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Abstract

Epidemiological, biological, and molecular data suggest links between endome-
triosis and endometrial cancer, with recent epidemiological studies providing 
evidence for an association between a previous diagnosis of endometriosis and 
risk of endometrial cancer. We used genetic data as an alternative approach to 
investigate shared biological etiology of these two diseases. Genetic correlation 
analysis of summary level statistics from genomewide association studies (GWAS) 
using LD Score regression revealed moderate but significant genetic correlation 
(rg  =  0.23, P  =  9.3  ×  10−3), and SNP effect concordance analysis provided evi-
dence for significant SNP pleiotropy (P  =  6.0  ×  10−3) and concordance in effect 
direction (P = 2.0 × 10−3) between the two diseases. Cross-disease GWAS meta-
analysis highlighted 13 distinct loci associated at P ≤ 10−5 with both endometriosis 
and endometrial cancer, with one locus (SNP rs2475335) located within PTPRD 
associated at a genomewide significant level (P  =  4.9  ×  10−8, OR  =  1.11, 95% 
CI  =  1.07–1.15). PTPRD acts in the STAT3 pathway, which has been implicated 
in both endometriosis and endometrial cancer. This study demonstrates the value 
of cross-disease genetic analysis to support epidemiological observations and to 
identify biological pathways of relevance to multiple diseases.
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Introduction

Endometriosis (defined as tissue resembling endometrium 
in extrauterine sites) and endometrial cancer (cancer of 
the uterine corpus) are serious gynecological diseases with 

major impacts on the quality of life of affected women. 
Endometriosis is a relatively common disease affecting 
6–10% of women of reproductive age and 35–50% of 
infertile women [1, 2]. Affected women commonly 
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experience severe menstrual pain, pelvic pain, subfertility 
or infertility, and bowel-related symptoms. Endometrial 
cancer is the most common invasive gynecological cancer 
in Australia, ranking sixth for incident cancers in women 
[3]. This disease is associated with significant morbidity 
due to surgery and radiotherapy [4], and treatment is 
further complicated by the fact that most patients present 
at relatively older age and with major comorbidities, notably 
obesity and diabetes. Finding the genes and pathways 
underlying these complex diseases is an essential step 
toward developing better diagnostic and therapeutic tools 
for both diseases. Both diseases are known to have a 
genetic component, with twin studies showing heritability 
of endometriosis at ~50% (51%, 95% confidence inter-
val  =  33–66% [5]; H  =  47%, 95% CI  =  36–57% [6]) 
and of endometrial cancer 27% (95% CI  =  11–43% [7]). 
Genomewide association studies have, to date, identified 
19 independent SNPs as being significantly associated with 
endometriosis [8] and nine independent SNPs with endo-
metrial cancer [9, 10]. These genomewide-associated SNPs, 
and the genetic regions in which they occur, are nono-
verlapping between the diseases.

Epidemiological, biological, and molecular data all indi-
rectly suggest that there could be links between the two 
disorders. Endometriosis and endometrial cancer are both 
hormonally regulated diseases, with increased risk in women 
exposed to higher levels of estrogen, and decreased or 
ameliorated risk or symptoms through treatments such 
as the contraceptive pill and hormonal therapies that 
include progesterone [11]. Both are associated with 
increased risk of uterine fibroids [12, 13] and with ovar-
ian cancer: endometriosis through an increased risk of 
this disease, and endometrial cancer through multiple 
shared risk factors, and histopathologic and molecular 
features [14, 15]. Cancer-related genetic changes such as 
loss of heterozygosity, and altered methylation and expres-
sion patterns have been reported for endometriosis [16]. 
Numerous endometrial cancer-associated genes, including 
PTEN and other genes in the Ingenuity “endometrial 
cancer pathway,” have been shown to be dysregulated in 
endometriosis [17, 18].

Epidemiological studies have shown conflicting evidence 
for a link between a diagnosis of endometriosis and risk 
of endometrial cancer [13, 19–24]. The interpretation of 
results from epidemiological studies is complicated by 
several factors, including small sample sizes, the under-
diagnosis and misdiagnosis of endometriosis, inability to 
adjust for confounders including oral contraceptives and 
parity, and the exclusion criteria of some epidemiological 
studies which assumed coincidental diagnosis of endome-
trial cancer in women ascertained via a diagnosis of endo-
metriosis. For example, Rowlands et  al. showed an overall 
1.5-fold increased risk of endometrial cancer that was 

reduced by excluding cases diagnosed with endometriosis 
<1 year before the endometrial cancer diagnosis; however, 
the subset of women with surgically confirmed endome-
triosis diagnosed >1  year prior to cancer showed a sig-
nificant 2.6-fold increased risk of endometrial cancer [13]. 
However, a recent study in US nurses which was also 
able to adjust for diagnosis intervals found no association 
between either self-reported or laparoscopically confirmed 
endometriosis and risk of endometrial cancer [22]. 
Meanwhile, two population-based studies had shown asso-
ciations between the diseases, although neither was able 
to adjust for confounders such as parity. A large study 
including 45,790 Danish women with a clinical diagnosis 
of endometriosis found increased risks of endometrial 
cancer >1 year (standardized incidence ratio (SIR) = 1.43, 
95% CI  =  1.13–1.79) and ≥10  years (SIR  =  1.51, 95% 
CI  =  1.15–1.95) following the endometriosis diagnosis 
[23]. Another study including 15,488 Taiwanese women 
diagnosed with endometriosis found a similar link, but 
only in women diagnosed with endometriosis at over 
40  years of age (adjusted hazard ratio  =  7.08, 95% 
CI = 2.33–21.55) [24]. Age-related effects, if present, could 
have further confounded the results of previous epide-
miological studies investigating shared risk of endometriosis 
and endometrial cancer.

Given the methodological complications inherent in 
epidemiological studies, unbiased genetic approaches are 
an ideal way to test for shared biological etiology between 
endometriosis and disease. For example, a degree of shared 
genetic etiology has recently been demonstrated between 
endometriosis and ovarian cancer, including with ovarian 
cancer subtypes not previously thought to be associated 
with endometriosis [25]. We used separate genomewide 
association study (GWAS) datasets for endometriosis and 
endometrial cancer to estimate the degree to which these 
two diseases share a common genetic etiology. We then 
combined these datasets in a cross-disease GWAS meta-
analysis to identify genetic loci potentially contributing 
to the genetic risk of both endometriosis and endometrial 
cancer.

Materials and Methods

Genetic overlap between endometriosis and 
endometrial cancer: datasets and analyses

This study utilized data from four previously published 
genetic datasets for endometriosis and endometrial cancer 
(outlined below and in the following section; Table  1) 
[26–28]. Three of the datasets were GWAS datasets, geno-
typed using Illumina 610Quad and 670Quad BeadChips 
(Illumina Inc, San Diego, CA) and containing data for 
462,430 SNPs in common between them. Of these, the 
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endometriosis GWAS dataset included 3194 Australian 
(QIMR Berghofer Medical Research Institute (QIMR)) and 
UK (Oxford) women with surgically confirmed endome-
triosis as cases [26]. The first endometrial cancer GWAS 
dataset included 1262 Australian (ANECS) and UK 
(SEARCH) endometrioid subtype endometrial cancer 
patients [27], and the second (NSECG) included 795 UK 
endometrial cancer cases and 895 nonoverlapping controls 
[28]. All endometrial cancer cases were histologically con-
firmed to be invasive cancer of the endometrium lining 
[27]. As previously published, the endometriosis and 
ANECS-SEARCH endometrial cancer GWAS datasets 
included the same sets of controls—1870 Australian con-
trols and 5190 UK Wellcome Trust Case Control 
Consortium (WTCCC) controls. Hence to avoid overlap-
ping control samples in this study, the controls were 
redistributed as follows: The 1870 Australian controls and 
two-third of the WTCCC controls (n  =  3460, randomly 
assigned) were included in the endometriosis GWAS data-
set, while an additional set of 1241 Australian controls 
[28] and the remaining one-third of the WTCCC controls 
(n  =  1730) were included in the ANECS-SEARCH endo-
metrial cancer GWAS dataset.

Following quality control [26–28], association analyses 
were performed for each GWAS dataset using PLINK [29]. 
Australian and UK cases and controls were analyzed as 
separate strata within the same GWAS for the endome-
triosis and ANECS-SEARCH endometrial cancer datasets, 
adjusting for the first two (endometriosis, ANECS, NSECG) 
or three (SEARCH) principal components of the genomic 
kinship matrix [26–28]. The summary results for the 
ANECS-SEARCH and NSECG datasets were then included 
in an inverse variance, fixed effects meta-analysis performed 
using METAL [30], to produce one set of endometrial 
cancer GWAS results. A fixed effect model was considered 
more appropriate than a random effect model as our 
hypothesis is that a proportion of SNPs will be associated 
with both diseases with the same direction of effect, and 
a fixed effect model is conservative given no expectation 
that the effect size is similar. The degree of genetic overlap 

between endometriosis and endometrial cancer was then 
examined using two programs that test the degree of 
genetic correlation/concordance between diseases using 
GWAS summary results (individual SNP effect sizes and 
P-values), SNP effect concordance analysis (SECA) [31] 
and LD Score regression [32].

To account for linkage disequilibrium (LD) between 
SNPs, SECA employs a “P-value informed” SNP clumping 
procedure to extract a subset of independent SNPs [31] 
(23,817 SNPs for the current analysis). These SNPs are 
then partitioned into 12 P-value “bins” (e.g., P  ≤  0.01, 
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0) for 
each disease. Using the default settings, a number of 
binomial and Fisher exact tests were performed on SNPs 
across all bins (12  ×  12 bins  =  144 SNP subset combina-
tions), and on SNP subsets within bins (see Results), to 
determine the degree to which individual SNPs are con-
cordant in their P-value level and direction of effect across 
two diseases, which can indicate the presence of genetic 
concordance and SNP pleiotropy [31]. For these analyses, 
the endometriosis dataset was designated as Dataset 1 
and endometrial cancer as Dataset 2.

Taking a different approach, cross-trait LD Score regres-
sion utilizes the presence of LD, calculating an LD score 
between SNPs within a 1  cM window and then regressing 
the product of the SNP association results (z scores) from 
the two diseases against the LD score [32]. Following the 
recommendations at https://github.com/bulik/ldsc/wiki/
Heritability-and-Genetic-Correlation, the “–no-intercept” 
option was used to constrain the LD Score regression 
intercept to 0 as there was no sample overlap between 
the two disease datasets.

Cross-disease meta-analysis between 
endometriosis and endometrial cancer

The cross-disease meta-analysis was performed using an 
inverse variance, fixed effects model in METAL [30] to 
search for genetic loci potentially contributing to the 
increased risk of both endometriosis and endometrial 

Table 1. Endometriosis and endometrial cancer datasets utilized in the genetic overlap and genomewide association meta-analyses.

Dataset1 Case N Control N
Genotyping  
platform

Analysis: Genetic  
overlap

Meta-
analysis

Endometriosis
QIMR 2270 1870 Illumina 660K √ √
Oxford 924 3460 Illumina 660K √ √

Endometrial cancer
ANECS 591 1241 Illumina 610K √ √
SEARCH 671 1730 Illumina 610K √ √
NSECG 795 895 Illumina 660K √ √
iCOGS 4402 28,758 Custom Illumina array – √

1Further details of the endometrial cancer studies contributing to the various datasets are included in Table S1.

https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation
https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation
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cancer. Heterogeneity was assessed using Cochran’s Q-test. 
The results for the top SNPs (P  ≤  10−5) from the endo-
metriosis–endometrial cancer meta-analysis were then 
compared with results for the same SNPs from the fourth 
dataset included in this study, a separate, independent 
sample of 4402 endometrial cancer cases and 28,758 con-
trols genotyped at 211,155 SNPs using a custom Illumina 
Infinium iSelect array by the Collaborative Oncological 
Gene-environment Study (“iCOGS”) [33, 34]. SNPs not 
included on the iCOGS array were imputed (including 
all SNPs within 1 Mb of the target SNP) using IMPUTE(v2) 
software [35] and the 1000 Genomes Project (2012 release) 
as the reference panel [9]. Imputation quality scores ranged 
from 0.34 to 1.00. Association testing on the iCOGS SNPs 
was performed using SNPTEST (v2) [36] employing fre-
quentist tests with a logistic regression model adjusting 
for eight separate strata and the first 10 principal com-
ponents [9, 28]. These results were then included in the 
replication meta-analysis, which included all four datasets 
and was conducted as described for the cross-disease 
meta-analysis above.

Results

Genetic overlap between endometriosis and 
endometrial cancer

Genetic correlation analyses of GWAS datasets for endo-
metriosis and endometrial cancer revealed the presence 
of weak to moderate, but significant, genetic overlap 
between the two diseases. The LD Score regression analysis 
indicated moderate but significant genetic correlation (rg) 
between the two diseases (rg  =  0.23, P  =  9.3  ×  10−3). 
The SECA primary test for the overlap of associated effects, 
including all 144 SNP subsets, revealed more subsets than 
expected by chance showing at least nominally significant 
pleiotropy between endometriosis and endometrial cancer 
(P  =  6.0  ×  10−3): The pair of SNP subsets producing 
the minimum exact binomial test P-value for pleiotropy 
(endometriosis SNP subset with P ≤ 0.002 and endometrial 
cancer SNP subset with P  ≤  0.86) had P  =  3.3  ×  10−4. 
The primary test for concordant effects between endo-
metriosis and endometrial cancer also revealed that the 
number of SNP subsets with nominally significant con-
cordant effects (P  ≤  0.05) was significantly more than 
expected by chance (P  =  2.0  ×  10−3): The pair of SNP 
subsets producing the minimum Fisher’s exact test P-value 
for effect correlation (endometriosis SNP subset with 
P ≤  0.37 and endometrial cancer SNP subset with P ≤  1) 
had P  =  2.1  ×  10−4. The primary results indicate that 
SNP effects are correlated, with the presence of allelic 
effects that increase the risk of both traits. Including only 
specific (default) SNP subsets in the analyses [31], SNP 

effects were positively, although not significantly, correlated 
for SNPs at P  ≤  0.05 in both datasets (P  =  8.4  ×  10−2) 
and for SNPs with P  ≤  1.0  ×  10−5 in the larger endo-
metriosis dataset and with P  ≤  0.05 in the endometrial 
cancer dataset (P  =  6.8  ×  10−2). Together, these results 
indicate that overall more SNPs than expected by chance 
were associated with the same direction of effect for both 
diseases, particularly amongst nominally or marginally 
associated SNPs.

Cross-disease genomewide association 
analyses

For the cross-disease meta-analysis including the endo-
metriosis and endometrial cancer (ANECS-SEARCH and 
NSECG) GWAS datasets, two SNPs had P-values reaching 
genomewide significance (rs6782972, P  =  3.3  ×  10−9 and 
rs2218868, P  =  4.1  ×  10−8; Table S1). A further 92 SNPs 
were suggestively (P  ≤  10−5) associated in the combined 
analysis of both diseases (Table S1). Following inclusion 
of the iCOGs association results in the meta-analysis, the 
P-values for both rs6782972 and rs2218868 dropped below 
the threshold for suggestive significance (rs6782972, 
P = 1.2 × 10−2, OR = 0.95, 95% CI = 0.90–0.99; rs2218868, 
P  =  1.4  ×  10−3, OR  =  1.06, 95% CI  =  1.02–1.09); hence, 
neither locus was validated by the endometrial cancer 
replication dataset. Including all four datasets, 13 loci 
showed evidence for replication (P-values ≤10−5; Table  2; 
Fig. S1), with a genomewide significant signal detected 
for SNP rs2475335 (P  =  4.9  ×  10−8, OR  =  1.11, 95% 
CI  =  1.07–1.14). After adjusting for the multiple testing 
of 13 SNPs, two SNPs showed evidence of significant 
heterogeneity between studies (Table  2), rs9865110 
(Phet  =  2.2  ×  10−3) and rs7515106(Phet  =  3.6  ×  10−3).

Discussion

A link between endometriosis and endometrial cancer has 
long been postulated due to the numerous risk factors 
shared by the two diseases, but has only recently been 
convincingly demonstrated epidemiologically [23, 24]. Our 
genetic study indicates that endometriosis and endometrial 
cancer have a moderate, but significant, shared genetic 
etiology. Genetic correlation analyses indicated the pres-
ence of pleiotropic SNPs as well as correlation in the 
direction of genetic effects, particularly amongst SNPs 
marginally and nominally associated with each disease 
individually. This is consistent with our hypothesis that 
a proportion of endometrial cancer cases (but certainly 
not all) will share genetic predisposition factors in com-
mon with endometriosis cases.

Cross-disease meta-analysis identified one genomewide 
significant locus associated with the risk of developing 
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both diseases, and several other loci worthy of prioritiza-
tion for future studies. These findings indicate that genetic 
factors underlie at least part of the shared disease risk 
implied by the epidemiological evidence. The SNP most 
significantly associated with disease in the endometrio-
sis–endometrial cancer meta-analysis was rs2475335 
(P = 4.9 × 10−8). Located on chromosome 9p23, rs2475335 
lies within intron 2 of an alternative transcript of the 
protein tyrosine phosphatase receptor type D (PTPRD) 
gene. PTPRD is a member of the receptor protein tyrosine 
phosphatase (PTP) family, a number of which have been 
found to function as either tumor suppressors or as onco-
genes [37]. PTPRD deletions and mutations have been 
detected in numerous tumor types, including endometrial 
tumors [38]: the Catalogue of Somatic Mutations in Cancer 
(COSMIC) database (http://cancer.sanger.ac.uk/cosmic; 
accessed 10/12/2016) indicates ~5% of endometrioid car-
cinomas harbor PTPRD mutations. Mutations in PTPRD 
enhance cell growth and migration in melanoma cell lines, 
while the presence of mutated PTPRD protein enhanced 
growth and abrogated dephosphorylation of the STAT3 
oncoprotein in human astrocytes [38, 39]. Elevated STAT3 
expression has been implicated in both endometriosis and 
endometrial cancer [40, 41] and has been suggested as a 
potential target for treatment for both diseases [42, 43]. 
While PTPRD is an attractive candidate gene for regula-
tion by rs2475335, the gene targeted by this SNP (or 
equally by another SNP/s in high linkage disequilibrium 
with rs2475335) is as yet unknown, and further experi-
mental studies in both endometriosis and endometrial 
cancer models are now required to investigate the biology 
underlying the increased risks of both diseases associated 
with this variant [44].

A number of the remaining risk loci prioritized by the 
meta-analysis harbor candidate genes that are potentially 
relevant candidates for etiology and/or treatment of endo-
metriosis and endometrial cancer. For example, the mis-
sense variant rs2278868 located on chromosome 17q21.32 
within exon 7 of the SKAP1 gene is in perfect linkage 
disequilibrium (r2  =  1) with rs1452666, which we have 
previously reported as having borderline GWAS significant 
association with endometrial cancer in the combined GWAS 
and iCOGS datasets [9]. SNP variation in the SKAP1 
region is associated with ovarian cancer, subtypes of which 
are clearly linked epidemiologically and genetically to 
endometriosis [25, 45] and to endometrial cancer [46], 
although rs2278868 is in extremely low LD with the top 
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additional neighboring genes (e.g., SNX11, HOXB2, and 
HOXB3) in various tissues.

Other SNPs of interest include rs12303900 on chromo-
some 12q21, located between the KITLG and DUSP6 genes. 
DUSP6 is a critical regulator of ERK signaling, a pathway 
dysregulated in both endometriosis and endometrial cancer 
and a potential target for treatment for both diseases 
[47–49]. SNP rs10008492, located on chromosome 4p14, 
is an eQTL for nearby toll-like receptors TLR1 and TLR6 
(http://www.gtexportal.org). Both TLR1 and TLR6 are 
upregulated in endometriotic mesenchymal stem cells [50] 
and are expressed in endometrial cancer cell lines [51]. 
However, as for the PTPRD locus, all of these association 
results need to be further validated in additional replica-
tion datasets for both diseases, and relevant functional 
studies undertaken, before more is hypothesized about 
their genetic and biological effects on the risk of both 
endometriosis and endometrial cancer.

In this cross-disease genetic correlation and genomewide 
association study, we have provided evidence for overlap 
in genetic risk factors for endometriosis and endometrial 
cancer. Our genetic correlation analysis supports recent 
large epidemiological studies indicating an increased risk 
of endometrial cancer in women previously diagnosed 
with endometriosis, while the cross-disease meta-analysis 
has revealed plausible loci that could increase the risk of 
both diseases and which should be pursued further in 
functional studies. This work on endometriosis and endo-
metrial cancer also adds further evidence to the utility 
of cross-disease genetic correlation and GWAS analyses 
as tractable and attractive methodologies to identify sus-
ceptibility loci that predispose to multiple diseases, which 
could lead to new diagnostic or treatment options for 
affected individuals.
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