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Abstract
The family of fatigue-life distributions is introduced as an alternative model of reaction time data. This family includes the

shifted Wald distribution and a shifted version of the Birnbaum–Saunders distribution. Although the former has been

proposed as a way to model reaction time data, the latter has not. Hence, we provide theoretical, mathematical and practical

arguments in support of the shifted Birnbaum–Saunders as a suitable model of simple reaction times and associated

cognitive mechanisms.

Keywords Fatigue-life distributions � Reaction times � Latent cognitive processes � Shifted Wald distribution �
Birnbaum–Saunders distribution

In experimental psychology, response or reaction times

(RTs) are the time-lapse between a stimulus (or a series of

stimuli) and a behavioral response. Just recently Anders

et al. (2016) argued for the suitability of the shifted Wald

(SW) distribution not only as a quantitative distribution

measurement for RT data, but also as a way to model RTs

arising from simple cognitive mechanisms. In terms of a

quantitative distribution measurement, the SW captures

features of canonical RT distributions (i.e. positive support,

right skewness, etc.). As an explicative model for RTs,

suppose that a latent cognitive process follows:

dXt ¼ ldt þ dMt; t[ h

Xt ¼ 0; t 2 ½0; h�
;

�
ð1Þ

where fMsgs� 0 is a noise. That is, the latent cognitive

process follows a stochastic process, where l[ 0 will

come to represent the mean rate information accumulation,

which is influenced by either individual differences in the

quality of information processing or by stimulus charac-

teristics that reflect task difficulty; and h represents the time

outside the processing that each individual takes to select a

choice. Accordingly, the first RT is defined as the follow-

ing first-passage time (FPT):

sx :¼ infft[ 0 : Xt [xg; ð2Þ

where x[ 0 is some fixed threshold representing the

barrier at which individuals respond. The SW is then the

exact distribution of sx when fMsgs� 0 corresponds to a

Brownian motion. Subsequent RTs are defined analogously

by restarting the process (1) at 0, thus forming an inde-

pendent and identically distributed (IID) sequence of RTs.

This cognitive and behavioral scheme is simple because

the FPT in (2) considers just one barrier, which is less

specified for cases that present multiple distracting alter-

natives, as the SW diffusion parameters would contain

aggregated effect information. Instead, models that aim to

parse this information into separate parameters require to

take into account, among other considerations, multiple

accumulators or double barriers [see e.g. LaBerge (1962),

Ratcliff (1978), Ratcliff and Tuerlinckx (2002), Horrocks

and Thomson (2004), Blurton et al. (2017), Usher et al.

(2002), Brown and Heathcote (2008)].

It can be noticed that when h ¼ 0; Eqs. (1) and (2) are

also used to describe simple stochastic versions of the

Lapicque’s 1907 integrate-and-fire model (Abbott 1999),

although h could be included in the modeling by playing

the role of the ‘‘refractory period’’. Leiva et al. (2015) and
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Tejo and Niklitschek-Soto (2016) proposed a fatigue-life

family of distributions for inter-spike interval (ISI) data

under this kind of processes, where such ISIs are mathe-

matically defined in a similar way to the RTs. This fatigue-

life family contains the inverse Gaussian (or Wald) and the

Birnbaum–Saunders (BS) distributions. The reason for

adopting these distributions is that processes of the kind

shown in Eq. (1) can be seen as cumulative damage pro-

cesses, as explained below.

The BS distribution [also known as fatigue life distri-

bution, Birnbaum and Saunders (1969)], which has grad-

ually increased its use in many fields of applications [see

Leiva (2015)] appears in this context in the following way.

Set for now h ¼ 0, and consider the discrete version of

Eq. (1): Xt ¼ Xt�1 þ lþ et, where et ¼ Mt �Mt�1. Then,

we have that Xt ¼
Pt

k¼1 Ik is a cumulative process, where

Ik ¼ lþ ek. The analogy with a process of material fatigue

is that a ‘‘material’’ is undergoing ‘‘damages’’ Ik’s and the

‘‘crack’’ occurs when the cumulative damages f
Pt

k¼1 Ikg
exceeds some ‘‘fatigue threshold’’ value Xth ¼ x. In this

regards, the BS arises as an approximative distribution of

(2) when fIkg forms an IID sequence of random variables

(RVs) with expectation EðIkÞ ¼ l and variance VðIkÞ ¼ r2,

and where PðIk [ 0Þ is high, which will imply that the

event fsx � tg is almost equivalent to event fXt [xg
since fXtg is an almost increasing process. This approxi-

mation uses the Central Limit Theorem (CLT) applied toPt
k¼1 Ik, so that the distribution of Xt is near normally

distributed with mean lt and variance r2t. Specifically,

Pðsx � tÞ � PðXt [xÞ � U
tl� xffiffiffiffiffiffiffi

r2t
p

� �
; ð3Þ

where Uð�Þ is the cumulative distribution function (CDF) of

a standard normal RV. By defining a ¼ r=
ffiffiffiffiffiffiffi
lx

p
; b ¼ x=l

and considering the continuous extension of time, we have

that the CDF of sx will be approximately given by:

Fðt; a; bÞ ¼ U
1

a
n

t

b

� �� �
; ð4Þ

with t[ 0; a[ 0; b[ 0, and where nðxÞ ¼ x1=2 � x�1=2.

This is the classic BS CDF. The parameter a describes the

shape of the distribution and b is its median. It can be

shown that the expectation is given by bð1 þ a2=2Þ and its

variance by ðbaÞ2ð1 þ 5a2=4Þ. Deriving with respect to t

we obtain de corresponding probability density function

(PDF) of the BS:

f ðt; a; bÞ ¼ 1

2a
1ffiffiffiffiffi
bt

p þ
ffiffiffiffi
b
t3

r" #
/

1

a
n

t

b

� �� �
; ð5Þ

where /ð�Þ is the PDF of a standard normal RV (see Fig. 1

for different BS PDF forms according to different param-

eter values).

In summary, the two key ingredients for the emergence

of the BS are:

1. A discretized version of Eq. (1), where the increments

of the noise fet ¼ Mt �Mt�1g forms an IID sequence

of RVs with variance r2\1, and such that PðIt [ 0Þ
is high, where It ¼ lþ et.

2. The distribution of (2) is obtained by approximating

the distribution of Xt ¼
Pt

k¼1 Ik by a normal RV of

mean lt and variance r2t due to the CLT, and making

a continuous extension of time [see Eq. (3)].

This can allow us to consider different types of noise. As

example, in Fierro et al. (2013) the BS for FPTs is obtained

as arising from Poisson processes.

A ‘‘shifted’’ version of (5) simply appears by shifting the

support to ðh;1Þ, with h[ 0. Therefore, the shifted BS

(SBS) PDF is defined by:

f ðt; a;b; hÞ ¼ 1

2a
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bðt � hÞ
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

ðt � hÞ3

s" #
/

1

a
n

ðt � hÞ
b

� �� �
;

ð6Þ

for t[ h. Although the Wald (or SW) distribution is the

exact distribution of sx when fMsgs� 0 is a Brownian

motion, the BS (or SBS) distribution can be a more ade-

quate model for sx when such a noise is not Gaussian. For

these reasons, we argue that the SBS can also be a suit-

able distribution as an explicative model for RTs arising
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Fig. 1 Different BS PDFs according to different parametrization. In

red a ¼ 0:5 and b ¼ 1; in green a ¼ 0:8 and b ¼ 1; in blue

a ¼ 1:5 and b ¼ 1; and in cyan a ¼ 0:2 and b ¼ 1:5. We can notice

that in the last case, a is small, and then its shape is more symmetrical

than the former cases. This is because its expectation, bð1 þ a2=2Þ is

near its median b. (Color figure online)
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from such simple cognitive mechanisms. Also, the SBS can

be suitable as a quantitative measurement distribution for

RT data as the SW does, since Wald and BS distributions

are phenomenologically and mathematically related [see

Desmond (1986) for a context of material fatigue].

Specifically, set for simplicity h ¼ 0 in Eq. (1), and let

fMsgs� 0 be a Brownian motion with diffusion coefficient

equal to r. Then, the exact CDF of (2) is given by:

Fðt; m; kÞ ¼ U

ffiffiffi
k
t

r
t

m
� 1

� � !

þ exp
2k
m

� �
U �

ffiffiffi
k
t

r
t

m
þ 1

� � !
; ð7Þ

where m ¼ x=l and k ¼ x2=r2 (Wald 1947). Its expecta-

tion and variance are given by m and m3=k respectively. If

we apply the change m ¼ b and k ¼ b=a2, we have that the

first term on the right-hand side of (7) is equal to (4), and

the second term is equal to:

exp
2

a2

� �
U � 1

a
w

t

b

� �� �
;

where wðxÞ ¼ x1=2 þ x�1=2. This last term introduces the

difference (alteration) between the BS and Wald distribu-

tions as an augmented first exceedance distribution (Leiva

et al. 2015). Using this parametrization, we can find that

the expectation and variance of the Wald distribution is

given by b and ðabÞ2
respectively, differing from the

expectation and variance of the BS distribution in ba2=2

and 5b2a4=4 respectively. Thus, the BS distribution

approaches the Wald distribution when a2 ¼ r2=ðlxÞ is

small. In Tejo and Niklitschek-Soto (2016) it is mentioned

that when fMsgs� 0 is a Brownian motion with diffusion

coefficient equal to r, the BS distribution will be also a

good model for the FPT when:

l � r2

x
; ð8Þ

since it will imply a small value of a2. Also in such a

context, the lognormal PDF resembles that of the Wald and

the BS PDFs (Kish et al. 2015), but there is no specific

mathematical relationship between the lognormal distri-

bution and the Wald and BS distributions.

Finally, we should mention that although the SBS is not

longer suitable as an explicative model when the latent

cognitive process shown in (1) does not present a clear

upward trend, it could still provide good fits (i.e., it could

still be a good quantitative measurement distribution), as

reported by Leiva et al. (2015) for ISI data; a type of data

much akin to RT data. [For further properties of the SBS,

see Leiva et al. (2011).]

We account for two sources of RT data in order to show

the performance of our fatigue-life models:

1. The data set published by Goujon and Fagot (2013) in

their Appendix are used to illustrate how well fatigue-

life distributions fit RT data. In their study, baboons

performed a visual search task with contextual cues.

Baboons searched for a target letter (letter ‘‘T’’)

embedded within configurations of distracters (letters

‘‘L’’). In some of the displays letters were arranged to

facilitate the prediction of the target localization and in

other displays localization was hindered by shuffling

and baboons responded by touching the target letter on

the display screen. The first data set (DS1) corresponds

to the mean RTs in the ‘‘shuffled’’ condition and the

second data set (DS2) corresponds to the mean RTs in

the ‘‘predictive’’ condition (here we are tacitly assum-

ing that within each condition, the mean RTs are IID in

all cells). Since our fatigue-life distributions are closed

under averages, we expect them to provide good fits

for these data. In Figs. 2 and 3 the results are

presented.

2. The data set of experiment 4 in Suarez et al. (2015). In

their study, participants (18 participants [mean age 25

years, range 20–30 years old]; 10 women) were

required to press the right or the left response button

depending on the color of the LED, as fast and as

accurately as possible. Once the white LED lighted,

participants initiated the trial onset by briefly pressing

the knee-device. As soon as they pressed it, the central

blue LED, serving as a fixation point and as a warning

signal, lighted up. After a variable delay (ranging from

250 to 600 ms) following the warning signal, one of

the two lateral LEDs lighted up either in green or red.

Participants had to briefly press a response button as

quickly as possible with the left or the right thumb

according to the color of the LED. After a delay of

300 ms following the response, the white LED lighted

up again and a new trial could be initiated. Within each

block, there were 48 green and 48 red stimuli and for

each color, there were 24 congruent trials and 24

incongruent trials. Participants performed 2 blocks of

96 trials each. From this data set we used data in two

blocks of trials (DS3 and DS4). In both blocks,

participants were required to respond with the left hand

to a red LED, regardless of where the light appeared

(here condition RI), but when the red LED appeared on

the right (stim 4) the participant responded with the left

hand (resp 2). In Figs. 4 and 5 the results are presented.

(An R code for estimating parameters and plotting is

given in the Supplementary Material).

As final comments, we are aware that aside from SW

distribution some other distributions are commonly used to
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model RT data, as the ex-Gaussian distribution [see e.g.,

Matzke and Wagenmakers (2009)] and the ex-Wald dis-

tribution (Schwarz 2001), which can perform better fits in

some real RT data. Nevertheless, we focus on this two

fatigue-life distributions since, despite appearing as good

quantitative distribution measurements for RT data, they

can be derivable under simple cognitive schemes like those

represented by Eqs. (1) and (2). Although it is not clear

how this latent process could be measured or fully rebuilt

from the RT fits, we might recognize some aspects about it.

For example, if we consider that the latent cognitive pro-

cess follows what is shown in Eq. (1) with a Gaussian

noise, we can have an idea about how increasing the latent

cognitive process is by checking the size of ba2
. Also in this

case, we have that
ffiffiffi
b

p
a ¼ r=l is the coefficient of varia-

tion of the process (1) after h, and therefore, we can use its

estimates,

ffiffiffiffibb
q

ba and bh, to have an idea about the variability

of the latent cognitive process and rebuilding an estimated

rescaled version of it: dYt ¼ btdt þ dBt; t[ bh, where bt ¼
� ffiffiffiffibb
q

ba	�1
and fBtgt� 0 is a standard Brownian motion.
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Fig. 2 QQ plots of SW and SBS distributions for DS1 (from left to

right), whose coefficients of determination were � 0:99 in both cases.

This shows that the SBS can also be considered as a good candidate to

fit RT data. According to the parametrization shown in (6), the

maximum likelihood estimators were ba � 0:54; bb � 222:03 andbh � 542
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Fig. 3 QQ plots of SW and SBS distributions for DS2 (from left to

right), whose coefficients of determination were � 0:98 and � 0:99,

respectively. Again, this shows that the SBS can also be considered as

a good candidate to fit RT data. For this case, the maximum likelihood

estimators were ba � 0:60; bb � 215:88 and bh � 493
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