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INTRODUCTION

The immune system protects the host from pathogens, 
allergens, and chemicals that enter through mucosal 
surfaces. Diverse responses against these stimuli induce 
different types of immune response by various T helper 
(Th) cells. CD4+ Th cells comprise a diverse category of 
immune cells, including Th1, Th2, Th17, and T regula-
tory cells. These different types of Th cell have distinct 
cytokines and transcription factor profiles with distinct 
immune responses. For example, CD4+ Th1 responses 
are induced by intracellular bacteria and viruses, result-
ing in secretion of interferon γ (IFN-γ) and expression of 
signal transducer and activator of transcription (STAT)-
4 [1-3]. On the other hand, Th2 cells produce cytokines 
such as interleukin (IL)-4, IL-5, IL-13, and IL-10 and ex-
press transcription factors, such as GATA binding pro-

tein-3, STAT-5, and STAT-6 [3-5].
Advances in immunology have revealed a fundamental 

role of the innate immune system in sensing pathogens 
and tuning the quality of Th responses. Th1 cells attack 
intracellular pathogens with cell-mediated immune re-
sponses, whereas Th2 cells protect against extracellular 
pathogens predominantly by helping with humoral re-
sponses. When the Th1 and Th2 cell responses are over-
reactive, the Th1 pathway induces organ-specific auto-
immune diseases, such as arthritis and type 1 diabetes, 
whereas the Th2 pathway can predispose a host to sys-
temic autoimmune diseases, such as allergy and atopic 
dermatitis [6,7].

Differentiation of Th cells into Th1 or Th2 cells is 
under the control of antigen-presenting cells (APCs), 
mostly dendritic cells (DCs). When DCs are exposed to 
intracellular pathogens, they move to lymph nodes and 
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secrete IL-12, resulting in differentiation of naïve T-cells 
into Th1 cells. Those Th1 cells release IFN-γ, which re-
stimulates the DCs to produce IL-12, resulting in differ-
entiation of naïve T-cells into Th1 through an autocrine 
loop. Like that of Th1 cells, maturation of Th2 cells is 
initiated by IL-6 released from DCs, and these Th2 cells 
produce IL-4 to generate more Th2 cells through an au-
tocrine loop to naive T-cells. Several cell types produce 
cytokines to mature Th2 cells and induce Th2 immune 
responses. Diverse pattern recognition receptors (PRRs) 
are involved, and multiple signaling pathways are elicit-
ed (Fig. 1) [8]. However, the fundamental roles of DCs in 
the Th2 immune responses associated with these factors 
are not apparent. Thus, in this report we summarize 
previous studies of DC-related Th2 immune responses 
and present a new signaling pathway, the cAMP/protein 
kinase A (cAMP/PKA) signaling pathway, as a target for 
Th2 immune disease.

INTERCELLULAR INTERACTIONS OF DENDRIT-
IC CELLS IN TH2 IMMUNE RESPONSES

A microbe entering the body can activate various im-
mune cells, such as natural killer cells, basophils, mast 
cells, regulatory T-cells, and diverse structural cells, 
such as tissue epithelial cells and stromal cells. Upon 
activation by microbes, DCs orchestrate the complex ac-
tion of these cell types to initiate and regulate the Th2 
immune response.

Among various immune cells, basophils initiate IL-4 

production during the memory T-dependent response 
[9]. Furthermore, DCs or basophils alone are insufficient 
to induce the Th2 immune response in mice challenged 
by ovalbumin (OVA) plus papain, but cooperation be-
tween these two cell types allows DCs to induce T-cell 
proliferation and basophils to produce IL-4 for the Th2 
immune response [10]. Therefore, the role of interaction 
between DCs and basophils in the induction of Th2 im-
mune responses has been reviewed extensively [11-13]. 
However, the antigen-presenting role of basophils in 
Th2 immune responses described in these reviews is 
controversial because DCs are traditionally the major 
and sufficient APCs in Th2 immunity. Although baso-
phils produce Th2 cytokines and are associated with 
induction of the Th2 immune response, whether they 
act as primary APCs in Th2 immunity is controversial. 
Taken together, data suggest that basophils behave as 
accessory cells to support DCs in inducing the Th2 im-
mune response, in which DCs play a critical role as APCs 
and basophils produce Th2 cytokines, such as IL-4.

Innate lymphoid cells (ILCs) also orchestrate an effi-
cient Th2 immune response in cooperation with tissue-
resident DCs. ILCs are classified as groups 1, 2 (ILC2), 
and 3, which generate antigen-specific adaptive immune 
responses. In particular, ILC2s are a potent source of 
Th2 cytokines that promote Th2 immune responses [14]. 
ILC2s react to helminth infection in the intestine and 
allergens in the airways by producing Th2 cytokines, 
such as IL-5 and IL-13 [15,16]. In recent reports, ILC2-de-
rived IL-13 stimulated lung DCs to migrate into drain-
ing lymph nodes, where they induced naïve T-cells to 
differentiate into Th2 cells and produce the chemokine 
CCL17 (C-C motif chemokine ligand 17), which attracts 
CCR4+ (C-C motif chemokine receptor 4+) memory Th2 
cells [17,18]. These results suggest that DCs stimulated 
by ILC2s at the epithelial barrier are critical in Th2 im-
mune responses.

In addition to immune cells, epithelial cells have been 
studied as major players in Th2 immune responses that 
influence DC functions, although the epithelium was 
initially regarded as a physical barrier [19]. DCs are al-
ways covered by epithelium, which causes the DC senti-
nel function and activation of DCs in the lungs [20]. The 
epithelial junction is dysregulated in cases of allergic in-
flammation, and these epithelial cells are susceptible to 
Th2 cytokines [21]. Epithelial cells also produce thymic 

Figure 1. Levels that dendritic cells induce Th2 responses. 
For the induction of Th2 immune responses dendritic cells 
(DCs) require several steps in different levels of organiza-
tion. Intercellular interaction between DC and other cells 
and specific DC subsets cause Th2 responses in upstream 
level of DC. In downstream level of DC, stimuli sensing and 
signal transduction of DCs are mandatory to induce Th2 
responses.

Intercellular interaction DC subsets Stimuli sensing Signal transduction
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stromal lymphopoietin (TSLP) during allergic inflam-
mation, which subsequently activates CD11c+ DCs to 
induce Th2 immune responses [22].

DENDRITIC CELL SUBSETS OF TH2 IMMUNE 
RESPONSES

As APCs, DCs mediate immunity with several discrete 
cell subtypes, differentiated from lymphoid or myeloid 
precursor DCs. These different DC subtypes have a com-
mon antigen-presenting capacity to T-cells and pro-
mote cell-cycle progression. However, they activate T-
cells differently, resulting in various Th responses [23]. 
For example, mouse CD11c+CD8α– DCs from the spleen 
induce a Th2 response, whereas CD8α+ DCs lead to 
Th1 differentiation [24]. In another murine experimen-
tal set, the lymphoid-related DC subset (CD11c+CD8α+ 
DEC205+) induced Th1 cytokines, whereas the myeloid-
related DC subset (CD11c+CD8α–DEC205–) induced Th2 
cytokines [25]. After OVA pulsing, DCs in the rat respira-
tory tract stimulated a Th2-dependent OVA-specific im-
munoglobulin (Ig) G1 response and mouse myeloid DCs 
induced Th2-dependent airway eosinophilia [26,27]. 
Mouse myeloid and plasmacytoid precursor DCs cul-
tured from bone marrow precursors and ex vivo splenic 
DC subsets induced the development of Th1 or Th2 
effector cells, depending on the antigen dose. In gen-
eral, high antigen doses induce Th1 cell development, 
whereas low antigen doses induce Th2 cell development 
[28]. CD301b+ dermal DCs or bone marrow dendritic 
cells (BMDCs) drive the Th2 immune response in OT-II 
transgenic CD4+ T-cells [29,30].

In humans, monocyte-derived DCs induce the Th 
immune response differentially, depending on the ra-
tio of DCs to T-cells. At a low ratio (1:300), mature DCs 
induce the transformation of naïve T-cells into Th2 ef-
fector cells, whereas a high DC/T-cell ratio (1:4) favors 
mixed Th1/Th2 cell development [31]. Human mono-
cyte-derived DCs induce the Th1 response, whereas 
CD11c–CD1a– plasmacytoid DCs favor the Th2 immune 
response [32,33]. In terms of tissues other than blood, 
epidermal CD207+ Langerhans cells preferentially in-
duce CD4+ T-cells to secrete Th2 cell cytokines [34].

STIMULUS SENSING AND PROCESSING OF 
DENDRITIC CELLS IN TH2 IMMUNE RESPONSES

Activated DCs sense a diverse array of pathogens and 
allergens by PRRs, such as Toll-like receptors (TLRs), 
C-type lectin-like receptors (CLRs), RIG-I-like receptors, 
and Nod-like receptors, which are expressed in the sur-
face and intracellular areas of DCs. Triggering of these 
PRRs activates DCs, leading to antigen-specific activa-
tion of Th cells [35,36]. The means by which microbial 
stimuli signal through PRRs to induce Th1 immune re-
sponses are well understood, but our knowledge of the 
receptors that induce Th2 immune responses remains 
limited. 

Among the PRRs on DCs, TLRs are the most stud-
ied. Various TLRs recognize microbial stimuli, such 
as lipopolysaccharide (LPS), lipoteichoic acids of 
Gram-positive bacteria and bacterial lipoproteins, and 
flagellin, and detect microbial nucleic acids, such as 
double-stranded RNA, single-stranded RNA, and CpG 
DNA. Although most TLR-eliciting signals induce Th1 
responses, certain TLR ligands induce Th2 responses. 
Porphyromonas gingivalis LPS activates mouse DCs to 
produce Th2 cytokines through TLR4, whereas Esche-
richia coli LPS induces a Th1-like response [37]. The di-
acylated lipopeptide enhances production of Th2-type 
IgG1 antibodies in TLR2(+/+) mice, but not in TLR2(–/–) 
mice [38]. Stimulation of TLR2 with a synthetic TLR2 
ligand elicits Th2 immune responses through extracel-
lular regulated kinase (ERK) signaling in murine DCs 
[39]. In human DCs, TLR2 agonists yield a Th2 immune 
response, whereas triggering of TLR4 and TLR5 with 
E. coli LPS stimulates a Th1 response [40]. Activation of 
mouse DCs with a TLR2 ligand results in the induction 
of Th2 cytokines, such as IL-13, and promotes asthma in 
a mouse experimental model [41]. However, combined 
TLR2 and TLR4 activation by different antigens primes 
human DCs to induce Th1/Th2 immune responses [42]. 
Stimulation of human DCs by staphylococcal enterotox-
in B through TLR2 drives naïve CD4 T-cells to develop 
a Th2 immune response [43]. Eosinophil-derived neuro-
toxin activates myeloid DCs by triggering the TLR2-my-
eloid differentiation factor 88 signaling pathway, which 
enhances an OVA-specific Th2 immune response [44]. 
In addition, TLR4 is necessary to induce Th2 responses 
to low-level LPS exposure in mouse DCs [45].
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CLRs sense the carbohydrate regions of several patho-
gens and prime DCs to stimulate Th immune responses 
[46]. Dectins on mouse BMDCs and splenic DCs produce 
Th1 and Th17 cell responses, whereas DC-specific in-
tercellular adhesion molecule-3–grabbing nonintegrin 
(DC-SIGN) induces a Th2 immune response on gastric 
DCs [47-49]. In addition, a ligand of DC-SIGN primes 
human DCs to induce the Th2 immune response [50].

Although PRR triggering of DCs is the main way to or-
ganize Th2 immune responses, other factors, such as the 
enzymes in allergens or alarmins from damaged tissue, 
can trigger Th2 immunity in the absence of PRR signal-
ing [51]. IL-33 activates murine BMDCs to promote the 
Th2 immune response in allergic airway inflammation 
[52,53]. IL-25 also enhances the Th2 immune response of 
human TSLP-activated DCs [54]. 

Dendritic cell signal transduction in Th2 immune 
responses
Little is known about the signaling networks that stimu-
late DCs to induce a Th2 immune response. In contrast 
to LPS, which triggers TLR4 and induces DCs to initiate 
Th1 immune responses, the TLR2 ligand Pam3cys stim-
ulates the duration and magnitude of the ERK mito-
gen-activated protein kinase in DCs and programs DCs 
to stimulate Th2 cell-biased responses [40]. These TLR2 
ligands also elicit less IL-12p70 and more IL-10, consis-
tent with other reports that Erk diminishes the induc-
tion of IL-12 and enhances IL-10 induction [55]. Further-
more, DCs from c-fos–/– mice promote IL-12 production 
and negatively regulate IL-10 [39]. Taken together, these 
results indicate that the Erk-Fos signaling pathway is an 
important regulator of IL-12 and IL-10 production in 
DCs and promotes the Th2 immune response.

Another signaling pathway that induces DCs to initiate 
the Th2 immune response is nuclear factor-κB (NF-κB). 
NF-κB is activated by TSLP and drives DCs to produce 
OX40L and induce the Th2 immune response [56]. Th2 
cytokines are not expressed in DCs of NF-κB1–/– mice 
following injection of bacterial antigens [57]. Mouse BM-
DCs, stimulated by a helminth glycan, induce transient 
NF-κB translocation and activity in the nucleus and a 
Th2 immune response [58].

In addition to the above-described signaling path-
ways, knockout (KO) of Gnas, the gene that encodes Gαs 
in mouse CD11c+ cells, and the subsequent decrease of 

cAMP in mouse DCs were recently reported to provoke 
the Th2 immune response with an allergic phenotype, 
whereas increased cAMP has been found to induce Th17 
immunity (Fig. 2) [59,60]. In this study, adoptive transfer 
of BMDCs from the Gnas KO mice induced Th2 im-
mune responses, such as increased IL-4 and elevated 
IgE, and a PKA-selective cAMP agonist eliminated the 
Th2 phenotype in these mice. These results indicate 
that the Th2-biased effects of low cAMP concentration 
in DCs are regulated via PKA signaling and that cAMP/
PKA signaling is an attractive target for the development 
of DC-directed therapy for Th2 immune diseases.

Further study of the role of the DC-related signaling 
pathway in Th2 immune responses is required to broad-
en the range of intracellular signaling pathways, some of 
which have not been anticipated previously.

CONCLUSIONS

DCs interact with multiple types of immune and struc-
tural cells, show distinct subsets, bind to specific recep-
tors according to the pathogen or allergen, and transfer 
stimuli through diverse signaling pathways to elicit Th2 
immune responses. Although DC-related Th2 immune 
responses are too complex to identify a single main 

Figure 2. Novel signaling networks that provoke dendritic 
cell (DC) to induce Th2 or Th17 immunity. Decreased cyclic 
AMP (cAMP) concentration in dendritic cell provoke Th2 
immunity via G-protein-coupled receptor (GPCR)/cAMP/
protein kinase A (PKA) signaling whereas increased cAMP 
concentration induce Th17 immunity through the same 
pathway. Gαs, stimulatory Gα subunit; Gαi, inhibitory Gα 
subunit.
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target factor and many aspects have not been revealed, 
newly discovered areas, such as cAMP/PKA signaling, il-
luminate the possibility of regulating Th2 immunity in 
the near future.
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