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Abstract
Organ transplantation is the most effective therapy for patients with end-stage disease. Preservation solutions and techniques are 
crucial for donor organ quality, which is directly related to morbidity and survival after transplantation. Currently, static cold storage 
(SCS) is the standard method for organ preservation. However, preservation time with SCS is limited as prolonged cold storage 
increases the risk of early graft dysfunction that contributes to chronic complications. Furthermore, the growing demand for the use of 
marginal donor organs requires methods for organ assessment and repair. Machine perfusion has resurfaced and dominates current 
research on organ preservation. It is credited to its dynamic nature and physiological-like environment. The development of more 
sophisticated machine perfusion techniques and better perfusates may lead to organ repair/reconditioning. This review describes 
the history of organ preservation, summarizes the progresses that has been made to date, and discusses future directions for organ 
preservation.
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Introduction
Organ transplantation is the only effective therapy for patients 
with end-stage disease in many cases.  A number of factors 
have contributed to the success of organ transplantation, 
including organ preservation, surgery, immunosuppressive 
medication, and post-transplantation care.  A supply of high-
quality donor organs is crucial to transplantation procedures; 
organ preservation has been described as “the supply line for 
organ transplantation”[1].  It allows time for preparation of the 
recipient, organization of staff and facilities, allocation and 
transportation of the organ, and laboratory tests[2,3].

Static cold storage (SCS) offers a simple and effective way 
to preserve and transport organs and is the most commonly 
used method[4].  However, a number of limitations are associ-
ated with SCS, including tissue damage induced by prolonged 
hypothermic preservation, difficulty in assessing donor 
organ function and viability, inevitability of ischemia-reper-
fusion injury (IRI), and limited opportunity for organ repair.  
Recently, the growing use of marginal organs from extended 

criteria donors has led to an emergence of ex vivo lung perfu-
sion (EVLP) to assess donor lung function[5,6].  In addition to 
being an excellent graft assessment tool, EVLP has also shown 
potential for enabling graft repair, reconditioning, and immu-
nomodulation[7], which inspired similar research and clinical 
applications in other organ systems[8–10].  The desire to extend 
preservation times has motivated research on optimal pres-
ervation solutions, temperatures, techniques, and therapeutic 
additives for organ repair and reconditioning[11–14].  By review-
ing the history of organ perfusion and preservation, we noted 
that before the introduction of SCS in 1960s[15], machine per-
fusion with plasma or blood-based solutions was the clinical 
method for preserving isolated organs[16,17].  Reevaluating the 
advantages and limitations of early organ perfusion/preserva-
tion may help with the development of new techniques/solu-
tions that enable prolonged safe preservation and the repair of 
extended criteria donor organs to address the organ shortage 
issue.  Theories, preservation techniques, preservation solu-
tions, and clinical practices are discussed.

Past: a story of organ perfusion and preservation
Primitive concepts underwent a number of modifications over 
decades of scientific exploration to arrive at current practices 
in organ perfusion and preservation.  It is essential to under-
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stand this history to be able to evaluate the future direction of 
this field of research.

Organ perfusion as a primitive preservation technique
Organ preservation developed from the primitive concept of 
extracorporeal circulation, which first emerged in 1812 in the 
monography of Cesar Julien Jean Le Gallois.  He speculated 
that “if the place of the heart could be supplied by injection—
and if, for the regular continuance of this injection, there could 
be furnished a quantity of arterial blood, whether natural or 
artificially formed, supposing such a formation possible—
then life might be indefinitely maintained in any portion”[18].  
In 1849, German scientist Carl Eduard Loebell described in 
his Dissertation Inaugurals the first perfusion experiments on 
isolated pig kidneys.  He observed that the bright red arterial 
blood perfused through porcine kidneys became dark and vis-
cous upon its course through the renal veins[19].  In 1885, Max 
von Frey and Max Gruber constructed the first closed artificial 
circulation system, which shares many similarities to today’s 
organ perfusion systems[20].  In 1895, Jacobj created a double 
circulation apparatus, which used an isolated lung as an oxy-
genator and permitted organ perfusion for several hours[19].  
These early studies led to the development of extracorporeal 
membrane oxygenation (ECMO) and the subsequent develop-
ment of perfusion systems for organ preservation[19–24].

From blood to chemically defined perfusion solution
Historically, blood was used as perfusate in early apparatuses.  
Primitive perfusion apparatuses required a large supply of 
blood to operate, whereby the volume of an animal’s own 
blood was insufficient.  People tried to substitute an animal’s 
own blood with blood from a different animal species.  The 
use of cross-species blood was toxic to the graft and led to 
its rapid decline[25].  Scientists then diluted the animal’s own 
blood with normal saline or Ringer’s solution.  These methods 
led to the development of severe edema in organs, especially 
in the lung[25].  These early studies led to the realization of 
xenoimmunity and the development of transfusion solutions.

In 1937[26], Alexis Carrel perfused isolated cat thyroids in 
the Lindbergh apparatus with Tyrode’s solution comprised 
of glucose, ions, and 40%–50% homologous serum.  He found 
that the organs were viable for 3–21 days.  However, cultiva-
tion over 6 days showed a tendency towards hyperplasia.  In 
1968[27], Hou et al cultured normal human placentas in a chemi-
cally defined culture medium.  Placentas were kept viable for 
at least 14 days, but the stroma underwent great modification 
within 3 days.  These studies demonstrated that organs or tis-
sues were capable of surviving outside of the body for several 
days under normothermic conditions in culture medium.  
However, maintaining the normal histological morphology of 
cultured organs raised challenges, which slowed down organ 
culture research for several decades.

Temperature: from normothermic to hypothermic 
Originally, organs were perfused at room temperature.  In 
1876, Bunge and Schmiedeberg added a water bath to the 

circuit to maintain perfusion blood at physiological tempera-
tures[19].  Later, scientists began to speculate that the use of 
lower temperatures might attenuate organ damage during 
perfusion by abating cellular metabolism.  In the 1960s, a num-
ber of experiments were performed with cooled diluted serum 
or heparinized blood, and kidney perfusion was extended 
from hours to days[28,29].  However, the use of cold blood also 
caused many problems, such as vascular spasm in kidney 
grafts[30].

From dynamic to static modality
In the 1960s, kidneys were successfully preserved for 3–5 days 
by continuous perfusion with cooled, oxygenated blood or 
plasma[28,29].  However, this method required complex and 
costly equipment, which limited its availability and made the 
transportation of organs extremely difficult.  In 1969, Collins 
GM was able to successfully preserve canine kidneys for 12 h 
by immersing them in iced saline solution, and he later further 
prolonged cold storage time to 30 h with Collins solution[15,31].  
This simple method for organ preservation was more cost-
efficient and convenient for organ transportation than its pre-
decessors.  The birth of SCS replaced dynamic perfusion meth-
ods and became the standard method of organ preservation.

Present: current practice and research on organ pre-
servation
Preservation techniques (temperature, apparatus, perfusion 
setting, etc) and perfusion solutions are the major fields of 
research in organ preservation.

Static cold storage and preservation solutions
Since the 1960s, SCS has gradually become the gold standard 
method for organ preservation.  SCS involves flushing the pro-
cured organ with preservation solution at 0–4 °C, then immers-
ing it into preservation solution at the same temperature until 
transplantation.  The hypothermic environment is responsible 
for decreasing cellular metabolism, and the preservation solu-
tion reduces cellular metabolism and provides cytoprotection.

Collins solution was the first preservation solution to enter 
the commercial market in 1969[15].  It was used to preserve the 
kidney, heart, liver, and lung grafts.  In 1980, Collins solution 
was modified via impermeant composition and improved 
chemical stability.  The new solution was named a Euro-
Collins solution, and it provided better protection during pro-
longed cold ischemia and was widely used[2,32].  The Univer-
sity of Wisconsin (UW) solution was introduced in the mid-
1980s[33] and continues to be used today for abdominal organ 
preservation[34].  These solutions are so-called intracellular 
fluid (ICF)-type solutions characterized by low Na+ and high 
K+ concentrations.  ICF-type solutions were intended to pre-
vent cellular edema by maintaining intracellular ion concen-
trations upon cold-induced dysfunction of Na+/K+ pumps[35].

Adding amino acids to the preservation solution and using 
a histidine buffer system led to the development of histidine-
tryptophan-ketoglutarate (HTK) solution, which is character-
ized by low K+ and low Na+ concentrations.  It was originally 
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developed for cardiac preservation, but it also achieved com-
parable patient survival for abdominal organ transplants[36,37].  
Custodiol-N is a modified HTK solution with additional 
amino acids and chemicals.  It is currently undergoing clini-
cal trials; experimental studies showed promising reductions 
of hypoxic and cold-induced cell injury[38,39].  Celsior solution 
was originally made available in the 1990s as a heart preser-
vation solution and was later also used for both thoracic and 
abdominal organ preservations[40].  Like HTK solution, Celsior 
solution also uses a histidine buffer and a low K+ concentra-
tion.  However, its Na+ concentration is much higher.  It shows 
equivalent performance to UW solution at a cheaper cost[41,42].

The risk of hyperkalemia-induced pulmonary vasoconstric-
tion led to the development of extracellular fluid (ECF)-type 
solutions, which have lower K+ and higher Na+ concentra-
tions[43].  In the 1980s, an ECF-type solution called EP4 (or 
EP-TU) was introduced, which sustained a canine lung preser-
vation model for as long as 96 h[44].  A low-potassium dextran 
glucose (LPDG) solution was developed and currently used 
as the gold standard for lung preservation[43,45,46].  ET-K solu-
tion was developed by optimizing the properties of sugar and 
electrolyte contents and by adding a protective component for 
pulmonary endothelium, which showed excellent postopera-
tive lung graft performance[47].  ET-K and EP-TU solutions 
have been applied in clinical lung transplantation in Japan[48,49].  
Table 1 summarizes information regarding the composition of 
popular cold preservation solutions.

Ex vivo machine perfusion
IR-induced injury increases the risk of early graft dysfunction 
and reduces long-term survival after transplantation[50] (Figure 

1).  Meanwhile, the shortage of donor organs has led to the 
use of extended criteria donor (ECD) organs.  Proper donor 
organ functional assessment and ex vivo repair/recondition-
ing of organs prior to transplantation has become necessary.  
Machine perfusion is a method involving organ perfusion 
with a controlled flow of perfusate.  It facilitates the mainte-
nance of organ microvasculature tone, provision of oxygen 
and nutrients in support of tissue metabolism, and removal of 
toxic metabolic waste.

The cellular rate of respiration is proportional to the sur-
rounding temperature[51].  For example, SCS at 0–4 °C reduces 
the metabolic rate of the organ to approximately 5% of its 
physiological level[52,53].  Different temperatures have been 
investigated for ex vivo machine perfusion, including normo-
thermic machine perfusion (NMP) at 35–38 °C, subnormo-
thermic machine perfusion (SNMP) at 20–34 °C, controlled 
oxygenated rewarming (COR) at 8–20 °C, and hypothermic 
machine perfusion (HMP) at 0–8 °C (Figure 2) (Table 2).

Hypothermic machine perfusion
HMP (0–8 °C) is based on the concept that oxidative energy 
production by mitochondrial electron transport is sustained 
at hypothermic temperatures.  HMP continuously provides 
metabolic substrates for the generation of ATP, which enables 
the graft to restore tissue energy.  The first clinically available 
HMP device was developed by Folkert Belzer in 1960s[28] and 
used to perform the first HMP-preserved human kidney trans-
plant in 1968[16].  Belzer et al achieved perfusion of the kidney 
with hypothermic, diluted plasma or blood for 3 days[28].  
Humphries et al were able to extend kidney perfusion to 5 
days[29].

Figure 1.  Biological processes induced during ischemia-reperfusion that may lead to primary graft dysfunction.
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The 1990s saw the resurgence in interest in HMP for kid-
ney preservation as both the demand for organs and reliance 
on ECD donors grew[54].  New HMP technology showed 
decreased rates of delayed graft function and improved out-
comes in the case of marginal donors relative to SCS.  By 2015, 
approximately 25% to 35% of all transplanted kidneys in the 
United States were preserved with HMP[54].

Challenges arise in the use of HMP for liver preservation 
since the liver receives blood from both the portal vein and 
hepatic artery[2].  However, the first clinical trial of HMP-
preserved liver grafts showed shorter hospital stays and 
reduced vascular and biliary complications as benefits[55].  
Few studies on HMP in heart and lung transplants have been 
reported.  Nakajima et al reported that short-term HMP (1–2 h) 
can improve lung tissue energy levels and ameliorate IRI by 
decreasing the production of reactive oxygen species in rat 
lungs[56,57].  Michel et al showed that HMP preserved the cellu-
lar structure of donor hearts better than SCS during prolonged 
ischemic times in pigs[58].  Additional research in the field of 
cardiac and lung HMP is required.

Normothermic machine perfusion
NMP (35–38 °C) is a method of perfusing organs under physi-
ologic conditions to maintain metabolic activity and viability.  
NMP maintains donor organs at body temperature while 
providing oxygen and essential substrates.  Historically, NMP 
was developed to assess organ function prior to transplanta-
tion[59–61] and to preserve donor organs during distant procure-
ment[62,63].  In 2001, Steen et al reintroduced the EVLP technique 
to evaluate lungs from donation after cardiac death (DCD)[64].  
In 2007, they performed the first human transplantation of a 
rejected donor lung after assessment with EVLP[65].  Early stud-
ies were only able to achieve perfusion times of less than 6 h in 
large animal models[66,67].  In 2008, Cypel et al in Toronto modi-
fied the EVLP technique with low tidal volume ventilation, 
reduced perfusion rate and acellular perfusate, and extended 

Figure 2. Metabolic rate reduces with a decrease in temperature in 
humans.  (SCS=static cold storage, HMP=hypothermic machine perfusion, 
COR=controlled oxygenated rewarming, SNMP=subnormothermic machine 
perfusion, and NMP=normothermic machine perfusion).
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perfusion time for up to 12 h in swine lungs with stable lung 
function[68].  The Toronto group conducted the first clinical 
trial successfully and reported excellent outcomes in 2011[69].  
They further reported extended clinical outcome data[70,71], and 
the marginal donor lungs treated with EVLP showed compa-
rable or even better results than regular lung transplants[72].

The success of EVLP inspired many research groups world-
wide to further investigate the role of NMP in other organ sys-
tems.  Nicholson et al described that a short period (1 or 2 h) 
of NMP could restore function and replenish ATP after warm 
and cold ischemia in porcine kidneys[8,73, 74].  The first clinical 
study on preserving kidney grafts with NMP was reported in 
2011[75].  A follow-up clinical study showed that the delayed 
graft function rate was significantly lower in the NMP group 
than in the SCS group in ECD kidney transplantation[76].  The 
first clinical trial on NMP in liver transplantation was reported 
in 2016; 16 donations after brain death livers and 4 DCD livers 
were transplanted after NMP.  The results showed that 30-day 
graft survival was similar between the NMP and SCS groups, 
and the median peak aspartate aminotransferase level was sig-
nificantly lower in the NMP group than in the SCS group[77].  
Clinical studies have shown promising results with NMP in 
resuscitating marginal and declined donor livers[9,78].  In addi-
tion, NMP has been shown to be superior to SCS in preserving 
DCD hearts in dogs[79].  In pigs, DCD hearts reconditioned 
with NMP showed comparable function to brain death donor 
hearts[80].  Over a 2-year period in a clinical trial involving 159 
cases of orthotopic heart transplantation, NMP showed higher 
recipient survival and lower incidences of primary graft dys-
function (PGD) and acute rejection than SCS[10].

Several companies have now marketed a commercial por-
table machine to facilitate ex vivo machine perfusion, such as 
Organ Care SystemTM (TransMedics, USA) for the heart, lung, 
or liver and Organ Assist® device (Organ Assist, The Nether-
lands) for the lung, liver, or kidney.  These devices can be used 
during organ transportation, which offers a platform for nor-
mothermic organ preservation immediately after procurement, 
monitoring and assessing graft function continuously[11,81].  
These mobile devices have demonstrated encouraging results 
in clinical studies, which opens new avenues for organ preser-
vation and transportation[82–84].

Subnormothermic machine perfusion
Subnormothermic machine perfusion (SNMP, 20–34 °C) is 
a midway approach between HMP and NMP[85].  Although 
better preservation times were accomplished with NMP than 
with HMP, it was speculated that the cytoprotective benefits of 
reduced cellular metabolism under hypothermic temperatures 
could further improve organ preservation.  Meanwhile, suf-
ficient metabolism would be maintained for viability assess-
ment and organ repair/reconditioning[86].  Although studies 
have shown that livers or kidneys perfused with SNMP are 
superior to grafts preserved under SCS[87,88], a recent study 
showed that porcine kidneys preserved under SNMP were 
associated with higher indices of renal and tubular injury 
upon reperfusion than those preserved under NMP[89].  There-

fore, whether SNMP should be developed in addition to NMP 
should be further determined.

Controlled oxygenated rewarming
Following cold ischemic preservation, the abrupt change in 
temperature from hypothermia to normothermia upon reper-
fusion may effectuate dysfunction of the mitochondria and 
pro-apoptotic signal transduction, which contributes to reper-
fusion-induced organ injury[90].  Hypothermic preservation is 
meant to protect the ischemic organ by reducing metabolism.  
However, ischemic redox dyshomeostasis leads to impairment 
of the mitochondrial membrane potential through mitochon-
drial transition pore opening.  Mitochondrial damage can be 
further enhanced upon reperfusion[91].  COR (8–20 °C) is an 
alternative organ perfusion method involving a slow, gradual 
rise in the perfusate temperature.  The period of COR is aimed 
to minimize injury to the graft and improve hepatocellular 
function upon reperfusion, offering gentle restitution of mito-
chondrial function[91].  Clinical studies have shown that COR 
is safely transferable to clinical practice in liver transplanta-
tion[91].  By the end of 2016, COR had been effectively applied 
in 15 human liver transplantations[92].  Minor and colleagues 
demonstrated that COR following SCS had better kidney func-
tion with mitigated activity of mitochondrial permeability 
transition pore opening, caspase 9 activation, and apoptosis in 
porcine kidneys[90].  It should be noted that during EVLP, lung 
perfusate was gradually warmed up during the first 30 min[68].  
COR could be integrated into NMP.

Organ perfusate: from chemically defined solutions to blood/
blood substitute
Perfusate composition is of central importance in maintaining 
stable organ function ex vivo.  Blood-based perfusates were 
commonly used for organ perfusion before cell culture media 
were developed in the 1950s[93,94].  Due to its variable nature and 
associated technical and ethical concerns, the use of blood or 
blood products was gradually replaced by chemically defined 
solutions.  For example, Steen Solution™, a chemically defined 
solution, has been widely used for EVLP and machine perfu-
sion of other organs; it contains colloid components (human 
serum albumin and Dextran 40) to maintain oncotic pressure, 
physiological ion concentrations to regulate osmolality, and 
buffers to retain normal pH and glucose as an energy resource.  
However, the supplementation of additional nutrients, includ-
ing red blood cells and other blood substitutes, to Steen Solu-
tion™ is under investigation to extend perfusion time.

Blood/blood substitutes
Studies have identified that blood-based perfusate is neces-
sary during NMP to transport oxygen and meet metabolic 
demands, and it provides superior functional preservation in 
the case of kidney, liver and heart storage[95–98].  It is still dis-
puted whether blood or red blood cells should be involved in 
EVLP.  Some studies have highlighted the use of blood over 
acellular perfusates[99], whereas others have observed sponta-
neous lung injury when using whole blood[100].  When look-
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ing over the studies that have currently achieved the longest 
perfusion times, it is interesting to see that perfusates used in 
these studies were either whole blood or blood-based solu-
tions[95,101–104].  One study that provided pertinent evidence 
in support of the essentiality of blood in perfusate is a cross-
circulation study.  O’Neill et al connected a conventional EVLP 
circuit to the internal jugular vein of a recipient pig so that 
metabolic substrates and hormones from the recipient pig 
were available to the perfused lungs, whereas metabolic waste 
produced by the perfused lungs was cleared by the recipi-
ent; they effectively perfused the lungs with recipient autolo-
gous blood for 36 h without notable changes in physiological 
parameters[105].

However, the use of blood-based perfusate is accompanied 
by a series of concerns, such as immune-mediated responses, 
hemolysis, thrombus formation, biochemical and humoral 
variations, and a risk of blood-borne infectious transmis-
sion[106].  Further development of an acellular perfusate is 
another major direction.

Nutrients
Currently, commonly used perfusates, such as Steen solu-
tionTM and Organ Care System (OCS) perfusate, use glucose as 
the only energy resource.  However, during NMP, organs are 
perfused at body temperature.  Glucose alone is not sufficient 
for organ metabolism.  To prolong NMP for organ repair, the 
incorporation of more nutrients, such as amino acids, vitamins, 
lipids and others, should be considered.  Amino acids are 
basic components of proteins and are essential nutrients for 
cell survival and proliferation.  Vitamins can help cells use the 
provided chemical energy to process proteins, carbohydrates, 
and fats required for cellular metabolism[107].  Amino acids and 
vitamins have been used routinely in cell culture media[93,94].  
Interestingly, cell culture media were used for organ culture 
to maintain isolated organs for days without serum or blood 
supplements[27].  In liver and kidney studies, amino acids and 
extra glucose have been added into perfusate during NMP, 
and this approach showed promising results in pigs[108,109].

Fetal mouse lungs cultured in a medium without growth 
factors showed poorly developed airways and a lack of 
defined acinar structures[110], which suggests that growth fac-
tors and hormones may also be required for organ rebuilding 
/regeneration.

To avoid the use of human blood products, interest has 
increased in acellular oxygen carriers, which have similar oxy-
gen carrying capacity to human hemoglobin[111].  Initial studies 
on hemoglobin-based oxygen carriers have shown encourag-
ing results, including enhanced oxygenation and improved 
allograft function of ex vivo perfused organs in normothermic/
subnormothermic conditions[106,112], which opens the door for 
blood substitution in future.

It is reasonable to conclude that an ideal perfusate should 
offer oxygen carrying capacity, oncotic properties, buffers to 
maintain physiological pH, metabolic substrates and physi-
ological electrolyte levels, growth factors and hormones.  A 
blood substitute designed to replace human blood in ex vivo 

machine perfusion will be a promising direction for prolong-
ing the preservation of isolated organs.

Future perspectives: organ repair/reprogramming with 
ex vivo machine perfusion
Prolonged ex vivo machine perfusion & organ repair/reprogramming
The incredible progress of organ preservation research over 
the past few decades has led to the booming success of clini-
cal organ transplantation as a treatment for patients with 
end-stage disease.  However, this demand has skyrocketed 
to a level that cannot be satisfied by the number of available 
donor organs.  The use of ex vivo machine perfusion aspires 
to warranting the use of marginal donors by minimizing IRI 
and facilitating the repair/regeneration of suboptimal grafts 
in order to expand the donor pool and improve overall graft 
function after transplantation.  For this purpose, prolonged ex 
vivo perfusion time is required (Figure 3).

Organ repair
There has been an increasing number of studies focusing on 
the application of ex vivo machine perfusion for organ repair.  
EVLP is among the most active areas of study.  A series of 
therapeutic strategies have been studied using EVLP for lung 
repair.  For example, different drugs were delivered through 
perfusate to mitigate IRI[113–115], therapeutic gases (NO, CO, H2) 
were inhaled during EVLP to reduce inflammatory response 
and lung edema[116–118], mesenchymal stem cells were used to 
treat lung injury induced by endotoxins and infection[119], and 
IL-10 gene therapy was developed to prevent IRI[120,121].  When 
the types of injury are clear, injury-specific treatments can be 
used during EVLP.  For example, high-dose, broad-spectrum 
anti-microbial agents were added to perfusate to treat human 

Figure 3.  The advantage of the potential use of normothermic machine 
perfusion.
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donor lung infection[122,123], lung lavage and surfactant replace-
ment were used to treat acid aspiration-induced pig lung 
injury[124–126], and pulmonary thrombolysis was performed to 
eliminate pulmonary embolism followed by successful lung 
transplantation[127,128].

In kidney, Brasile et al delivered heme analog cobalt proto-
porphyrin during ex vivo kidney perfusion to reduce inflam-
matory and free radical injury by upregulating the protective 
gene hemoxygenase-1 in canines[129].  They also used growth 
factors to upregulate cellular processes to resuscitate and 
repair warm IRI in canines and in rejected human kidneys[130].  
Hosgood et al delivered nitric oxide donors and carbon mon-
oxide-releasing molecules during NMP, which enhanced renal 
flow and improved renal function in pigs[131].  Yang et al inves-
tigated the effect of adding erythropoietin to perfusate during 
NMP and found that erythropoietin promoted inflammatory 
cell apoptosis and drived inflammatory and apoptotic cells 
into tubular lumens, which led to inflammation clearance, 
renal protection, and tissue remodeling in a porcine model[132].

In liver, studies on therapeutic medications during NMP to 
reduce IRI showed promising results in pigs and rats[133–135].  
Goldaracena et al delivered an antiviral drug to perfusate 
during normothermic ex vivo liver perfusion and effectively 
induced Hepatitis C virus resistance after pig liver transplan-
tation[136].

Organ regeneration
In 2008, Ott et al reported the first whole organ engineering 
success.  They used ex vivo machine perfusion as a platform, 
decellularized rat hearts by coronary perfusion with deter-
gents in a Langendorff apparatus, then reseeded these con-
structs by perfusion with cardiac or endothelial cells; eight 
constructs were maintained for up to 28 days by coronary per-
fusion with a nutrient-rich medium in a bioreactor that simu-
lated cardiac physiology.  This study revolutionized the field 
of tissue engineering, kindled hope for possibility of whole 
organ engineering[137].  They also successfully created bioarti-
ficial rat lungs using a slightly modified approach and subse-
quently transplanted the regenerated left lungs orthotopically.  
The bioartificial lungs provided gas exchange in vivo for up 
to 6 h after extubation[138].  Using the same perfusion system, 
Ott’s group further maintained the bioartificial rat lungs for up 
to 7 days with good function after implantation[139].  They later 
decellularized human and porcine lungs[140], which brought 
the matrix to clinical scale.  A similar perfusion method has 
also been used to create kidney and liver scaffolds in animals 
and in clinically rejected human organs[141].  Although there 
are still many challenges, the use of NMP alongside stem cells 
for organ engineering has received increasing interest.

Organ immunomodulation
Ex vivo machine perfusion has also provided a potential plat-
form for organ immunomodulation.  Miyoshi et al reported 
that ex vivo perfusion of canine pancreaticoduodenal allografts 
using class-II-specific monoclonal antibodies delays the onset 
of acute rejection[142].  Brasile et al treated canine kidney grafts 

with a bioengineered interface consisting of a nano-barrier 
membrane during NMP for 3 h.  They found that untreated 
control dogs experienced a mean onset of rejection on day 6, 
whereas the mean onset of rejection was significantly delayed 
until day 30 in dogs in the treatment group[143].  Martens et al  
distributed multipotent adult progenitor cells in the airway 
during EVLP and observed a reduction in pro-inflammatory 
cytokines and neutrophils in bronchoalveolar lavage fluid, 
which is related to innate immune system modulation and 
may play an important role in reducing PGD after transplanta-
tion[144].

Due to severe donor shortage from humans, xenotransplan-
tation is gaining more attention.  Ex vivo perfusion of porcine 
lungs with fresh human blood is used to study discordant pul-
monary xenograft injury[145,146].  Pre-perfusion of donor organs 
with recipient serum[147] and the delivery of targeted drugs 
have been attempted to prevent hyperacute rejection[148].  Ex 
vivo machine perfusion offers an effective platform to allevi-
ate discordant xenograft rejection by removing the recipient’s 
xenoreactive natural antibodies[149].  Studies on the recellu-
larization of animal organ scaffolds by human liver stem/
progenitor cells with ex vivo machine perfusion techniques are 
under investigation[150,151].

Conclusion
Since the very first speculation on organ preservation made by 
Cesar Julien Jean Le Gallois over two centuries ago, tremen-
dous progress has been made in this field of research.  In the 
early days, organs were perfused with blood at physiological 
temperatures.  The introduction of SCS in the 1960s revolu-
tionized organ preservation.  From then on, it became stan-
dard practice to statically preserve organs at hypothermic tem-
peratures.  With the recent demand to expand the organ donor 
pool, the currently accepted status of organ preservation is 
seeing a retrospective shift from SCS to theories inspired by 
early techniques, as these techniques provide great potential 
for improved graft preservation, viability assessment, and 
most importantly, repair/regeneration.  The success of organ 
preservation with dynamic machine perfusion operating on 
the basis of blood-based perfusates at close-to-physiological 
temperatures has prompted further in-depth studies on organ 
preservation and repair/reconditioning.  The need to prolong 
ex vivo machine perfusion time requires the optimization of 
current perfusates with the addition of essential components 
to meet metabolic needs.  Prolonged ex vivo machine perfusion 
opens a door for organ repair and reprogramming, warrant-
ing further investigation of novel strategies to improve donor 
graft quality prior to transplantation.
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