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Abstract
Epilepsy is a neurological disorder produced due to abnormal excitability of neurons in the brain. The research reveals that

brain activity is monitored through electroencephalogram (EEG) of patients suffered from seizure to detect the epileptic

seizure. The performance of EEG detection based epilepsy require feature extracting strategies. In this research, we have

extracted varying features extracting strategies based on time and frequency domain characteristics, nonlinear, wavelet

based entropy and few statistical features. A deeper study was undertaken using novel machine learning classifiers by

considering multiple factors. The support vector machine kernels are evaluated based on multiclass kernel and box

constraint level. Likewise, for K-nearest neighbors (KNN), we computed the different distance metrics, Neighbor weights

and Neighbors. Similarly, the decision trees we tuned the paramours based on maximum splits and split criteria and

ensemble classifiers are evaluated based on different ensemble methods and learning rate. For training/testing tenfold Cross

validation was employed and performance was evaluated in form of TPR, NPR, PPV, accuracy and AUC. In this research,

a deeper analysis approach was performed using diverse features extracting strategies using robust machine learning

classifiers with more advanced optimal options. Support Vector Machine linear kernel and KNN with City block distance

metric give the overall highest accuracy of 99.5% which was higher than using the default parameters for these classifiers.

Moreover, highest separation (AUC = 0.9991, 0.9990) were obtained at different kernel scales using SVM. Additionally,

the K-nearest neighbors with inverse squared distance weight give higher performance at different Neighbors. Moreover, to

distinguish the postictal heart rate oscillations from epileptic ictal subjects, and highest performance of 100% was obtained

using different machine learning classifiers.

Keywords Support vector machine � Decision tree � Ensemble classifier � K-nearest neighbors � Classification �
Epilepsy � Seizure detection

Introduction

Epilepsy is one of the most common neurological disorder

with a prevalence of 1–2% of the world’s population

(Mormann et al. 2007). There is prevalence of sudden

unexpected death in epilepsy (SUDEP) due to unexpected,

unwitnessed, nondrowning, nontraumatic death in patients

suffered from epilepsy with or without evidence of seizure.

About 50 million of people in the world are severely

affected by the neurological disorder called epilepsy. It is

the second common neurological disorder after stroke

(Subasi et al. 2017).

Epileptic seizure occurs due to the sudden malfunc-

tioning and synchronization of set of neurons thereby

reflecting the excessive and hyper synchronous activity of

neurons in the brain. The recurrent seizures also known as

epileptic seizures are the hallmark of epilepsy. According

to the clinical manifestation, these seizures are divided into

generalized, focal, partial, unclassified and unilateral
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(Tzallas et al. 2009; James and Eng 1997). During the focal

epileptic seizures, only part of hemisphere is affected and

these seizures produce symptoms in corresponding body

parts or in some related mental functions. Moreover, during

the generalized epileptic seizures, the entire body is

involved and bilateral motor symptoms are produced with

the loss of consciousness. These types of seizure can occur

at any age stage and are more prominent in younger and

older demographics (Hassan et al. 2016). How to predict

and diagnose the epileptic seizures more effectively is still

a challenging task for the researchers.

For detecting epileptic seizures and spikes, some tradi-

tional methods such as visual scanning of EEG recordings

have been used which are expensive, inaccurate and time

consuming taking several days to complete (Ocak 2009).

To cope up with this problem, it is required to develop

most robust and promising techniques to detect the

epileptic activity in EEG signals (Hassan et al. 2016;

Tzallas et al. 2007; Guo et al. 2011; Fu et al. 2015).

Recently, researchers used several automated methods to

detect the epileptic activity in the brain (Ocak 2009; Fu

et al. 2015). Moreover, researchers (Gotman 1982; Gotman

and Gloor 1976) employed automated detection methods to

detect the EEG epileptic seizures. Adeli et al. (2003)

employed wavelet transform to study the dynamics in EEG

epileptic signals. Ican et al. (2011) extracted time and

frequency features to classify the EEG epileptic signals.

Guo et al. (2010) used multiwavelet transform to detect the

epileptic signals and extracted features using approximate

entropy and artificial neural networks for classification

purposes. Moreover, (Tzallas et al. 2007) employed time–

frequency, (Subasi 2007) wavelet, (Kannathal et al. 2005)

entropy for features extraction and artificial neural net-

works (Tzallas et al. 2007; Srinivasan et al. 2007; Nigam

and Graupe 2004) for classification and detection of

epileptic seizures. Orhan et al. (2011) applied K-mean

clustering and artificial neural networks for classification of

EEG epileptic signals. Likewise, spectral analysis was

performed by Kang et al. (2015), mixed band wavelet by

Ghosh-Dastidar et al. (2007) and wavelet transform and

artificial neural networks are proposed by Ocak (2009) for

automatic detection of epileptic seizures in EEG signals.

Most recently, researchers used different classification

methods such as Bashar et al. (2016) employed multi-

variate EMD and short time Fourier transform and Bashar

et al. (2015) used dual tree complex wavelet transform to

classify the EEG left and right-hand movement. Moreover,

automatic sleep detection and classification was made by

extracting statistical and spectral features, Hassan

(2015, 2016) and Stochholm et al. (2016) used adaptive

boosting classifier, Hassan (2016) extracted statistical

features from infinite sum of intrinsic mode function (IMF)

using different machine learning classifier. Likewise,

Hassan and Bhuiyan (2016) extracted spectral features

using complex tree wavelet transform, Hassan and Haque

(2016) statistical and spectral features using Bootstrap

aggregating, Hassan and Bhuiyan (2016, 2017) extracted

statistical features from EMD using ensemble methods and

extreme machine learning. Similarly, Hassan and Bhuiyan

(2017) employed normal inverse Gaussian parameter and

adaptive boosting, Hassan and Subasi (2017) tunable Q

wavelet transform [TQWT], Hassan and Bhuiyan (2017),

Hassan and Haque (2017) used ensemble empirical mode

decomposition and random under sampling boosting

(Fig. 1).

In this paper, we employed automated techniques to

detect the epileptic activity in EEG signals by extracting

different feature extracting strategies such as multi domain

features, nonlinear dynamical measures with fast entropy

measure using KD tree algorithmic approach and wavelet

entropy in order to improve the detection accuracy.

Moreover, we have employed most robust machine learn-

ing techniques by tuning the parameters that outer per-

formed than the existing techniques. The time domain

features are extracted which are most widely used in

variety of applications such as heart and brain for vari-

ability analysis. The frequency domain features are

extracted used in many applications for spectral analysis to

capture the frequency component. The features from non-

linear dynamics are extracted such as approximate entropy

and sample entropy with improved performance using KD

tree algorithm approach, which is more efficient with

respect speed and memory performance. The wavelet

entropy features comprised of Shannon entropy, threshold,

log energy and sure. Likewise, additional statistical fea-

tures are also extracted such as smoothness, skewness,

kurtosis and root mean square with mean. The combination

of features is used as input the novel machine learning

classifiers. For support vector classification kernel choice,

we employed multiscale kernels and box constraint levels

that improves the evaluation performance from default

parameters. For K-nearest neighbors, we applied different

distance calculation metrics based on Euclidean distance,

city block, Chebyshev, cubic, cosine, correlation, spear-

man, hamming and jaccard. Likewise, for KNN, the per-

formance was also evaluated based on different Neighbors

and distance weight i.e. equal, inverse and squared inverse.

The performance evaluation varied by changing these set

of parameters. For Decision trees, the basic parameters are

tuned based on maximum number of splits and split criteria

etc. Likewise, performance was also evaluated using dif-

ferent ensemble methods with number of learning and

learning rate.
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Materials and methods

The data set was taken from a publicly available database

(http://www.meb.uni-bonn.de/epileptologie/science/phy

sik/eegdataold.html), made available by department of

epileptology, Bonn University and its detailed description

is provided by Andrzejak et al. (2001). The EEG data was

recorded with 128-channel amplifier system, using an

average common reference. The data were digitized at

sampling frequency of 173.61 Hz using 12-bit resolution.

The spectral bandwidth of the data acquisition system

varied from 0.5 to 85 Hz. The whole EEG data Comprised

of five sets (denoted as Z, O, N, F and S), each containing

23.6 s duration 100 single-channel EEG segments. The sets

O and Z were recorded from five healthy volunteers during

awake state with eye closed (set O) and eye open (set Z)

using a standardized electrode placement scheme. Sets N, F

and S originated from an EEG archive of pre-surgical

diagnosis. Segments in set F were acquired from the

epileptogenic zone and those in set N were acquired from

the hippocampal formation of the opposite hemisphere of

the brain. The segments in sets N and F contained EEG

Input EEG Signal Features Extraction

Classification Training/ Validation

Fig. 1 Schematic diagram of epileptic seizure detection by extracting different feature extracting strategies and multi-criterion machine learning

classifiers
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recordings acquired during seizure free intervals and seg-

ments in set S contained seizure activity. For deeper study,

we used EEG signals from healthy subjects Set O and

epileptic subject Set S.

Another data of Postictal heart rate oscillations with

partial epilepsy dataset were taken from publicly available

database (Goldberger et al. 2000; Al-Aweel et al. 1999)

which consists of 11 partial seizures recorded in 5 female

patients during continuous EEG/ECG/video monitoring.

The ages of patients ranged from 31 to 48 years with no

clinical evidences of cardiac disease and have partial sei-

zures with or without evidence of secondary generalization

from frontal or temporal foci. An approved protocol by

Israel Deaconess Medical Center was used to made the

recordings customized software were used to analyse the

data offline. The experienced electroencephalographer

(D.L.S) masked with respect to heart rate variability anal-

ysis visually identified onset and offset seizures to the

nearest 0.1 s. The continuous signal ECG signals were

sampled at 200 Hz. The heart beat annotations were

obtained using the commercially available arrhythmia

analysis software (Ho et al. 1997). The higher order non-

stationary fluctuations in heart rate that could mask low

frequency oscillations were removed. The time series was

detrended using least square filter fourth degree polyno-

mial. The spectral density was estimated using fast Fourier

transform technique with rectangular window.

Biological signals represent the pattern of change of a

living system that are critical to understand the dynamics of

healthy biological systems and how pathological distur-

bance or aging affects their robustness. With the advent of

modern computerized data acquisition system, advanced

monitoring devices and instrumentational technologies, the

field of biomedical signal processing is growing its popu-

larity. Considerable interest among biomedical researchers

has been found to develop innovative methods and tools for

biomedical signal processing during last two decades.

The clinicians have recognized the physiological

rhythmic alterations which are associated with the disease.

The physicians make use of human eye as an excellent

pattern recognition device which is capable of interpreting

of highly complex ECG and EEG signals (Glass and

Kaplan 1993). However, sophisticated analysis of vari-

ability provides a quantity of integrity of underlying sys-

tems that produces the dynamics. The nature of the system

can be best described by the spatial and temporal organi-

zation of a complex system i.e. change in patterns of

interconnection in term of connectivity and variation in

pattern over time in term of variability—represent very

important means with which to treat and prognosticate the

patients (Glass and Kaplan 1993; Seely and Macklem

2004). Based on the variable and nonlinear and nonsta-

tionary dynamics, the multimodal features have been

extracted from the healthy, epileptic seizure with ictal

intervals and postictal heart rate oscillations.

To measure the variability, various factors are altered

e.g. head up tilt or standing (sympathetic activity is

increased), deep breathing (respiratory rate induced HRV is

increased) that alter the HRV indices in healthy individuals

(Seely and Macklem 2004). Moreover, the brain signals

variability (i.e. temporal transit fluctuations in brain sig-

nals) conveys important information about network

dynamics. In complex dynamical systems, such as brain,

the variability facilitates the transitions between possible

functional network configurations in absence or presence of

external stimulation (Lewis and Bates 2013).

Likewise, the physiological signals are considered as

sum of sinusoidal oscillations with distinct frequencies. In

this regard, conversion is made from time domain to fre-

quency domain using Fourier transform (Takeda et al.

1982) developed by a mathematician in 1807. For con-

version from time domain to frequency domain, Wavelet

and Hilbert transforms (Gabor 1946) are most commonly

used methods as well. In this way, the amplitude of each

cosine and sine wave can be determined as function of its

frequency also known as spectral analysis because it pro-

vides an evaluation of power (amplitude) of contributing

frequencies to the underlying signal.

Time domain analysis technique have been used for

statistical analysis in term of standard deviation (SDNN) to

measure the global variation, standard deviation of average

interval (SDANN) to measure the long-term variations,

square root of mean squared differences of consecutive NN

intervals (RMSSD) to evaluate short term variations. These

time domain measures have extensively been used in heart

rate variation and brain variations such as coronary artery

disease (Rich et al. 1988; Van Hoogenhuyze et al. 1991) to

diagnose the increased mortality risk in patients, congestive

heart failure (Bilchick et al. 2002; Ponikowski et al. 1997),

dilated cardiomyopathy (Tuininga et al. 1994) and post

infarction patients (Bigger et al. 2016; Casolo et al. 1992;

Kleiger et al. 1987). Moreover, for detecting epileptic

seizure several automated methods in time domains (Ocak

2009; Fu et al. 2015; Lee et al. 2014), Fourier spectral

analysis for extracting features (Polat and Güneş 2007),

frequency domain methods (Polat and Güneş 2007), DWT-

based methods (Faust et al. 2015), and fast-Fourier trans-

forms (Tzallas et al. 2007, 2009) were employed.

Signal pre-processing

The low and weak frequency signals are usually suffered

from complex low frequency noise such as system inter-

ference. Before detecting and analysis of epileptic seizure,

EEG signals preprocessing and noise removal is applied

(Rajendra Acharya et al. 2012; Acharya et al. 2015). In this
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work, the wavelet threshold denoising method is used that

provide better performance than Fourier transform

denoising method (Gajic et al. 2015). The fourth order

Daudechies (db4) wavelet was selected that is more suit-

able for nonstationary signals (Stanley Raj et al. 2016) due

to its good local approximation performance. The Principal

component analysis was also applied for dimensionality

reduction to remove the irrelevant features. For denoising

the nonstationary signals, following wavelet threshold

method (Dragotti and Vetterli 2003) was applied:

k ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2logN
p

where k is the wavelet threshold, d is the standard deviation
and N is the length of the sample signal respectively. The

wavelet threshold method is most robust to remove the

white noise buried in the EEG signal (Walters-Williams

and Li 2011).

Features extraction

Features extraction is one of the most important step before

applying the Machine Learning and Neural networks

classification techniques for detection and prediction pur-

poses. It requires an optimum feature set that should

effectively discriminate the subjects. Features extraction is

solely specific to the problem. Rathore et al. (2014) and

Ferland et al. (2017) extracted hybrid and geometric fea-

tures for automatic colon detection of cancer. Dheeba et al.

(2014) extracted texture features for breast cancer detec-

tion. Hussain et al. (2014) computed texture and morpho-

logical features to detect and classify the human face from

non-faces. Moreover, Hussain et al. (2017a) recently

extracted acoustic features such as volume, pitch, prosodic

features as frequency minimum, maximum, sum, Mel fre-

quency cepstral coefficients to emotion recognition in

human speech. They also extracted time and frequency

based features to detecting heart rate and heart rate

variability.

In this study, multimodal feature extracting strategy was

used for detecting the epileptic seizure. The EEG signals

are highly complex having nonlinear and nonstationarity

behavior. Qu et al. applied empirical mode decomposition

(EMD) to decompose EEG signals into a collection of

intrinsic mode functions (IMFs), which has the ability to

quantify the dynamics of nonstationary and nonlinear

processes (Fu et al. 2015). IMF features extracted from

EMD are used as input to the Support Vector Machine to

detect and classify the epileptic seizure. The results

obtained from IMFs gives high classification accuracy.

However, few studies (Wang et al. 2017) suggest the use of

multimodal features i.e. combing features from multi-do-

main alongwith the nonlinear features for classifying the

epileptic seizure. This will give a unified framework to

include the advantages of varying characteristics of EEG

signals. In this study, we also have extracted the features

based on time domain, frequency domain, complexity

based measures and wavelet entropy methods for classi-

fying the epileptic seizure subjects from that of healthy

subjects and postictal heart rate oscillations. Apart, in this

work, we extracted nonlinear features using sample entropy

based on KD tree algorithmic approach (fast Sample

entropy) and approximate entropy which gives outer per-

formance than results obtained by Wang et al. (2017) and

are consistent with the results obtained by Hussain et al.

(2017b). Recently, Hussain et al. (2017b) and Pan et al.

(2011) employed fast MSE which gives statistically more

effective results than traditional MSE with reduced com-

putational and memory complexity.

Linear methods

To measure the variability in physiological signals (i.e.

ECG or EEG etc.) affected by different pathologies, the

time and frequency domain techniques are most widely

used to capture the time variations and spectral informa-

tion. Detailed analysis techniques developed to character-

ize the variability analysis of EEG and ECG signals have

been described in detail by Seely and Macklem (2004),

Malik (1996) for patients suffered from different variability

dysfunctions (Esco et al. 2017; Choi and Shin 2017; Ger-

onikolou et al. 2017; Sima et al. 2017; Kuang et al. 2017;

Fujita et al. 2016; Dodds et al. 2017) including heart rate

variability, breathing, depression, pulse variability,

insomnia problems and epilepsy etc. Ayoubian et al. (2013)

extracted different time, frequency and time–frequency

domain features to detect the epileptic seizure. They

extracted the HF activities and peak, wavelet entropy that

contains the important characteristics of seizure onset

patterns in HF activities. Moreover, the low frequency

ranges (1–70 Hz) also contains the most relevant infor-

mation pertinent to detect the epileptic seizure. The fol-

lowing time and frequency domain features are extracted

from healthy and epileptic patients and postictal heart rate

oscillations in patients suffered from epilepsy.

1. Time domain analysis

Different parameters can be extracted by time domain

analysis of the segment and time domain methods are the

simplest to perform

SDSD: standard deviation of differences between adja-

cent time series intervals in each segment.

SDNN: standard deviation of the consecutive intervals in

each segment.
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SDNN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1

XN

j¼1
EEGj � EEG
� �2

r

ð1Þ

RMSSD: Is the square root of the mean squared

differences of N successive EEG time series intervals

RMSSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1

XN�1

j¼1
EEGjþ1 � EEGj

� �2

r

ð2Þ

SDANN: Standard deviation of the averages of EEG

intervals.

SDANN ¼ SD u1; u2; u3; u4. . .un½ � ð3Þ

2. Frequency domain analysis

Time domain methods are simple but they do not have the

ability to discriminate between sympathetic and parasym-

pathetic contributions of HRV and EEG variations.

Total power (TP): Total spectral power of all EEG time

series intervals up to 0.4 Hz.

Very low frequency (VLF): Total spectral power of all

EEG consecutive intervals between 0.003 and 0.04 Hz.

Low frequency (LF): Total spectral power of all EEG

consecutive between 0.04 and 0.15 Hz.

High frequency (HF): Total spectral power of all EEG

consecutive intervals between 0.15 and 0.4 Hz.

ULF: Total spectral power of all EEG consecutive

intervals up to 0.003 Hz.

LF/HF Ratio: Ratio of low to high frequency power.

This measures overall balance between sympathetic and

parasympathetic systems.

Nonlinear methods

Biological signals are basically the output of multiple

interacting components of a biological system exhibiting

complicated patterns. These patterns of change may con-

tain useful hidden information about the dynamics of these

systems. It is unrealistic to extract valuable information

using traditional data analysis techniques. Following are

most commonly used complexity base measure.

Approximate entropy

Approximate entropy (ApEn) developed by Pincus (1991)

is a statistical measure used to quantify the regularities in

data. It shows the probability that similar observation

patterns do not repeat.

ApEn m; r � Nð Þ ¼ ;m rð Þ � ;mþ1 rð Þ ð4Þ

Fast sample entropy with KD tree approach

(SampEn) Sample entropy suggested by Costa et al. (2002)

is a modified form of approximate entropy. It is used to

assess the physiological time series signal. Sample entropy

when comparing with approximate entropy shows good

features like independent data length and trouble-free

implementation. It can easily be implemented in many

programming languages.

Thus, sample entropy can be more precisely computed

using following formula:

SampEn m; rð Þ ¼ lim
N!1

�ln
Pm rð Þ
Qm rð Þ ð5Þ

where Pm(r) denotes the probability that two sequences will

still match for m ? 1 points and Qm(r) is the probability

that two sequences will matches for m points (with toler-

ance of s); where self matches are excluded. In this regard

Eq. (1) can be expressed as:

SampEn m; r;Nð Þ ¼ �ln
Pm rð Þ
Qm rð Þ ð6Þ

By setting Q ¼ N�m�1ð Þ N�mð Þ½ �
2

n o

Qm rð Þ and

P ¼ N�m�1ð Þ N�mð Þ½ �
2

n o

Pm rð Þ

We have P
Q
¼ Pm rð Þ

Qm rð Þ and thus sample entropy can be

expressed as:

SampEn m; r;Nð Þ ¼ Pm rð Þ
Qm rð Þ ð7Þ

where P is the total number of forward matches of length

m ? 1 and Q is the total number of template matches of

length m. Here we used sample entropy with KD tree

algorithmic base approached as implemented by Hussain

et al. (2017b) which provide improved performance and is

more effective with respective to time and space

complexity.

Wavelet entropy

In signal processing applications entropy is commonly used

for analysis of nonlinear time series data. Commonly used

entropy methods (Wang et al. 2011) include Shannon, Log

Energy, Threshold, Sure and Norm etc. Shannon entropy

(Wang et al. 2011) was employed to measure the com-

plexity of signal to wavelet coefficients generated by WPT

where larger values show high uncertainty process and

therefore higher complexity. Wavelet entropy used by

Rosso et al. (2001) which provided the useful information

to measure the underlying dynamical process associated

with the signal. The entropy ‘E’ must be an additive

information cost function such that E (0) = 0 and

E Sð Þ ¼
P

i

E Sið Þ.
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Shannon entropy

Shannon entropy (Wu et al. 2013) was first proposed in

1948 named after Claude Shannon. Since then, it is most

extensively applied in the information sciences. Shannon

entropy is a measure of the uncertainty associated with a

random variable. Specifically, Shannon entropy quantifies

the expected value of the information contained in a

message. The Shannon entropy of a random variable X can

be defined as follow:

V Xð Þ ¼ V P1; . . .;Pn;ð Þ ¼ �
X

n

i¼1

Pilog2Pi ð8Þ

Pi ¼ Pr X ¼ xið Þ ð9Þ

where Pi is defined in Eq. (9) with xi indicating the ith

possible value of X out of n symbols, and Pi denoting the

possibility of X = xi.

Wavelet norm entropy

Wavelet Norm entropy (Avci et al. 2007) is defined as:

E Sð Þ ¼
P

i Sij jp

N
ð10Þ

where p is the power and must be 1 � P\2 the terminal

node signal and (si) i the waveform of terminal

Classification

The robust machine learning algorithms were employed to

detect and predict the epileptic seizure. The accuracy, and

other performance evaluation parameters are estimated

using this model. The known label of the test sample is

compared with the classified results from the model. Ten-

fold cross validation was used for training, test and vali-

dation purposes.

In machine learning, the support vector machine (SVM)

classifier is most well-known supervised learning method

using finite sample theory (Burges 1998). Based on

empirical error minimization, the traditional methods in

small sample cases are prone to generate the overfitting

problem, while SVM is based on structural risk mini-

mization principle and has the good generalization ability

(Li et al. 2014). The other classifiers such as Decision

Trees, KNN and Ensemble are used to illustrate the

effectiveness of the proposed classification framework.

SVMs are more appropriate (Burges 1998; Rouslan

2008) and can provide good generalization even if the

training set has some bias; this gives unique solution

because the loss function is convex. SVMs are nonpara-

metric models whose complexity grows quadratically with

the increase of number of record (Vempati et al. 2010).

SVMs are even more suitable to small datasets with many

features (Huang and LeCun 2006). As the large number of

features results in curse of dimensionality which implies

that to obtain the good generalization, the number of

training samples must grow exponentially with the number

of features (Huang and LeCun 2006; Übeyli 2010).

Moreover, shallow architectures have practical limitations

for efficient representation of certain types of function

families (Bengio and Lecun 2007). To avoid these issues, it

is required to generate such models that could capture the

large degree of variation that can occurs in the underlying

data pattern without having enumerate all of them. It is

required to use the compact representation of data to cap-

ture most variation to reduce the curse of dimensionality as

well as to reduce the computational complexity (Huang and

LeCun 2006; Bengio and Lecun 2007; Erfani et al. 2015).

Support vector machine (SVM)

For supervised learning methods, SVM is one of the most

robust method used for classification purposes. Recently,

SVM is excellently used for pattern recognition problems

(Vapnik 1999), machine learning (Gammerman et al. 2016)

and medical diagnosis area (Dobrowolski et al. 2012;

Subasi 2013). Moreover, SVM is used in variety of appli-

cations such as recognition and detection, text recognition,

content based image retrial, biometrics, speech recognition

etc. SVM construct a hyperplane or set of hyperplanes in

infinite or high dimensional space which can be used for

classification a good separation using this hyperplane is

achieved that has the largest distance to the nearest training

data point of any class (also known as functional margin),

generally larger the margin indicates the lower general-

ization error of the classifier. SVM tries to find a hyper-

plane that gives the largest minimum distance to the

training example. In SVM theory this name is also known

as margin. For maximized hyperplane, the optimal margin

is obtained. SVM has another important characteristic that

gives the greater generalization performance. SVM is

basically, a two-category classifier which transformed data

into a hyperplane depends on the nonlinear training data or

higher dimension.

Let us define a hyperplane by x.w ? b = 0, where w is

its normal. The linearly separable data is labelled as:

xi; yif g; xi 2 RNd; yi 2 �1; 1f g; i ¼ 1; 2; . . .;N ð11Þ

Here yi is the class label of two class SVM. By minimizing

the objective function, the optimum boundary is obtained

with maximal margin i.e. E = w2 subject to

xi � wþ b� 1 for yi ¼ þ1
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xi � wþ b� 1 for yi ¼ �1 ð12Þ

Combining these into set of inequalities as

ðxi � bþ bÞyi � 1 for all i

Generally, the data is not linearly separable, in such cases a

slack variable Ni is used to denote the amount of mis-

classification rate. Thus, new subjective function is then

reformulated as (Fig. 2):

E ¼ 1

2
w2 þ C

X

i

L Nið Þ ð13Þ

Subject to

ðxi � bþ bÞyi � 1� ni for all i

Here first term on right hand side is regularization term that

gives SVM an ability to generalize well on sparse data. The

second term denote the empirical risk that those points

which are misclassified or lie within the margin. L denote

the cost function and C denote the hyper parameter rep-

resenting trad-off effect by minimizing the empirical risk

against maximizing the margin. Linear-error cost function

is most commonly used because of its ability to detect the

outliers. The dual formulation with L Nið Þ ¼ Niis

a� ¼ maxa
X

i

ai þ
X

i;j

aiajyiyjxixj

 !

ð14Þ

Subject to

0� ai �Cand
X

i

aiyj ¼ 0

In which a ¼ a1; a2; a3; . . .; ai;f g is a set of Lagrange

multipliers of the constraints in the primal optimization

problem. The optimal decision boundary is now given by.

w0 ¼
X

i

aixiyi ð15Þ

SVM for non-linearly separable data

Muller et al. (2001) recommended the use of kernel

function trick to deal with the data which is not linearly

separable. In this case the non-linear mapping from input

space is made to higher dimensional feature space. The dot

product between two vectors in the input space is expressed

by dot product with some kernel functions in the feature

space. The most commonly used kernel functions are

polynomial and radial base function (RBF). Mathemati-

cally, these are expressed as:

Types of Different Machine Learning Kernels with

formulae.

SVM Polynomial Kernel

K xi; yið Þ ¼ ðxi � yi þ 1Þn ð16Þ

SVM Gaussian (RBF) kernel

K xi; yið Þ ¼ exp
�1

2

xi � y2i
r2

� �

ð17Þ

SVM Fine Gaussian (RBF) kernel

K xi; yið Þ ¼ exp
�1

2

xi � y
0
i xi � yij jj j
r2

� �

ð18Þ

Where n is the order of polynomial kernel and r is the

width of RBF. The dual formulation for non-linear case is

given by

a� ¼ maxa
X

i

ai þ
X

i;j

aiajyiyjK xi:xj
� �

 !

ð19Þ

Subject to

0� ai �C and
X

i

aiyj ¼ 0

The SVM classifier performance depends on several

parameters. The grid search method (Huang and LeCun

2006) was used to select the optimal parameter value by

carefully setting grid range and step size. The linear kernel

involves only one parameter (‘c’ soft margin constant), that

represent the constraint violation cost associated with the
Fig. 2 SVM. a Linear separation and b margin
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data point occurring on the wrong side of the decision

surface. The SVM with RBF and Gaussian kernel function

has two training parameters: cost (C) which control the

overfitting of the model and sigma (), which control the

degree of nonlinearity of the model. The default values of

cost function and sigma are used.

Decision tree (DTs)

In Decision Tree, the classifier check the similarities in the

dataset and classify it into distinct classes. Wang et al.

(2015) used DTs for classifying the data based on choice of

an attribute which maximizes and fix the data division.

Until the termination criteria is met, the attributes are split

into several branches. Mathematically, a DT algorithm is

constructed using following subsequent equations.

X ¼ fX1;X2;X3; . . .;XmgT ð20Þ

Xi ¼ x1; x2; x3; . . .; xij; . . .; xin
� �

ð21Þ

S ¼ S1; S2; ; . . .; Si; . . .::; Smf g ð22Þ

where m represents the available observations number, n

denote the independent variable number, S us the m-di-

mension vector of the variable forecasted from X. Xi is the

ith component of n-dimension autonomous variables

xi1; xi2; xi3; . . .; xin are autonomous variable of pattern vec-

tor Xi and T is the transpose notation.

The purpose of DTs is to forecast the observations of X.

From X several DTs can be built with different accuracy

level; however, an optimal DT is challenging because

search space has large dimension. For DT suitable algo-

rithms can be developed to reflect the trade-off between

accuracy and complexity. In this case a sequence of local

optimal decisions about the feature parameters are used to

partition the dataset X using DT algorithms. Optimal DT,

Tk0 is constructed according to the subsequent optimization

problem.

R̂ Tk0ð Þ ¼ min R̂ Tk0ð Þ
� �

; k ¼ 1; 2; 3; . . .;K ð23Þ

R̂ Tð Þ ¼
X

k

t2T
r tð Þp tð Þf g ð24Þ

where R̂ Tð Þ denote the error level during the misclassifi-

cation of tree Tk, Tk0 denote the optimal DT that minimizes

the error of misclassification in the binary tree, T denote

the binary tree 2 T1; T2; ; . . .; Tk; t1f g, the index of tree is

denoted by k, tree node by t, root node by t1, resubstituting

error by r(t) that misclassify node t, probability that any

case drop into node t is denoted by p(t). TL and TR denote

the sub-trees of left and right partition set. The tree T is

formed by feature plan portioning.

Ensemble classifiers

The ensemble classifiers comprise of set of individually

trained classifiers whose predictions are then combined

when classifying the novel instances using different

approaches (Hussain et al. 2015). These are learning

algorithms which construct a set of classifiers and then

classify new data points by taking the weight of their

predictions. These methods have successfully been used to

enhance the prediction power in variety of applications

such as predicting signal peptide (Chou and Shen 2007),

for predicting protein subcellular location (Chou and Shen

2007), predicting subcellular location (Chou and Bin 2007)

and enzyme subfamily prediction (Chou 2005). In many

applications, the combined classification approaches give

relative better performance than the individual classifier.

Hayat and Khan (2012) reported that individual classifiers

are diverse and can make different errors during classifi-

cation, but during combing the classifiers the error is

reduced because error produced by one classifier can be

compensated by the other classifier.

K-nearest neighbor (KNN)

KNN is most widely used algorithm in the field of machine

learning, pattern recognition and many other areas. Zhang

et al. (2011) used KNN for classification problems. This

algorithm is also known as instance based (lazy learning)

algorithm. A model or classifier is not immediately build

but all training data samples are saved and waited until new

observations need to be classified. This characteristic of

lazy learning algorithm makes it better than eager learning,

that construct classifier before new observation needs to be

classified. Schwenker and Trentin (2014) investigated that

this algorithm is also more significant when dynamic data

is required to be changed and updated more rapidly. KNN

with different distance metrics were employed. KNN

algorithm works according to the following steps using

Euclidean distance formula.

Step I: To train the system, provide the feature space to

KNN

Step II: Measure distance using Euclidean distance

formula

d xi; yið Þ ¼
X

n

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi�yiÞ2
q

ð25Þ

Step III: Sort the values calculated using Euclidean

distance using di � di þ 1; where i ¼ 1; 2; 3; . . .; k

Step IV: Apply means or voting according to the nature

of data

Step V: Value of K (i.e. number of nearest Neighbors)

depends upon the volume and nature of data provided to
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KNN. For large data, the value of k is kept as large,

whereas for small data the value of k is also kept small.

Training/testing data formulation

The Jack–Knife tenfold cross validation technique was

applied for training/testing data formulation and parameter

optimization. It is one of the most well-known and com-

monly practiced and successfully used method to validate

the accuracy of a classifier using tenfold CV, the data is

divided into tenfolds, in training, the ninefolds participate

and classes of samples of remaining folds are predicted

based on the training performed on ninefolds. For the

trained models, the test samples in test fold are purely

unseen. The entire process is repeated 10 times and each

class sample is predicted accordingly. Finally, the unseen

samples predicted labels are used to determine the classi-

fication accuracy. This process is repeated for each com-

bination of system’s parameters, and classification

performance have been reported for the samples as depic-

ted in the Tables 1, 2, 3, 4, 5 and 6.

Results

The classification performance in form of TPR, TNR, PPV,

NPV, overall accuracy and AUC was evaluated using most

robust machine learning classifiers such as Support Vector

Machine Kernels, Decision Trees, KNNs and Ensemble

methods. The classifiers are tuned with different options

and parameters to investigate the performance in more

deeper detail than the ordinary classification methods used

in the research. This gives an insight to see the perfor-

mance of different classifiers in multiple scales, distance

metrics, learning rates and distance weights etc. Feature

extraction and selection and use of classifier is most

important factor for proper analysis of any problem. In the

past, researchers extracted different features for detection

of epileptic seizure. In this study, we used different features

extracting strategies keeping in view the dynamical prop-

erties of highly complex nonlinear, spatiotemporal varia-

tions of brain signals. Thus, we extracted the time and

frequency domain features, complexity base features,

wavelet entropy features and few statistical features from

both healthy and epileptic and postical subjects. The most

novel machine learning classifiers such as Support Vector

Machine, Decision Trees, KNN and Ensemble classifiers

Table 1 Confusion matrix and comparison of performance evaluation

Predicted Class

A
ct

ua
l C

la
ss

Support Vector Machine with Linear Kernel
True Positive

(TP) = 99
False Positive

(FP) = 2
PPV=TP/(TP+FP)

=99 / (99+2)
=98%

TPR=TP/(TP+FN)
= 99/ (99+0)

= 100%
False Negative

(FN) = 0
True Negative

(TN) = 99
NPV=TN/(TN+FN)

= 99/ (99+0)
=100 %

TNR=TN/(TN+FP)
= 99/ (99+2)

=98%
Cosine KNN
True Positive

(TP) = 95
False Positive

(FP) = 6
PPV=TP/(TP+FP)

=95 / (95+6)
=94.1%

TPR=TP/(TP+FN)
= 95/ (95+0)

= 100%
False Negative

(FN) = 0
True Negative

(TN) = 99
NPV=FP/(TP+FP)

= 6/ (95+6)
=100 %

TNR=TN/(TN+FP)
= 99/ (99+6)

94.3%
Coarse KNN
True Positive

(TP) = 74
False Positive

(FP) = 27
PPV=TP/(TP+FP)

=74 / (74+27)
=73.2%

TPR=TP/(TP+FN)
= 74/ (74+0)

= 100%
False Negative

(FN) = 0
True Negative

(TN) = 99
NPV=TN/(TN+FN)

= 99/ (99+0)
=100 %

TNR=TN/(TN+FP)
= 99/ (99+27)

78.5%
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with distinct set of possible learner parameters are used to

improve the evaluation performance. This will give a new

direction to judge the performance on broader parameters

selection rather than choosing few options. Figure 4 below

shows the scatter plots again two selected features such as

SDSD along x-axis and Entropy values on y-axis to

Table 2 Classification results to distinguish healthy set O subjects from epileptic seizure (set S, ictal intervals) using different machine learning

classifiers

Classifier TNR (%) TPR (%) NPV (%) PPV (%) Overall accuracy (%) AUC 95% CI

LB UB

Support vector machine (SVM)

Linear 98.0 100 100 98.0 99.0 0.9991 0.00 0.98

Quadratic 97.0 100 100 97.1 98.5 0.9887 0.00 0.97

Fine Gaussian 99.0 98.0 98.0 99.0 98.5 0.9922 0.03 0.99

Coarse Gaussian 94.1 100 100 94.3 97.0 0.9986 0.00 0.93

Nearest neighbor

Fine KNN 97.0 98.0 98.0 97.0 97.5 0.9750 0.01 0.98

Coarse KNN 74.3 100 100 79.2 87.0 0.9961 0.00 0.75

Weighted KNN 97.0 99.0 99.0 97.0 98.0 0.9940 0.00 0.99

Decision tree

Complex tree 99.0 98.0 98.0 99.0 98.5 0.9815 0.02 0.99

Medium tree 99.0 98.0 98.0 99.0 98.5 0.9815 0.02 0.99

Ensemble

Boosted tree 100 88.9 90.2 100 94.5 0.9001 0.00 0.96

Bagged tree 98.0 99.0 99.0 98.0 98.5 0.9996 0.01 0.98

Subspace disc. 95.0 100 100 95.2 97.5 0.9986 0.00 0.94

Subspace KNN 99.0 99.0 99.0 98.0 98.5 0.9992 0.01 0.98

Table 3 Performance

Evaluation Results to

Distinguish Healthy Set O

subjects from epileptic seizure

(Set S, ictal intervals) using

support vector machine (SVM)

classifier with linear kernel by

tuning parameters with fixed

box constraint level (BCL)

value of 1 and different range of

values for kernel scale (KS) and

vice versa

KS TNR (%) TPR (%) NPV (%) PPV (%) Overall accuracy (%) AUC

1 99.0 100 100 99.0 99.5 0.9987

2–6 98.0 100 100 98.0 99.0 0.9987

7–9 97.0 100 100 97.1 98.5 0.9989

10–11 96.0 100 100 96.1 98.0 0.9988

12 95.0 100 100 95.2 95.7 0.9991

13–15 93.1 100 100 93.4 96.5 0.9990

16 92.1 100 100 92.5 96.0 0.9989

17 93.1 100 100 93.4 96.5 0.9988

18–19 92.1 100 100 92.5 96.0 0.9985

20 90.1 100 100 90.8 95.0 0.9984

25 84.2 100 100 86.1 92.0 0.9974

30 78.2 100 100 81.8 89.0 0.9977

40 64.4 100 100 73.3 82.0 0.9982

50 55.4 100 100 68.8 77.5 0.9981

BCL TNR (%) TPR (%) NPV (%) PPV (%) Overall accuracy (%) AUC

2–19 99.0 100 100 99.0 99.5 0.9986

20–23 98.0 100 100 98.0 99.0 0.9990

[ 24 97.0 100 100 97.1 98.5 0.9982
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distinguish the health and epileptic subjects. For the illus-

tration purposes, we selected SVM linear kernel, cosine

KNN and coarse KNN. The left column figures denote the

true class while right column figures denote the predicted

Table 4 Performance

evaluation results to distinguish

healthy set O subjects from

epileptic seizure (set S, ictal

intervals) using support vector

machine (SVM) classifier with

quadratic kernel by tuning

parameters with fixed box

constraint level (BCL) value of

1 and different range of values

for kernel scale (KS) and vice

versa

KS TNR (%) TPR (%) NPV (%) PPV (%) Overall accuracy (%) AUC

1 96.0 99.0 99.0 96.1 97.5 0.9982

2–3 97.0 100 100 97.1 98.5 0.9986

4–9 98.0 100 100 98.0 99.0 0.9989

10–14 97.0 100 100 97.1 98.5 0.9989

15–16 96.0 100 100 96.1 98.0 0.9989

17 95.0 100 100 95.2 97.5 0.9991

18 94.1 100 100 94.3 97.0 0.9990

19–24 93.1 100 100 93.4 96.5 0.9991

25 92.1 100 100 92.5 96.0 0.9986

30 89.1 100 100 90.0 94.5 0.9984

40 81.2 100 100 83.9 90.5 0.9978

50 71.3 100 100 77.3 85.5 0.9977

BCL TNR (%) TPR (%) NPV (%) PPV (%) Overall accuracy (%) AUC

[ 2 95.0 98.0 98.0 95.1 96.5 0.9870

Table 5 Performance

evaluation results to distinguish

healthy set O subjects from

epileptic seizure (set S, ictal

intervals) using support vector

machine (SVM) classifier with

Gaussian Kernel by tuning

parameters with fixed box

constraint level (BCL) value of

1 and different range of values

for kernel scale (KS) and vice

versa

KS TNR (%) TPR (%) NPV (%) PPV (%) Overall accuracy (%) AUC

1 99.0 94.9 95.2 98.9 97.0 0.9946

2–14 98.0 99.0 99.0 98.0 98.5 0.9964

15 96.0 100 100 96.1 98.0 0.9990

16 95.0 100 100 95.2 97.5 0.9981

17 94.1 100 100 94.3 97.0 0.9991

18–24 93.1 100 100 93.4 96.5 0.9991

25 92.1 100 100 92.5 96.0 0.9985

30 89.1 100 100 90.0 94.5 0.9982

40 81.2 100 100 83.9 90.5 0.9976

50 71.3 100 100 73.3 85.5 0.9977

BCL TNR (%) TPR (%) NPV (%) PPV (%) Overall accuracy (%) AUC

[ 2 99.0 96.0 96.2 99.0 97.5 0.9943

Table 6 Performance

evaluation results to distinguish

healthy set O subjects from

epileptic seizure (set S, ictal

intervals) using K-nearest

neighbor classifier with varying

distance metrics and selection

criterion of number of neighbors

as 1 and equal distance weight

Distance metric TNR (%) TPR (%) NPV (%) PPV (%) Overall accuracy (%) AUC

Euclidean distance 98.0 99.0 99.0 98.0 98.5 0.9850

City block 99.0 100 100 99.0 99.5 0.9950

Chebyshev 95.0 99.0 99.0 95.1 97.0 0.9702

Cubic 93.1 100 100 93.4 96.5 0.9653

Cosine 97.0 99.0 99.0 97.0 98.0 0.9800

Correlation 97.0 99.0 99.0 97.0 98.0 0.9800

Spearman 98.0 99.0 99.0 98.0 98.5 0.9850

Hamming 54.5 97.0 94.0 67.6 75.5 0.7512

Jaccard 54.5 97.0 94.0 67.6 75.5 0.7512
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class. The red color dots denote the healthy and green color

dots denote the epileptic subjects. Moreover, cross in both

colors represents the errors. The correspondence confusion

matrix clearly shows the performance measures for these

three classifiers. There were 2, 6 and 27 data points which

are predicted as false positive after prediction. The scatter

plots also reflect the red crosses for true class and green

cross for predicted class. Thus, scatter plots help us to see

the classification performance visually for true classes and

predicted classes. A pictorial representation of error using

slack variable and non-linear separation using SVM is

shown in Fig. 3.

Receiver operating curve (ROC)

The ROC is plotted against the true positive rate (TPR) i.e.

sensitivity and false positive rate (FPR) i.e. specificity values

of healthy and epileptic seizure subjects. The mean features

values for healthy subjects are classified as 1 and epileptic

subjects are classified as 0. This vector is then passed to the

ROC function, which plots each sample values against

specificity and sensitivity values. ROC is a standard way to

classify the performance and visualize the behavior of a

diagnostic system (Hajian-Tilaki 2013). The TPR is plotted

against y-axis and FPR is plotted against x-axis. The area

under the curve (AUC) shows the portion of a square unit. Its

value lies between 0 and 1. AUC[ 0.5 shows the separation.

The higher AUC shows the better diagnostic system. Correct

positive cases divided by the total number of positive cases

are represented by TPR, while negative cases predicted as

positive divided by the total number of negative cases are

represented by FPR. The SVM linear classifier shows sepa-

ration as 0.99 andCoarse SVMas 0.75 as shown in the Fig. 6.

The AUC values using different classifiers are depicted in

Tables 1, 2, 3, 4, 5 and 6. The Fig. 5 shows parallel coordi-

nates plot of data with predictions for SVM linear kernel and

Coarse KNN classifiers against means ± n SD, where

n = {± 2, 4, 6, 8} for different extracted features.

Performance measures based on confusion
matrix parameters

To detect the epileptic seizure, following measures were

used to compute the True Positive Rate (TPR), True

Negative Rate (TNR), Positive Predictive Value (PPV),

Negative Predictive Value (NPV), Overall Accuracy and

Area under receiver Operating Curve (AUC) with example

of healthy Set O vs Epileptic Set S subjects as illustrated in

Figures ROCs, Scatter plots and Confusion Matrix and

performance evaluation Tables below.

Fig. 3 a Error on margin using

slack variable, b, c SVM non-

linear separation
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Fig. 4 a, b SVM linear kernel (left) true class (right) predicted class, c, d using cosine KNN (left) true class (right) predicted class, e, f using
Coarse KNN (left) true class (right) predicted class
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True positive rate (TPR)

The TPR measure also known as sensitivity or recall is

used to test the proportion of people who test positive for

the disease among those who have the disease. Mathe-

matically, it is expressed as:

TPR ¼
P

True Positive
P

Condition Positive

TPR ¼ TP

TPþ FN

i.e. the probability of positive test given that patient has

disease.

True negative rate (TNR)

The TNR measure also known as Specificity is the pro-

portion of negatives that are correctly identified. Mathe-

matically, it is expressed as:

TNR ¼
P

True Negative
P

Condition Negative

TNR ¼ TN

TN þ FP

i.e. probability of a negative test given that patient is well.

Positive predictive value (PPV)

PPV is mathematically expressed as:

PPV ¼
P

True Positive
P

Predicted Condition Positive

PPV ¼ TP

TPþ FP

where TP denote that the test makes a positive prediction

and subject has a positive result under gold standard while

FP is the event that test make a positive perdition and

subject make a negative result.

Negative predictive value (NPV)

NPV can be computed as:

NPV ¼
P

True Negative
P

Predicted Condition Negative

NPV ¼ TN

TN þ FN

where TN indicates that test make negative prediction and

subject has also negative result, while FN indicate that test

make negative prediction and subject has positive result.

Overall accuracy (OA)

The total accuracy is computed as:

TA ¼ TPþ TN

TPþ FPþ FN þ TN

Based on confusion matrix, using confusion matrix and

scatter plot, PPV (98%) was obtained using SVM Linear

kernel, while PPV (94.1%) using Cosine KNN and PPV

(73.2%) was obtained using Coarse KNN. The scatterplots

also show the same resemblance visually, that true class

(left) and predicted class (right), after prediction, there

were wo False positive data points using SVM Linear

kernel, six False positive data points using Cosine KNN

and 27 False positive data points using Coarse KNN. Thus,

scatterplots also help us to see the relationships between

actual and predicted classes to distinguish healthy and

pathological conditions based on any feature values and

shows the misclassification percentage for true and pre-

dicted classes (Figs. 5, 6, 7).

In Fig. 5, the blue color denotes the means of epileptic

subjects (Set S) and red color denote the healthy (Set O)

subjects. The lines denote the correctly classified subjects,

while x denote the incorrectly classified samples using

(a) SVM linear kernel and (b) Coarse KNN. It is evident

from the Fig. 5a, b and results computed as reflected in

Tables 1 and 2 that there are less incorrectly classified data

points using SVM linear kernel, while Coarse KNN give

higher misclassification result as depicted in Fig. 5b. The

model also shows that healthy subjects give much higher

incorrectly classification results than the epileptic subjects

using Coarse KNN, while SVM linear kernel, there are

fewer incorrectly classified samples. The Fig. 8a–d reflect

the mean features values plotted against healthy and

epileptic subjects using multi-features vector of (a) fre-

quency domain, (b) time domain and statistical, (c) wavelet

entropy and (d) complexity based fast sample entropy

features. The results from Fig. 5a, b and a–d shows that

epileptic mean features values of epileptic subjects are

much greater than the healthy subjects for each case (a–c)

because epileptic subjects are produced due to higher

neurological chronic disorder and higher spikes are pro-

duced. The epileptic feature values of healthy subjects are

higher than the epileptic subjects because healthy subjects

exhibit higher complexity than the epileptic subjects which

is also consistent with the previous studies (Hussain et al.

2017b; c; Costa et al. 2002).

The Table 2, depicts the classification performance

evaluation results using SVM, KNN, Decision Tree and

Ensemble classifiers at default parameters for each classifier.

In this study, we employed novel ML classifiers such as

Support Vector Machine (SVM) with Liner, Quadratic, Fine

Gaussian, Coarse Gaussian; KNN with Fine KNN, Coarse
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KNN, Weighted KNN; Decision Tree with Complex Tree

and Medium Tree and Ensemble Classifiers such as Boosted

Tree, Bagged Tree, Subspace Tree Discriminant and Sub-

space KNN. We extracted varying features extracting strat-

egy and combined the feature vectors used as input to these

classifiers. Using SVM, the highest TPR and NPV of 100%

were obtained using Linear, Quadratic and Coarse Gaussian

kernels followed by Fine Gaussian of 98%. Moreover,

highest TNR was obtained as 99% with Fine Gaussian fol-

lowed by Linear (98%), Quadratic (97%) and Coarse

Gaussian (94.1%). Likewise, we obtained the highest PPV

with Fine Gaussian (99%), followed by Linear (98%),

Quadratic (97.1%), and Coarse Gaussian (94.3%). The

overall accuracy using SVMwas obtained with linear kernel

(99%) followed byQuadratic and FineGaussian (98.5%) and

Coarse Gaussian (97%). Similarly, the highest separation in

form of AUC was obtained using Linear kernel

(AUC = 0.9991) followed by Fine Gaussian

(AUC = 0.9922), Coarse Gaussian (AUC = 0.9987) and

Quadratic kernel (AUC = 0.9887). Similarly, using KNN,

the highest accuracy was obtained with Weighted KNN

(98%) followed by Fine KNN (97.5%), and Coarse KNN

(87%). The highest separation using KNN was found using

Coarse KNN (AUC = 0.9961) followed by Weighted KNN

(AUC = 0.9940) and Fine KNN (AUC = 0.9750). The

other performance evaluation values are reflected in Table 2.

The Decision Tree with both Complex and Medium Trees

give accuracy of 98.5% andAUC of 0.9815. Similarly, using

Ensemble methods, the highest accuracy of 98.5% was

obtained with Bagged Tree and Subspace KNN followed by

Fig. 6 Receiver Operating Curve (ROC) to distinguish healthy and epileptic subjects using a SVM linear kernel, b Coarse KNN

Fig. 5 Detection of Epileptic Seizure using varying feature set and classifying using a SVM linear kernel, b Coarse KNN
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Subspace Discriminant (97.5%) and Boosted Tree as 94.5%.

AUC of 0.9996 was obtained with Bagged Tree followed by

Subspace KNN (AUC = 0.9992), Subspace Discriminant

(AUC = 0.9986) and Boosted Tree (AUC = 0.9001). The

95% confidence intervals about AUC are also depicted in the

Tables 2 and 7.

Fig. 8 Mean values of multidomain features extracted from healthy and epileptic subjects. a Frequency domain features, b time domain and

statistical features, c wavelet entropy features, d complexity base features

Fig. 7 Receiver Operating Curve (ROC) to distinguish Postictal heart rate oscillations from epileptic subjects using a SVM linear kernel,

b weighted KNN
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The Table 3 depicts the performance evaluation using

SVM linear kernel in more depth with multiple kernel

scales and box constraint level. In the first case, we used

multiple kernel scales and fixed box constraint value of 1.

The performance was measured as reflected in the Table 3,

it was seen that performance metrics such as TNR, PPV,

overall accuracy and AUC vary at multiple kernel scales.

This Kernel improved the overall accuracy from 99 to

99.5% with KS = 1 and BCL = 1, when we changed the

default kernel scale and box constraint levels from the

default values for Linear SVM. The highest accuracy at

other kernel scales (KS 2–6) was obtained as 99%, fol-

lowed by 98.5% (KS 7–9), 98% (KS 10–11), and so on. It

decreases as we increased the KS and obtained 77.5% at

KS 55. However, TPR, NPV remained the same as 100%.

The TNR and PPV values have similarly performance as

obtained for overall accuracy. Likewise, maximum sepa-

ration was obtained at KS 12 of (AUC = 0.9991) followed

by KS 13–15 (AUC = 0.9990), KS 7–9,16 (AUC =

0.9989), KS 10–11, 17 (AUC = 0.9988), KS 1, 2–6

(AUC = 0.9987), KS 18–19 (AUC = 0.9985) and

decreased for other kernel scales. The AUC is also one of

the most important factor to distinguish and get separation

between the healthy and pathological subjects. The AUC

values at different KS shows that there are more than one

kernel scales are important for separating these subjects.

Thus, these deeper parameters give more insight towards

the improved performance. In the second case, we fixed the

KS and check the evaluation performance with different

BCL. It was observed that overall highest accuracy was

obtained with BCL 2–19 as of 99.5% followed by BCL

20–23 of 99% and 98.5% for BCL[ 24. The highest AUC

was obtained at BCL 20–23 of AUC = 0.9990 followed by

BCL 2–19 of 0.9986 etc.

This paper depicts the evaluation performance usingSVM

Quadratic kernel at multiple kernel scales and BCL to dis-

tinguish the healthy and epileptic subjects. Again here, the

overall highest accuracy was obtained at KS 4–9 as of 99%

improved than 88.5%with fixed scales and BCL followed by

98.5% at KS 2–3, 10–16, 97.5% at KS 1, 17 and so on. The

highest separation was obtained at KS 17, 19–24 with

(AUC = 0.9991) followed by KS 18 (AUC = 0.9990), KS

4–16 (AUC = 0.9989), KS 2–3, 25 (AUC = 0.9986) and so

on. However, with fixed KS of 1 and BCL[ 2, we obtained

overall accuracy of 96.5%, PPVof 95.1%, TNRof 95%,TPR

and NPV of 98%. And AUC of 0.9870.

The Table 5 shows the results using SVM with Gaussian

kernel with varying KS and BCL values. In this case, we

obtained an overall accuracy of 98.5% at KS 2–14, fol-

lowed by 98% at KS 15, 97.5% at KS 16, 97% at KS 1 and

17 etc. Similarly, the highest AUC of 0.9991 was obtained

at KS 17–24, AUC of 0.9990 at KS 15, AUC of 0.9985 at

KS 25 and 0.9982 at KS 30. Accordingly, the TPR and

PPV decreased as the KS increased, while TNR and NPV

were found higher at all the KS. By fixing the KS as 1 and

varying BCL[ 2 values we obtained an overall accuracy

of 97.5%, TNR 99%, TPR 96%, PPV 99%, NPV 96.2%

and AUC = 0.9943.

Table 7 Classification Results to Distinguish Post ictal heart rate oscillations with partial epilepsy subjects from epileptic seizure (Set S, ictal

intervals) using Different Machine Learning Classifiers

Classifier TNR (%) TPR (%) NPV (%) PPV (%) Overall accuracy (%) AUC 95% CI

LB UB

Support vector machine (SVM)

Linear 100 100 100 100 100 1.00 0.00 1.00

Quadratic 100 100 100 100 100 1.00 0.00 1.00

Fine Gaussian 100 97.09 54.14 100 97.2 1.00 0.43 1.00

Coarse Gaussian 100 99.01 85.71 100 99.1 1.00 0.14 1.00

Nearest neighbor

Fine KNN 100 100 100 100 100 1.00 0.00 1.00

Coarse KNN 100 99.01 85.71 100 99.1 1.00 0.16 1.00

Weighted KNN 100 98.04 71.43 100 98.1 1.00 0.29 1.00

Decision tree

Complex tree 100 100 100 100 100 1.00 0.00 1.00

Medium tree 100 100 100 100 100 1.00 0.00 1.00

Ensemble

Bagged tree 100 100 100 100 100 1.00 0.00 1.00

Subspace disc. 100 100 100 100 100 1.00 0.00 1.00

Subspace KNN 100 100 100 100 100 1.00 0.00 1.00

288 Cognitive Neurodynamics (2018) 12:271–294

123



In Table 6, we computed the evaluation performance

using KNN with different distance metrics. The highest

accuracy of 99.5% was obtained using KNN with distance

metric of City Block followed by 98.5% with Euclidean

Distance, Spearman; 98% using Cosine and Correlation;

97% using Chebyshev, 96.5% using Cubic, 75.5% using

Hamming and Jaccard distance metric. Similarly, highest

accuracy was obtained (AUC = 0.9950) using City Block,

followed by (AUC = 0.9850) using Euclidean Distance &

Spearman, AUC = 0.9800 using Cosine & Correlation,

AUC = 0.9702 using Chebyshev, AUC = 0.9653 using

Cubic and AUC = 0.7512 using Hamming and Jaccard

distance metric. The other performance metrics such as

TNR, TPR, NPV and PPV are reflected in Table 6.

To distinguish the postictal heart rate oscillations with

partial epilepsy subjects from epileptic seizures, the sup-

port vector machine with linear and quadratic kernels, fine

KNN, Ensemble methods including Bagged Tree, Sub-

space Discriminate, Subspace KNN give highest perfor-

mance of 100% with respect to TPR, TNR, PPV, NPV and

accuracy and AUC of 1.00. SVM fine Gaussian gives an

accuracy of 99.1%, TNR (100%), TPR (99.01%), NPV

(85.71%), PPV (100%), and AUC (1.00). SVM fine

Gaussian gives an accuracy of 97.2%, TNR (100%), TPR

(97.09%), NPV (54.14%), PPV (100%) and AUC (1.00).

Likewise, a 100% of TNR and PPV were obtained using

Fine, Coarse and Weighted KNN, while Coarse KNN gives

TPR (99.01%), NPV (85.71%), and accuracy of 99.1%

where weighted KNN gives TPR (98.04%), NPV (71.43%)

and an accuracy (98.1%). The 95% confidence interval

against each classifier is also reflected in Table 7. The

comparison of classification performance is reflected in

Table 8.

The Fig. 9 depicts the overall accuracy using KNN with

varying Neighbors and distance weight. All the distance

weights i.e. equal, inverse and squared inverse at smaller

number of Neighbors i.e. 1 and 4 gives the highest

accuracy of 98.5%, however, this accuracy decreases as we

increased the Neighbors as reflected in the Fig. 9. Using

the equal distance weight, the accuracy obtained with dif-

ferent Neighbors i.e. N8 (97.5%), N10 (97%), N20 (96%),

N30 (96%), N50 (93.5%) and N100 (86.5%) N100. Like-

wise, using inverse distance weight, the accuracy obtained

was N8 (98%), N10 (97.5%), N20 (96.5%), N30 (96%),

N50 (95%) and N100 (90%). Similarly, using squared

inverse distance weight, we obtained an accuracy as N8

(98.5%), N10 (98.5%), N20 (96.5%), N30 (96.5%), N50

(96%) and N100 (96%).

Discussions

In the past researchers used many complexity base mea-

sures to quantify the dynamics of physiological systems.

Hussain et al. (2017c) recently used Symbolic time series

Table 8 The comparison of classification performance from different methods for the same data set

Problems References Methods Accuracy (%)

S-FNOZ Tzalla et al. (2007) Time–frequency analysis, artificial neural network 97.73

Guo et al. (2010) Multiwavelet transform, MLPNN 98.27

Rivero et al. (2011) Time frequency analysis, KNN 98.40

Kaleem et al. (2013) Variation of empirical mode decomposition 98.20

Fu et al. (2015) HMS analysis, SVM 98.80

Niknazar et al. (2013) Wavelet transform, RQA, ECOC 98.67

Peker et al. (2016) Dual-tree complex wavelet transform, complex-valued neural networks 99.15

Jaiswal and Banka (2017) Local neighbor descriptive pattern, artificial neural network 98.72

Wang et al. (2017) DWT, multi-domain feature extraction and nonlinear analysis 99.25

This work Multidomain features, Complexity features based on entropy

and KD tree algorithm, wavelet and statistical features

99.50

Fig. 9 Overall Accuracy obtained to Distinguish Healthy Set O

subjects from epileptic seizure (Set S, ictal intervals) using K-Nearest

Neighbor Classifier using Euclidean Distance with varying Neighbors

(1, 4, 8, 10, 20, 30, 50 and 100) and distance weight (i.e. Equal,

Inverse and Squared Inverse)
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to detect and quantify the dynamics of epileptic seizure and

distinguished between the healthy and epileptic subjects

(ictal intervals) and interictal intervals (i.e. focal and non-

focal signals) and compared the results with multiscale

sample entropy. They found that healthy subjects have

higher complexity than the epileptic subjects (with both

ictal and interictal intervals). The pathological subjects lose

their robustness due to degradation of structural compo-

nents and coupling functions. Moreover, Hussain and Aziz

(2016) used Time–Frequency Wavelet Phase Coherence to

distinguish the EC from EO condition using multiple spa-

tiotemporal scale. Recently, Hussain et al. employed KD

tree algorithm based entropy and compared the results with

traditional sample entropy. They observed that KD tree

entropy is most effectively distinguishing the healthy and

diseased subjects and more robust with respect to speed

and memory. Thus, here we extracted complexity features

based on KD tree algorithmic approach as described in

detail in Hussain et al. (2017b).

Researchers extracted features from epileptic subjects

using different strategies. Hassan and Bhuiyan (2016,

Hassan and Subasi (2016) decomposed EEG signals into

empirical mode decomposition with adaptive noise

(CEEMDAN) and extracted six spectral movements

namely spectral roll-off, decrease, centroid, spread, flatness

and slope from CEEMDAN mode function. The classifi-

cation was performed using ensemble machine learning

linear programming boosting (LPBoost). These features

selected are merely based on spectral components. The

features extracted by analyzing the EEG signals solely in

time domain may omit the important frequency informa-

tion and vice versa. Moreover, EEG signals are extremely

nonstationary and nonlinear and complex in nature which

also requires extracting the features from both linear and

nonlinear analysis methods. More recently, Wang et al.

(2017) in 2017 detected epileptic seizure using multi-do-

main features extraction along with nonlinear analysis and

obtained overall accuracy of 99.25% using Support Vector

Machine (SVM) with default parameters. Researchers

(Subasi et al. 2017; Subasi 2007; Polat and Güneş 2007;

Acharya et al. 2015; Samiee et al. 2015; Kaya et al. 2014;

Guo et al. 2009; Subasi and Erçelebi 2005) recently also

evaluated the performance in terms of specificity, sensi-

tivity and accuracy only with default parameters. In this

study, the performance was evaluated in terms of TPR,

NPR, PPV, NPV, accuracy and AUC by employing robust

machine learning classification methods with detailed

parametric analysis to distinguish the healthy and epileptic

subjects using multimodal features extracting approach and

obtained an improved accuracy of 99.50% with other

performance evaluation parameters because based on few

evaluation parameters performance cannot be fully judged

for automated detection of epileptic seizure. The results are

consistent with the previous studies using same database

and features extracting strategy with an improved and

detailed analysis performance. Moreover, prediction per-

formance in term of individual features was also acquired

as reflected in the prediction models in Fig. 5a, b and

scatter plots Fig. 4a–f.

In this study, we proposed multidomain and nonlinear

features extracting strategies to acquire the more effective

approach for detecting the epileptic seizure with healthy

subjects. We employed robust machine learning classifiers

with advanced parametrization approach for better perfor-

mance with overall accuracy of 99.50% with SVM and

KNN using City Block Distance metric. Moreover, highest

separation of (AUC = 0.9991) was obtained using these

classifiers. The SVM kernels performance was evaluated

on multiple scales. Likewise, KNN algorithms are com-

puted based on different distance weights such as equal,

square and inverse squared and number of Neighbors

selected each time. We also used Jack-knife tenfold cross

validation technique for training/testing purposes the most

successful and commonly practiced techniques. The

Table 2, give the performance results using different

classifiers at default parameters. The other tables depict the

evaluation performance in more deeper details using opti-

mized parametrization approach. The Decision trees and

Ensemble methods does not provide the performance by

optimizing the parameters with different number of learn-

ers, learning rates, maximum number of splits and split

criteria, but the results with these parameters does not

changed may be due to the limitations of smaller database.

Researchers in the past employed different approaches for

features extracting approaches and classifiers to distinguish

these subjects, such as average accuracy of 97.72% was

acquired by (Tzallas et al. 2007) using time–frequency

analysis, 98.27% by Guo et al. (2010) using multi-wavelet

transform, 98.20 and 98.20% by Fu et al. (2015), Kaleem

et al. (2013) using nonlinear analysis of empirical model

decomposition, 99.15% by Peker et al. (2016) using com-

plex valued classifier. In this work, we used multidomain

features extracting strategy with time domain, frequency

domain, statistical, nonlinear entropy base with KD tree

algorithm and Wavelet entropy features using most robust

machine learning learners with optimized parametric

approach and obtained an overall accuracy (99.50%), TNR

(99.0%), TPR (100%), NPV (100%), PPV (99.0%) and

AUC of 0.9991 using tenfold cross validation. Moreover,

this approach gives more effective and detailed analysis at

multiple kernel scales, learning rates, and distance metrics

and weights.

The results reveal that with default parameters and dif-

ferent features extracting strategies, the overall accuracy

was obtained using Linear SVM of 99%, followed by

Quadratic SVM, Fine Gaussian SVM, Complex & Medium
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Tree, Bagged Tree, Subspace KNN of 98.5% followed by

Fine KKN, Subspace Discriminant as 97.5%, and Coase

Gaussian as 97%. The highest AUC was obtained using

Bagged Tree (AUC = 0.9996) followed by Linear SVM

(AUC = 0.9991), Subspace KNN (AUC = 0.9992),

Coarse Gaussian & Subspace Discriminant

(AUC = 0.9986), Coarse KNN (AUC = 0.9961), Weigh-

ted KNN (AUC = 09940), Fine Gaussian

(AUC = 0.9922), Quadratic SVM (AUC = 0.9887), Fine

Gaussian (AUC = 0.9750) etc.

The results using different distance weight metrics

denote that performance is different for each three cases as

we increased the Neighbors. The performance though

monotonically decreases; however, the inverse squared

distance weight gives higher accuracy for Neighbors 8 to

100 as depicted in the Fig. 4 followed by the Inverse dis-

tance weight and equal distance weight. This gives us a

new direction, that might be very helpful to choose the

distance weight and Neighbors to get the improved per-

formance instead of only using the default parameters or

options used for any classifier.

Conclusion

Epilepsy is most neurological disorder in which millions of

deaths occur each year. These signals are highly complex,

multi-varying nature, nonstationary thus requires multidomain

feature extracting strategies and most robust machine learning

classifiers for their diagnostic and prognostic analysis.

Based on the nature of these signals, we proposed

multidomain features based on varying characteristics of

epileptic EEG signals ranging from time domain to fre-

quency domain, statistical, complexity and wavelet based

entropy measures. We employed the most robust machine

learning classifiers such as Support Vector Machine Ker-

nels, Decision Trees, K-nearest neighbors, Ensemble

Classifiers with advanced parametrization approach to

achieve higher accuracy and deeper learning for detecting

the epileptic seizure. This automated approach can be used

by clinicians for their diagnostic purpose to save millions

of lives each year. We used the combined hybrid feature set

for classification and detection purposes. The support

Vector Machine classifiers gives more effective and opti-

mal results at multiple kernel scales, parameterization,

learning rates, while KNN also gives higher performance

using different distance metrics and varying Neighbors.

These methods with multidomain features gives outer

performed results to distinguish the healthy and epileptic

subjects than the traditional approaches. Moreover, the

robust machine learning classifiers with multimodal fea-

tures extracting approaches gives the highest evaluation

performance to distinguish the postictal heart beat oscil-

lations from epileptic seizure with ictal interval.

Limitations of Study and Future
Recommendations

The research reported in this manuscript is focused on

detecting the epileptic seizure during ictal and postictal

intervals by extracting multimodal features and employing

robust machine learning methods. The study revealed very

interesting results, however, there are several limitations of

this study as the number of subjects is small and lack of

aging and gender base analysis. Furthermore, data set were

taken from publicly available databases and clinical profile

of data was not available. In future, we will employ these

techniques and features extracting strategies to a larger

database with respect to gender, age, seizure type and

interictal intervals.
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