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Abstract

Protein modeling has been a very challenging problem in drug discovery and computational 

biology. The latest advances and progress in computational power have helped to solve this 

problem to a considerable extent; however, predicting accurate three-dimensional structure of 

proteins has always been and remains a complicated assignment. Of the two common methods of 

protein structure prediction, template-based modeling has become more popular than ab initio 
modeling. In this review, we summarize the developments in methodology and of understanding 

for comparative protein modeling during the last three years, including for homologue search, fold 

recognition, secondary structure prediction, model building, loop building, side-chain prediction 

and model quality assessment.
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Introduction

A protein folds in microseconds to a single well-defined three-dimensional (3D) structure, 

but how can we reliably predict the 3D structure from the primary sequence? It is important 

to be able to do so, since knowledge of the 3D structure of proteins aids in elucidating their 

properties, behavior and almost all biological phenomena mediated by proteins, including 

protein-ligand and protein-protein interactions. Drug discovery and protein design also 

benefit from knowledge of 3D structure. Computational techniques for protein structure 

prediction are necessary because it has thus far proven impossible for experimental structure 

determination to keep pace with the increasing number of reported protein sequences. 

Experimental techniques have advanced and there are now more than 53,000 experimentally 

solved 3D structures in the Protein Data Bank (PDB), but there are far more protein 

sequences being reported, with >400,000 manually annotated and reviewed in Swiss-Prot 
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and >7,500,000 automatically annotated in TrEMBL.[1] 880 genome projects have been 

completed and more than twice that many are at various stages of completion. The gap 

between sequence and structure can be bridged by structure prediction methods.[2, 3] This 

objective is realistic considering that sequences with 50% identity can often be modeled 

within experimental accuracy.[4]

Structure prediction methods are broadly classified into homology modeling (HM), also 

called template-based modeling (TBM) or comparative modeling (CM), and free modeling 

(FM).[5] A basic assumption is that proteins with similar sequence fold into similar 3D 

structures. In HM, the 3D structure of the protein is built commencing from structural 

information of evolutionarily-related sequence(s), whereas the more general names TBM or 

CM denote that a template protein is used but that the template is not necessarily of related 

history or function to the target. FM does not depend on a priori structural information and 

hence often yields less reliable models than TBM; this review focuses on TBM, so topics 

related to FM are not included. TBM involves several steps: identification of homologues 

(templates), alignment of target to template, structure building, refinement and validation. 

Prior excellent reviews have been published on this topic.[2–11] Extensive reviews about the 

available programs for homology modeling have been reported.[7, 12, 13] This review 

summarizes key recent methodological advances from the last three years for the various 

steps of TBM. Some of the methods have been listed in Table 1, which gives a convenient 

summary of relevant web servers and/or programs.

Critical assessment of structure prediction (CASP)

CASP is a series of protein structure prediction community experiments conducted every 

two years since 1994. Different groups developing structure prediction methods submit the 

results of their predictions for competition targets whose experimental structures are 

available but not yet disclosed. The development of CASP over the years is an index of the 

development of template-based structure prediction methodologies and capabilities.[10, 14] 

For CASP7 relative to CASP6, comparison of closeness of models to experimental 

structures showed that there have been improvements, especially for medium or high 

difficulty targets.[4] When the sequence identity between target and available templates was 

high, the best predicted models were within experimental accuracy. Performance of CASP8 

is somewhat similar to CASP7 in this regard. Improvements were observed throughout the 

CASP experiments for alignment accuracy and modeling of regions not available from the 

template.[4, 15, 16] Particularly notable have been improvements in the performance of fully 

automated servers. Though the best predictions were those that used human expertise, for 

many of the targets fully automated servers performed well also.[4, 15] Out of the best six 

predicted structures by humans or automated servers in CASP7 and CASP8, ~29% were 

from the servers. This is a clear improvement over CASP5 and CASP6, in which the number 

was ~15%. In addition to that, for 90% of the CASP8 targets at least one of the top six 

predictions was from an automated server, which is a significant improvement over previous 

CASPs.[4, 15, 16] Such success is welcome especially for large scale modeling approaches, 

in which reliance on human expertise can be prohibitively expensive.
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Homologue search and fold recognition

The first step towards prediction of protein structure using homology modeling is 

identification of a template, a homologous protein with known 3D structure, by searching an 

available database of sequences. Detection of homologues is generally accompanied by 

sequence alignment, which can be used subsequently in 3D structure construction, though 

the alignment may require editing. Homologue search is generally based on sequence 

similarity between template and target or on features that describe the physicochemical 

nature of amino-acids such as secondary structure and solvent accessibility. A sequence 

based homologue search can be performed using a single target sequence (BLAST[17], 

FASTA[18]) or using a profile generated from multiple sequences (PSI-BLAST[19], 

HMMER[20], the latter using hidden Markov models (HMM)). Use of profiles and 

discriminative algorithms such as support vector machines (SVM) has greatly improved the 

capability for remote homologue detection. Fold recognition methods, generally suggested 

for automatic prediction of protein structure, can also be used as a tool for identifying 

remote homologues.[7] In this review article, we have focused on methods which search for 

homologues in the PDB and provide pair-wise sequence alignment of target and template, 

and often a built model using that alignment (fold recognition).

In one important development, using the meta-server format that relies on the consensus of 

outputs of different servers for fold prediction, an ensemble of 31 independent algorithmic 

variants for remote homology detection were generated and used for fold recognition in 

Phyre software.[21] The alignments generated were used for building 3D structures followed 

by selection of the best model using 3D-Colony, which uses both a measure of fold 

recognition assignment confidence as well as structural similarity clustering. PDBalert[22] 

performs an HMM HHpred[23] search for a query sequence against PDB. If HHpred does 

not detect homologues, PDBalert will continue the search every week and then notify the 

user as soon as a homologous protein structure is made available in PDB. The Zhou group 

has developed a series of methods based on weighted matching of sequence and a structure 

based profile. Recently, the use of solvent accessibility, residue depth profiles, and torsion 

angles profiles led to the development of SP4[24] and SP5.[25] Incorporation of these 

parameters in the parent method has been shown to improve prediction of remote 

homologues and alignment accuracy. In a somewhat slower approach, FoldPro derives a set 

of pair-wise features comprised of different similarity scores.[26] The structural relevance of 

target-template pair-wise alignment is then checked using a supervised classification method 

based on feature vectors, followed by selection of the best templates from the database. 

COMPASS, which identifies the fold of a protein using profile-profile alignment of target 

and template, is now available as a web server and provides improved selectivity and 

sensitivity of homologue detection.[27]

Several papers have reported new methods for detection of remote homology that are 

primarily used for function prediction, identification of protein families or classification of 

protein sequences into families.[28–39] The methods can be used for identifying the family, 

super-family or fold of target proteins which might be a remote homologue, in cases when 

conventional methods fail to identify a suitable template. The target protein can then be 
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aligned to the template using sequence-sequence, sequence-profile or profile-profile 

alignments.

Earlier literature on sequence comparison and alignment has been excellently reviewed.[6, 

40] As an attempt to obtain better alignment of target-template, the use of the generalized 

Viterbi algorithm with a hidden Markov model has led to the development of HMM-Kalign, 

a part of HMMER.[41] This algorithm explores suboptimal alignments, unlike standard 

HMM which always selects the sequence with the best score. Use of HMM-Kalign to 

generate an alignment used for homology modeling of oxidized bacteriophage T4 

glutaredoxin led to a lower RMSD relative to the available crystal structure compared to 

optimized sequence alignment generated using HMM.[41] The performance of profile-

profile alignment for fold recognition and remote homologue detection compared to simple 

profile-profile alignment (PSI-BLAST and HHsearch) was greatly improved using 

nonnegative matrix factorization.[42] Use of structure alignment instead of sequence 

alignment for profile generation improved performance in low identity regions.[43] There 

have also been efforts to construct new substitution matrices for pair-wise or multiple 

sequence alignment, which can enhance alignment quality compared to traditional PAM or 

BLOSUM matrices.[44]

Secondary structure prediction

Secondary structure prediction (SSP) is important for the generation of optimal alignment 

and selection of suitable template(s) and, subsequently, for successful structure prediction.

[45–47] The methods for SSP assume that multiple homologous sequences have a similar 

structure.[48] Most of the recently developed methods are based on the use of multiple 

sequences[49–56] with a few using a single sequence.[57, 58]

Recent developments of SSP methods have led to prediction accuracy up to 80%, 

approaching a reported theoretical limit of 88% from available 3D structure.[59] 

Improvement of BSPSS into IPSSP using new learning model and training methods[57] led 

to increased three state (helices, sheets and loops) prediction accuracy on a test dataset. 

MUPRED is a combination of fuzzy k-nearest neighbor (FKNN) and profile based methods 

[prediction accuracy (PA): 79.2–81.1%].[53] MUPRED can be used for query sequences 

having many, few or no homologues. Profile based methods are used when many 

homologues are available; FKNN dominates the prediction when few or no homologues are 

present. In a similar approach, consensus data mining (CDM) has been developed, which 

combines fragment data mining (FDM) and GOR V (Garnier-Osguthorpe-Robson 

information theory/Bayesian method), for SSP. If the identity at a particular position is 

higher than the overall sequence identity, then the prediction by FDM is used as the final 

prediction; if lower, the prediction by GOR V is used (PA: 68–93%).[47, 51] The use of PSI-

BLAST and HMMER profiles instead of previously used frequency profiles in the revised 

Jpred algorithm led to improved accuracy (PA: 81.5%).[52] PROTEUS is a combination of 

methods in which the first step is secondary structure prediction for regions which can be 

mapped onto known 3D structures. In the second step, predictions of three algorithms (Jnet, 

PSIPRED and TRANSSEC) are combined in a neural network to predict the secondary 

structure. A final prediction is made by combining both the steps (PA: 81.3%).[50] 
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Porter_H,[49] an improvement of Porter[60], is a method based on ab initio secondary 

structure and homology based prediction. When sequence similarity between query and 

structure homologue is > 30%, this modification improved the prediction (PA: 90%). 

Extreme learning methods have been shown to perform as well as existing methods (PA: 

71.2%).[58] A few more methods based on a genetic algorithm (PA: 75.1%) [61], neural 

networks (PA: 78.1%)[56] or SVM (PA: 82.2%)[62] were proposed with moderate to high 

accuracy. A two stage Multi-class SVM was also fairly accurate (PA: 77.0% to 79.5%).[63]

Model Building

After sequence alignment between the query sequence and template sequence, the next step 

is model building. The four principal methods for model construction include spatial 

restraint method (SSR),[64] segment matching method (SMM),[65] multiple template 

method (MTM) [66, 67] and artificial evolution (AE).[68]

SSR assumes that several geometrical features such as distances and angles are conserved in 

homologous proteins, when comparing equivalent positions. SSR methodology involves two 

main steps, extraction of spatial restraints based on alignment and construction of the target 

3D-model by fulfilling the spatial restraints.[64] MODELLER, currently on version 9v6, 

uses SSR and is one of the most frequently used homology modeling programs today.

SMM divides the target into a series of short segments, each matched to its own template 

fitted from the PDB. Sequence alignment is done over segments rather than over the entire 

protein. Different steps in this method include constructing the segment database, model 

construction via iterative randomization to get an average model and minimization to get the 

final model. Recently, Larsson et al proposed Pfrag, an extension to the SMM program 

SegMod/ENCAD which can use multiple templates.[69]

In MTM, several solved protein 3D structures are used to build the target protein model. The 

multiple templates are aligned with each other based on sequences and structures. The target 

is optimally aligned with the multiple templates. Structural alignment of the homologous 

proteins reveals structural elements that are conserved in all the templates, which are mainly 

composed of secondary structural elements. Structurally variable regions (loops) are present 

between the conserved regions. The loops are usually exposed at the surface of the proteins. 

This method has been implemented in several packages such as 3D-JIGSAW,[70] SWISS-

MODEL[71] and MOE.[72]

In AE, the alignment of template and target sequences is carried out using the concepts of 

evolution: mutations, insertions and deletions. The target protein model is built by editing 

the template structure based on the alignment. The iterative process starts with simple 

mutations of the aligned residues (surface residues followed by buried residues), the 

operation which least changes the energy, and subsequent minimization. Mutations are 

followed by deletions and then insertions. Deletion is prioritized over insertion since it is 

more easily predicted. For each step, an operation is considered successful if it does not 

cause a significant energy penalty; the whole process is repeated until the final model is 
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obtained.[68] NEST, the core program in the JACKAL modeling package, uses the AE 

method.

In recent benchmarking studies, the performance of six homology modeling programs was 

compared. MODELLER, NEST and SegMod/ENCAD were found to perform the best.[12] 

According to results in CASP7, some automated web-servers have been very successful in 

accurate prediction of the protein target structures. In particular, I-TASSER, ROBETTA, 

Pmodeller-6 implemented in the consensus server Pcons, and HHPred3 performed very well. 

I-TASSER searches the whole PDB library to find appropriate protein fragments. Matching 

aligned fragments are combined to assemble the global structure, while for portions for 

which no alignment matches are found, the 3D structure is built using ab initio simulations. 

Final refinement of the model consists of lowest energy conformational search.[73, 74] 

Model building in Pcons is carried out using Pfrag,[69] a modified SegMod homology 

modeling program, and final refinement is performed using the ENCAD force field.[75] 

Model prediction by ROBETTA makes use of extensive and computationally expensive 

conformational sampling and all-atom energy refinement.[76]

In recent developments, a modification to TASSER, TASSER-Lite [77] was proposed for 

faster protein model construction compared to the original method. It is appropriate for 

modeling of proteins for which a highly homologous template is available, since extensive 

conformational searching is avoided.[77] The M4T (Multiple Mapping Method with 

Multiple Templates) web-based homology modeling server included two major modules, 

Multiple Templates (MT) and Multiple Mapping Method (MMM).[78] The MT module 

selects and optimally combines the sequences of multiple template structures while MMM 

improves alignment accuracy. Final model building in M4T is carried out using 

MODELLER. The PROTEUS2 web-server combined various tools including 

transmembrane helix and β-strand prediction, SSP and 3D structure prediction, using 

machine learning and database comparison techniques.[79]

Loop Modeling

Protein loops connect well-defined secondary structure regions such as α-helices and β-

sheets. Loops are comparatively difficult to study by X-ray crystallography and often 

represent poorly conserved regions in a given family of proteins. Loops play a wide variety 

of roles related to protein function, ligand binding sites or active sites[80] and thus can play 

a critical role in structure-based design. Loop model building in homology models, because 

of structural inaccuracies in the models, is more difficult than loop reconstruction methods 

tested on crystal structures.[81] Loop modeling methods can be classified into two major 

approaches: (i) Knowledge based and (ii) energy based. A few methods have also been 

reported which combine the two approaches. Recent reports have reviewed these methods 

comprehensively.[82, 83] Knowledge based methods find from a database of structures a 

loop segment that fits between the two stem regions of the loop. These methods are mainly 

limited by the availability of relevant loop structures from known protein structures.[84] 

Recently, a classification database of structural motifs, ArchDB, was developed[85] and 

evaluated using two different sequence profiles, and a hidden Markov model (HMM) profile 

was found to produce encouraging results.[80] A hierarchical and multidimensional database 
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has been reported that classified more than 100,000 loop fragments. The loop length, types 

of bracing structures, and geometric restraints of stems helped in loop selection and a Z-

score provided the final ranking of the loops.[86] The use of an artificial neural network to 

evaluate sequence-template alignments of loops has been proposed and gave accurate 

predictions.[84] Another method used Monte Carlo simulation of the loop, commencing 

loop prediction with fragment databases ranked using the DFIRE potential.[87]

Energy based methods use an ab initio energy function for conformational search of the 

loops and to judge their quality. A recent report gives a overview of existing ab initio 
methods.[83] Ab initio loop modeling has proven to be very accurate for prediction of loops 

as long as seven residues,[88] but is less reliable for longer loops. Loop conformational 

search can be carried out using numerous available tools such as local move Monte Carlo 

(LMMC),[89] torsion angle conformational search,[90] the Direct Tweak algorithm in 

LoopBuilder,[91] replica exchange[92] or a dihedral angle-based buildup procedure in 

hierarchical loop prediction (HLP).[88] The generated conformers are scored using force 

field or other physics-based energy calculations[93] usually including solvation effects. The 

systematic and efficient sampling strategy in a newly developed protocol, LOOPER, 

searched for loop conformers with optimal interactions of the loop backbone with the rest of 

the protein atoms. Final ranking in LOOPER is carried out using a CHARMm energy 

scoring function with a generalized Born solvation term.[94] A few modifications of the 

Protein Local Optimization Program (PLOP) have been reported to improve loop prediction 

by use of a novel solvent model[90] or energy model.[95]

Side-chain Modeling

Side-chains play a major role in drug design, such as in ligand docking,[96] in protein 

modeling for loop building[88] and in general for prediction of protein structures.[97] Most 

of the methods for side-chain prediction use rotamer libraries which are constructed reliably 

using statistical knowledge of protein 3D structures. A number of methods have been 

developed for rotamer-based side-chain modeling, and recent developments include 

enhanced sampling schemes and the use of modified energy and/or scoring functions. A few 

methods include a combination of the approaches.[98, 99] Recent rotamer-library 

independent methods include the Grow-to-Fit molecular dynamics method (G2FMD)[100] 

and statistical machine learning methods.[101]

Various rotamer-based methods have been reviewed[102] and will not be mentioned here. 

The recently proposed method IRECS selects more than one rotamer for the side-chain in 

order to have a representation of the conformational space flexibility of the side-chain. 

IRECS ranking is provided by a knowledge based statistical potential, ROTA.[103] 

ChiRotor, for rapid prediction of side-chains, uses a limited sampling procedure in 

combination with energy minimization.[104] A combination of residue reduction and 

rotamer reduction was developed for efficient and accurate side-chain prediction.[105]

Modifications to the ROSETTA energy functions, with softer van der Waals terms, and 

extended rotamer libraries have been implemented to improve side-chain modeling.[106] 

Based on Tree Reweighted Belief Propagation, a novel search method and novel energy 
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(modified ROSETTA) function were proposed to predict global minima more reliably.[98] 

Variations in the internal dielectric constant of a protein and the use of and quality of solvent 

model employed have been shown to play significant roles in the prediction of side-chains.

[95, 107] Another novel method, OPUS-Rota, combines the newly introduced OPUS-PSP 

potential with heat bath Monte Carlo conformational search.[99]

Quality Assessment (QA)

Methods of protein model QA have recently been reviewed.[11] A comparative model 

generated through one or more steps described above may have incorrect geometry and 

energy. Some common types of errors that can occur during model building are use of 

incorrect alignment or template, errors in portions of the target structure built without 

template, distortion in correctly aligned regions, or errors in side-chain packing.[46] Since 

protein structure prediction methodology has been extensively automated, there is more need 

for software/servers which can select the stereochemically or energetically best models from 

among decoys built using the same or different templates. Methods of protein QA can be 

either statistical or physico-chemical, and could be based on alignment to a single template 

or multiple templates or on metaserver results. The QA method either gives a local score as a 

function of residue or residue window[108–112] or a global score[113–116] which may be 

based on single or multiple assessment criteria.

The Undertaker program, using a genetic algorithm, generates 3D structures using an 

alignment suggested by the Sequence Alignment and Modeling system (SAM) HMM 

package.[117] The best structures are selected by the undertaker cost function, comprised of 

73 individual cost functions. In another report addressing improvement of the undertaker 

scoring function, weighted distance constraints generated from alignment to different 

templates were used for model quality assessment.[118] The globularity index, a combined 

score including hydrogen bonding information, solvent accessible surface area, voids and the 

number of water molecules within 5 Å of the protein, has been used for evaluation of the 

quality of protein models.[119] The ModFOLD[108] server combines ModSSEA[120], 

MODCHECK[121] and ProQ[122] scores with secondary structure information. 

ModFOLDclust performs clustering of multiple models and calculates per residue scores 

which depict the local quality of a cluster. A reduced representation of statistical potential 

such as a Cβ potential (in which side-chain atoms beyond Cβ itself are ignored) is simpler 

and computationally less intensive than an all-atom potential representation. Information 

about backbone geometry and primary sequence separation was incorporated to obtain an 

improved Cβ potential.[123] The improved reduced potential has been shown to outperform 

the DOPE all-atom potential[124] for identification of native structure from among decoys. 

Fifteen parameters based on energy, secondary structure, solvent accessible surface area and 

hydrophobic contact have been implemented using a neural network in the Artificial 

Intelligence Decoys Evaluator (AIDE).[111] AIDE showed similar or better performance to 

ProQ[122] and Victor[125] on test datasets. The local quality of a structure can be quantified 

using ProQres, which relies on 3D information, or ProQprof, which utilizes a model 

generated from sequence alignment.[110] ProQres quantifies structural qualities such as 

secondary structure, solvent accessibility, and atom-atom and residue-residue contacts to 

have a measure of local quality. ProQprof uses profiles both for target and template. A sum 
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of the two scores has also been proposed as ProQlocal. ModelEvaluator quantifies the 

absolute quality of a protein model using support vector regression (SVR),[126] and was 

trained using only structural characteristics such as secondary structure, contact map, 

relative solvent accessibility and beta sheet structure. The score is suitable for comparing the 

quality of 3D structures of different proteins. The Cα potential and fragment quality 

comparison have been used to select the best model from a set of structures generated by 

different methods (using TASSER-QA). This approach performed as well as other QA 

methods for assessing the CASP7 test sets, and exceeded their performance for medium and 

hard targets.[127]

QMEAN is another composite scoring function composed of five protein geometry 

structural descriptors, including a new torsional angle potential treating groups of three 

sequential amino-acids.[113] A weighted sum of six quality assessment scores has been 

implemented in SVMod.[114] The best support vector machine (SVM) score outperformed 

other tested physical, statistical and machine learned individual scores for selection of the 

best model (closest to the native structure) from among decoys. In an effort to measure the 

local quality of modeled structures, SVM has been trained using the DFIRE contact and 

torsional statistical potential[128] along with attributes describing information about the 

local environment, resulting in better scoring than other local QA methods.[129] FragQA 

uses the Cα RMSD between template and modeled target structure to predict the local 

quality of modeled structures in regions where there are no alignment gaps between target 

and template.[109] Comparison with ProQres[12] showed equal performance of FragQA for 

the test set used.

SuboPtimal Alignment Diversity (SPAD) quantifies the error in modeled structures based on 

alignment stability, by estimating how well suboptimal alignments converge to the optimal 

alignment.[130] Since this method calculates the SPAD score using the target/template 

alignment, not the 3D structures, it can be used to estimate probable errors during early 

stages of homology modeling. Fams-ace, a collection of meta server based tools, has been 

improved as Fams-ace (improved).[131] The major improvement was incorporation of a new 

method for final model selection, CIRCLE, which uses a knowledge-based potential for 

side-chain packing. Meta-MQAP uses a multivariate regression model of eight model 

quality assessment programs (MQAP) with correction of trivial errors caused by any of the 

programs.[132] Assessment of model quality using Meta-MQAP showed a very good 

correlation with actual deviation from native structure. SELECTpro, a structure based 

evaluation method, combines several physical, statistical and predicted structural terms to 

address protein quality problem.[116]

A few of the above-mentioned methods have been demonstrated to perform equally well or 

better than the existing methods when tested on CASP results. For example, the globularity 

index could differentiate well between the good and bad models predicted in CASP6.[119] 

Similarly, the newly developed methods ModelEvaluator,[129] undertaker cost function,

[133] SVR-method,[126] QMEAN,[113] and SELECTpro[116] performed well on the 

CASP7 dataset and were found to be very effective in selecting models close to the native 

structures.
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Template Based Modeling in Drug Design

TBM has been widely used in the process of drug design and discovery. A recent review has 

discussed the current trends and applications of homology modeling in the drug discovery 

process.[134] Various recent applications of homology modeling in the drug discovery 

process include lead identification,[135, 136] lead optimization, understanding of selectivity,

[137] explanation of resistance development,[138] binding site analysis and mutation 

studies.[139] An example is for the histidine kinase (HK) VicK protein, which is essential 

for bacterial growth in S. pneumoniae. Li et al. built a comparative model of the HK VicK 

protein (33% identity with template), which was further successfully used for structure-

based virtual screening to identify novel potential HK inhibitors with antibacterial activity.

[135] Sharon and Chu have carried out active site analysis to understand the molecular basis 

of drug resistance using a hepatitis B virus (HBV) DNA polymerase model (built using 

HIV-1 reverse transcriptase with <20% identity). Certain amino acid mutations were found 

to be responsible for the resistance development against marketed anti-HBV drugs. This 

study, using wild-type as well as mutant HBV polymerases, suggested a significant 

correlation between the fold resistances and the protein-ligand binding affinity of anti-HBV 

nucleosides.[138]

Among the applications listed above, the most important is in structure based drug 

discovery. In order to model ligand binding sites, usually ligand coordinates are manually 

added or automatically docked to the best model generated and next refined by local energy 

minimization. The generated model can then be used for further applications.[140–142] 

Some alternate approaches to sample different conformations of binding sites (or of the 

entire protein) are molecular dynamics simulation (MD),[143, 144] normal mode analysis 

(NMA)[145] and generation of a series of models.[146, 147] Homology models generated in 

this way are often referred to as ligand steered homology models[146] or ligand-supported 

homology models.[140] Although the former method (coordinate transfer and local 

minimization) is simple and only a single model is generated, the latter set of methods (MD, 

NMA, multiple models) generate several homology model (conformations), which can make 

further studies such as docking or virtual screening time-consuming. Application of these 

methods to virtual screening of millions of compounds is impossible at present but they can 

be used for small library screening[143, 146] and binding pose prediction for one or a few 

ligands.

Conclusion

The exponentially-increasing difference between number of protein sequences and available 

experimental 3D structures makes it obligatory to rely on protein modeling methods to build 

3D protein models. Advances in computational power and innovation have led to the 

development of novel and accurate methods for the 3D modeling of proteins. Some of the 

new methods have been proven to be accurate and rapid. However, the capability to be able 

to build a protein model very close to the native structure of the protein reliably is a 

challenging assignment and is still under development. Many methods are available on the 

internet, as listed in Table 1. Accurate prediction of protein modeling will certainly assist in 

understanding the mechanism of action of proteins and will aid in drug design to devise 
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better ligands for the protein. Considering all the developments in the field, the task seems to 

be achievable in the near future.
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Table 1

Summary of recent advances of protein structure prediction methodology.

Method Web Address Reference Availability

Secondary structure prediction

IPSSP http://exon.gatech.edu/ipssp/webIPSSP.cgi [57] Server

MUPRED http://digbio.missouri.edu/mupred [53] Server/Download

CDM http://gor.bb.iastate.edu/cdm [51] Server

Jpred http://www.compbio.dundee.ac.uk/jpred [52] Server

YASSPP http://glaros.dtc.umn.edu/yasspp [54] Server

Proteus http://wks16338.biology.ualberta.ca/proteus [49, 50] Server

DISTILL‐Porter(_H) http://distill.ucd.ie/distill [49] Server

P.S.HMM http://nash.ucsd.edu/P_single.html [61] Server

DBNN http://ctb.pku.edu.cn/main/SheGroup/Software/DBNN [56] Download

E‐SSpred http://bioinfo.hust.edu.cn/bio/tools/E‐SSpred/index.html [62] Server

Fold recognition/remote homology detection

Phyre http://www.sbg.bio.ic.ac.uk/~phyre [21] Server

PDBalert http://toolkit.tuebingen.mpg.de/pdbalert [22] Server

SP4 http://sparks.informatics.iupui.edu/SP4 [24] Server

SP5 http://sparks.informatics.iupui.edu/SP5 [25] Server

FoldPro http://mine5.ics.uci.edu:1026/foldpro.html [26] Server

COMPASS http://prodata.swmed.edu/compass/compass.php [27] Server

HMM‐Kalign http://www‐spider.cea.fr/Groups/hk3039/view.html [41] Download

Loop Prediction

ArchPRED http://www.fiserlab.org/servers/archpred [86] Server

MMC http://atlas.physbio.mssm.edu/~mezei/mmc [89] Download

PrISM http://cmb.genomics.sinica.edu.tw [84] Server

Side‐Chain Prediction

OPUS‐ROTA http://sigler.bioch.bcm.tmc.edu/MaLab [99] Download

SCWRL and MolIDE http://dunbrack.fccc.edu/Software.php [148] Download

R3 http://eudoxus.scs.uiuc.edu/r3.html [105] Server

SPRINT http://www.protonet.cs.huji.ac.il/sprint [149] Download

IRECS http://irecs.bioinf.mpiinf.mpg.de [103] Download

SPRUCE§ http://mccammon.ucsd.edu [150] Download§

Structure prediction

I‐TASSER http://zhang.bioinformatics.ku.edu/I‐TASSER [73] Server

Pcons http://pcons.net [75] Server/download

ROBETTA http://robetta.bakerlab.org/submit.jsp [151] Server/download

M4T http://www.fiserlab.org/servers/m4t [78] Server

TASSER‐Lite http://cssb.biology.gatech.edu/skolnick/webservice/tasserlite/index.html [77] Server
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Method Web Address Reference Availability

Assessment of model quality

Undertaker (SAM_T08)# http://compbio.soe.ucsc.edu/SAM_T08/T08‐query.html [118, 133] Server#

QMEAN http://swissmodel.expasy.org/qmean/cgi/index.cgi [113] Server

SPAD http://dragon.bio.purdue.edu/subalignment [130] Software

– http://bioinformatica.isa.cnr.it/GLOBULARITY [119] Analysis

ModFOLD http://www.reading.ac.uk/bioinf/ModFOLD [108] Server

Selectpro http://www.igb.uci.edu/~baldig/selectpro.html [116] Server/Download

ProQres/ProQprof http://www.sbc.su.se/~bjorn/Pro Q [110] Server

ModelEvaluator http://babbage.cs.missouri.edu/~chengji/cheng_software.html [126] Software

ProSA‐web https://prosa.services.came.sbg.ac.at/prosa.php [112] Server

MetaMQAP https://genesilico.pl/toolkit [132] Server

Fams‐ace (FAMS)# http://www.pharm.kitasato‐u.ac.jp/fams [131] Server

#
Part of automated homology modeling server listed in parentheses;

§
Made available by original authors upon request

Curr Top Med Chem. Author manuscript; available in PMC 2018 May 10.

http://compbio.soe.ucsc.edu/SAM_T08/T08‐query.html
http://swissmodel.expasy.org/qmean/cgi/index.cgi
http://dragon.bio.purdue.edu/subalignment
http://bioinformatica.isa.cnr.it/GLOBULARITY
http://www.reading.ac.uk/bioinf/ModFOLD
http://www.igb.uci.edu/~baldig/selectpro.html
http://www.sbc.su.se/~bjorn/Pro
http://babbage.cs.missouri.edu/~chengji/cheng_software.html
https://prosa.services.came.sbg.ac.at/prosa.php
https://genesilico.pl/toolkit
http://www.pharm.kitasato‐u.ac.jp/fams

	Abstract
	Introduction
	Critical assessment of structure prediction (CASP)
	Homologue search and fold recognition
	Secondary structure prediction
	Model Building
	Loop Modeling
	Side-chain Modeling
	Quality Assessment (QA)
	Template Based Modeling in Drug Design
	Conclusion
	References
	Table 1

