top

plateau in Fig. 10a, the standard deviations r for the

distribution of fJ�ijg in the multiplicative case are much

smaller than those for the additive case, although their

population-averaged values hhJ�ijiir are also smaller (except

for the case of small D where hhJ�ijiir are nearly the same)

(see Fig. 9c, d). Smaller standard deviation r (smaller

hhJ�ijiir) may increase (decrease) the degree of SBS. Since

the effects of smaller standard deviations r are a little

dominant, the values of hMbir in most region of top plateau

are a little larger than those for the additive case, in con-

sistent with the results of hhRðmaxÞb iir in Fig. 9g. Figure 10b

shows plots of the microscopic correlation measure hMcir
for the multiplicative (‘‘open circles’’) and the additive

(‘‘pluses’’) cases and in the absence of STDP (‘‘crosses’’).

The number of data used for the calculation of each tem-

poral cross-correlation function CijðsÞ [the values of Cijð0Þ
at the zero time lag are used for calculation of Mc] is 2

16

(¼ 65;536) after the saturation time t� (¼ 500 s) in each

realization. As in the case of hMbir, a Matthew effect also

occurs in hMcir: good pair-correlation with higher Mc gets

better via LTP, while bad pair-correlation with lower Mc

gets worse via LTD. Hence, a rapid transition occurs, in

contrast to the case without STDP. Like the case of hMbir,
some quantitative differences arise, due to the effects of

soft bounds. Changes in hMcir near both ends are a little

less rapid than those for the additive case, which are shown

well in the insets of Fig. 10b. In most region of the top

plateau, the values of hMcir for the case of multiplicative

STDP are a little larger than those for the additive case,

because the effects of smaller standard deviations (in-

creasing the degree of pair-correlations) are a little domi-

nant in comparison with the effects of smaller hhJ�ijiir
(decreasing the degree of pair correlations).

Summary

We considered an excitatory Barabási–Albert SFN of

subthreshold Izhikevich neurons which cannot fire spon-

taneously without noise. When the coupling strength passes

a threshold, individual neurons exhibit noise-induced

burstings. We are concerned about SBS (i.e., population

synchronization between noise-induced burstings) which

may be an origin for synchronous brain rhythms in the

noisy environment which are correlated with brain function

of encoding sensory stimuli. In our work, STDP for

adaptive dynamics of synaptic strengths was taken into

consideration, in contrast to previous works on the SBS

where synaptic strengths were static.

We first studied the effect of additive STDP (indepen-

dent of states) by varying the noise intensity D for the case

of symmetric preferential attachment with the same in- and

(a)

(b)

Fig. 10 Effects of multiplicative STDP on the statistical-mechanical

bursting measure Mb and the microscopic correlation measure Mc for

the case of symmetric attachment with l� ¼ 10; N ¼ 103. a Plot of

hMbir (represented by open circles) versus D; for comparison, hMbir
in the absence of STDP and for the case of additive STDP are also

shown in crosses and pluses, respectively. b Plot of hMcir (denoted by

open circles) versus D; for comparison, hMcir in the absence of STDP

and for the case of additive STDP are also shown in crosses and

pluses, respectively
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out-degrees (lin ¼ lout ¼ l� ¼ 10Þ. A Matthew effect in

synaptic plasticity has been found due to a positive feed-

back process. Good burst synchronization (with higher

bursting measure Mb) gets better via LTP of synaptic

strengths, while bad burst synchronization (with lower Mb)

gets worse via LTD. As a result, a step-like rapid transition

to SBS has been found to occur by changing D, in contrast

to the relatively smooth transition in the absence of STDP.

In the presence of additive STDP, we have studied the

effect of network architecture on SBS for a fixed D ð¼ 13Þ
in the following two cases: (1) variations in (1) the sym-

metric attachment degree and (2) the asymmetry parame-

ter. For the first case of network architecture, as the

symmetric attachment degree l� is increased from 10, the

degree of SBS becomes better due to both better individual

dynamics and better efficiency of global communication

between nodes (resulting from the increased number of

total connections). On the other hand, with decreasing l�

from 10, both individual dynamics and effectiveness of

communication between nodes become worse (resulting

from the decreased number of total connections), and hence

the degree of SBS becomes worse. In the second case of

network architecture, with decreasing the asymmetry

parameter Dl from 0, the degree of SBS becomes worse

because both individual dynamics and efficiency of com-

munication between nodes are worse. On the other hand, as

Dl is increased from 0, the degree of SBS becomes better

mainly because of better individual dynamics overcoming

worse efficiency of communication.

We also investigated emergences of LTP and LTD of

synaptic strengths intensively for the case of symmetric

attachment with l� ¼ 10 through our own microscopic

methods based on both the distributions of time delays

fDtijg between the pre- and the post-synaptic burst onset

times and the pair-correlations between the pre- and the

post-synaptic IIBRs. In the case of LTP, three (separate)

peaks (a main central peak and two left and right minor

peaks) exist in the population-averaged histograms for the

distributions of fDtijg, while a broad central peak appears

through merging of the three peaks for the case of LTD.

Then, we could obtain population-averaged synaptic

modifications hDJiji from the population-averaged his-

tograms, and they have been found to agree well with

directly-calculated hDJiji. Consequently, how microscopic

distributions of fDtijg contribute to hDJiji may be clearly

understood. Moreover, we studied the microscopic corre-

lation measure Mc, representing the in-phase degree

between the pre- and the post-synaptic neurons, which are

obtained from the pair correlations between the pre- and

the post-synaptic IIBRs. As in the case of bursting measure

Mb, Mc also exhibits a rapid transition due to a Matthew

effect in the synaptic plasticity. Enhancement (suppression)

ofMc is directly related to decrease (increase) in the widths

of bursting stripes in the raster plot of burst onset times.

Then, distributions of fDtijg become narrow (wide), which

may result in emergence of LTP (LTD). In this way,

microscopic correlations between synaptic pairs are

directly related to appearance of LTP/LTD.

Furthermore, effects of multiplicative STDP (depending

on states) on SBS have been investigated for the case of

symmetric attachment with l� ¼ 10 in comparison with the

additive STDP case. Soft bounds for the multiplicative case

(i.e., a change in synaptic strengths scales linearly with the

distance to the higher and the lower bounds) are in contrast

to hard bounds for the additive case. Some quantitative

differences between the results for the additive and the

multiplicative STDP arise because of the soft bounds. As in

the case of additive STDP, a Matthew effect has been

found to occur in the bursting measure Mb. However, due

to the soft bounds, a relatively less rapid transition occurs

near both ends, in comparison to the rapid transition for the

additive cases. Moreover, due to the soft bounds, the

standard deviations r for the distributions of saturated limit

synaptic strengths fJ�ijg are much smaller than those for the

additive case. As a result of the smaller standard deviations

r, the degrees of SBS (given by Mb) in most plateau-like

top region (corresponding to most cases of LTP) become a

little larger than those in the additive case. A Matthew

effect has also been found to occur in the microscopic

correlation measure Mc. Good pair-correlation (with higher

Mc) gets better via LTP, while bad pair-correlation (with

lower Mc) gets worse via LTD. However, like the case of

Mb, some quantitative differences in Mc (for the additive

and the multiplicative STDP) also occur near both ends and

in most plateau-like top region, due to the soft bounds.

Finally, we briefly discuss relevant ones associated with

our work (e.g., biological implication, other neuronal

models, and other measures). Our simulation work on the

effect of STDP on SBS is closely related to neuroscience

because the STDP controls the efficacy of the brain func-

tion of encoding sensory stimuli in the noisy environment

mediated by the bursting neurons (e.g. in cortex, thalamus,

hippocampus, or cerebellum) in the complex neuronal

network. As explained in ‘‘Excitatory scale-free network of

subthreshold neurons with synaptic plasticity’’ section, the

Izhikevich neuron model in our work is biologically

plausible, as in the Hodgkin–Huxley-type conductance-

based models, and hence we expect that our results would

be valid in other biological models such as the Hindmarsh–

Rose (Hindmarsh and Rose 1982, 1984; Rose and Hind-

marsh 1985) and the Hodgkin–Huxley (Hodgkin and

Huxley 1952) models. For characterization of burst syn-

chronization, we employed a statistical-mechanical burst-

ing measures Mb which, in a statistical-mechanical way,
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measures the occupation (representing the density of

bursting stripes) and the pacing (denoting the smearing of

bursting stripes) degrees of burst synchronization, visual-

ized well in the raster plot. Our statistical-mechanical

bursting measure Mb is in contrast to the conventional

microscopic burst phase order parameter r (Sun et al. 2011;

Ivanchenko et al. 2004) because r quantifies the coherence

degree between microscopic individual burst phases with-

out any explicit relation to the macroscopic occupation and

pacing patterns of burst onset times visualized well in the

raster plot. In a statistical-mechanical sense, our bursting

measure Mb supplements the conventional microscopic

measure r. Hence, instead of Mb, one may use the con-

ventional microscopic burst phase order parameter r, and

the same results are expected for characterization of burst

synchronization. We also make brief description on future

works. In the present work, we investigated the effect of an

excitatory STDP on SBS in an excitatory population. SBS

was also found to occur in an inhibitory population (Kim

and Lim 2015a). Hence, it would be interesting to study the

effect of inhibitory STDP on SBS. However, inhibitory

STDP was less studied due to experimental obstacles and

diversity of inhibitory interneurons (Vogels et al. 2013).

The inhibitory population was also found to exhibit diverse

non-Hebbian inhibitory STDP (Lourens et al. 2015; Vogels

et al. 2013; Popovych and Tass 2012), in contrast to the

case of excitatory Hebbain STDP. Since the work on the

inhibitory STDP is beyond the present work, it is left as a

future work. The additive STDP (update) rule is indepen-

dent of states, while the multiplicative STDP rule depends

on states. Particularly, as a multiplicative STDP rule, we

consider a linearly-dependent case [see Eq. (22)]. There

exists another multiplicative STDP rule with nonlinear

power-law dependence (Gütig et al. 2003). When the

exponent of the power law is 1, it corresponds to our

multiplicative case with linear dependence, while it

approaches the additive case as the exponent goes to the

zero. Hence, in future, it seems to be interesting to inves-

tigate the nonlinear multiplicative case by changing its

exponent from 1 to 0, and compare the results with those

for both the additive and the linear multiplicative cases.

Brain has a modular clustered structure which may be

modelled as a clustered SFN. Hubs in each cluster are

strongly interconnected, and they form a rich club for

effective global communication via integration of neural

information in diverse brain modules (Sporns and Betzel

2016; Lameu et al. 2012). Hence, it would be interesting to

study the rich-club effect on STDP in a clustered SFN.

However, it is beyond the present work, and hence it is left

as a future work.
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