
Acta Pharmacologica Sinica  (2018) 39: 802–824
© 2018 CPS and SIMM    All rights reserved 1671-4083/18
www.nature.com/aps

Review Article

Salvia miltiorrhiza Burge (Danshen): a golden herbal 
medicine in cardiovascular therapeutics
Zhuo-ming LI1, #, Suo-wen XU2, #, Pei-qing LIU1,*

1Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of 
Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China; 2Aab Cardiovascular Research Institute, 
University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA

Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective 
actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components 
prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/
reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents 
(tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, 
salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a 
potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and 
therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent 
drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the 
traditional use of Danshen in cardiovascular therapeutics.
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Introduction
Danshen, the dried root of rhizome of Salvia miltiorrhiza 
Burge, has been widely used in Asian countries for treating 
cardiovascular diseases, including coronary heart disease, 
myocardial infarction (MI), angina pectoris and atherosclero-
sis[1-4].  Therefore, Danshen represents a traditional Chinese 
medicine (TCM) that has a relatively high safety profile.  To 
date, the chemical constituents of Danshen have been well 
identified, including more than 30 lipophilic compounds that 
have a diterpene chinone structure (tanshinone I–VI, cryp-
totanshinone, isotanshinone I–II, Danshenol A etc) and more 
than 50 hydrophilic compounds that mainly have a phenolic 
acid structure (Danshensu, salvianolic acid A, salvianolic acid 
B, protocatechuic aldehyde, etc)[1, 5-7].  More recently, Tasly 
Pharmaceuticals, Inc has completed a Phase III clinical trial 
to evaluate the safety and efficacy of Dantonic® (T89, also 
known as Compound Danshen Dripping Pills) in patients with 
chronic stable angina pectoris (ClinicalTrials.gov Identifier: 

NCT01659580).  In this article, we provide a systematic and 
up-to-date overview of the pharmacological and therapeutic 
profile of bioactive compounds from Danshen in vascular dis-
eases (atherosclerosis) and cardiac diseases (myocardial infarc-
tion, myocardial ischemia/reperfusion injury, arrhythmia, 
cardiac hypertrophy and cardiac fibrosis), with the aim of pro-
viding a scientific rationale for understanding the traditional 
use of Danshen in cardiovascular therapeutics.

The pathogenesis of atherosclerosis and the anti-
atherosclerotic effects of Danshen
Key events in the pathogenesis of atherosclerosis
Atherosclerosis is a multifactorial, chronic inflammatory dis-
ease characterized by an inflammatory response, oxidative 
stress, and immune disorders[8-12].  Several diet-induced ath-
erosclerotic animal models (such as ApoE-/- mice, LDLr-/- mice, 
and rabbits) have been widely used to study the pathogenesis 
of atherosclerosis and evaluate anti-atherosclerotic drugs[13, 14].  
There are several sequential and interrelated steps in the 
development of atherosclerosis (Figure 1).  These critical steps 
have served as excellent models for evaluating atheroprotec-
tive drugs, which target one or more of these steps.
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(i) Low-density lipoprotein (LDL) oxidation: a high level 
of circulating LDL in the hypercholesterolemic microenvi-
ronment is prone to modification to form the modified LDL 
(mLDL).  The major form of pathophysiologically mLDL is 
oxidized LDL (oxLDL), which activates endothelial cells and 
initiates the vicious cycle of atherosclerotic plaque progres-
sion[15].

(ii) Endothelial dysfunction: the combination of multiple 
pro-atherogenic stimuli (such as oxLDL, high glucose, and 
homocysteine, among others) injures the integrity of the vas-
cular endothelium, causes a leaky vessel and increases leu-
kocyte (monocytes and neutrophils) adhesion to the diseased 
endothelium, impairs vasorelaxation, causes endothelial nitric 
oxide synthase (eNOS) uncoupling and reduces nitric oxide 
(NO) production[16].  

(iii) Vascular smooth muscle cell (VSMC) dysfunction: The 
injured vascular endothelium induces the phenotypic switch 
of VSMCs to proliferate and migrate from the media layer of 
blood vessels to form the neointima (or hyperplasia), the early 
form of atherosclerosis[17].

(iv) Macrophage-derived foam cell formation and inflamma-
tion: Macrophages differentiated from circulating monocytes 
respond to local inflammatory cytokines or stimuli and are 
activated.  Macrophages also avidly engulf modified LDL via 
membrane-located scavenger receptors (SR) [such as CD36, 
SR-A, lectin-like oxidized LDL receptor 1 (LOX-1)] to form 
foam cells, the hallmark of atherosclerosis[18].

(v) Platelet activation and thrombus formation: After desta-
bilization of atherosclerotic plaques, the plaques are suscep-
tible to rupture, giving rise to platelet activation (adhesion 
and aggregation) and thrombus formation, which underlie the 
clinical presentation of atherothrombotic events[19].

Anti-atherosclerotic effects of Danshen components
Danshen is a well-known multi-component and multi-target-
ing cardiovascular TCM, which can be used alone or together 
with other TCMs for cardiovascular therapy[1-4] (Table 1).  
Both the lipophilic components (tanshinone I, tanshinone IIa, 
cryptotanshinone, and dihydrotanshinone, among others) and 
hydrophilic components (denshensu, salvianolic acid A, sal-
vianolic acid B, and protocatechuic aldehyde, among others) 
from Danshen have protective effects in atherosclerotic vascu-
lar diseases, including atherosclerosis, calcification and aortic 
aneurysm formation[1-4].  In this section, we will review and 
discuss the anti-atherosclerotic effects and molecular mecha-
nisms of individual major component (Table 2 and Supple-
mentary Table S1) with the aim of providing a comprehensive 
understanding of the pharmacological effects of Danshen.

Major lipophilic components
Tanshinone I
The vasoprotective effects of tanshinone I are mainly observed 
in cultured cells.  For example, in cultured vascular endothelial 
cells, tanshinone I has potent anti-angiogenic effects via block-

Figure 1.  Key cellular events in the pathogenesis of atherosclerosis.
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ing endothelial cell proliferation, migration and tube forma-
tion as well as vessel sprouting[20].  The molecular mechanism 
is related to the inhibition of basal as well as hypoxia-induced 
STAT3 phosphorylation at tyrosine 705[20].  This report sug-
gests that tanshinone I could be a useful therapeutic agent in 
blocking tumor angiogenesis[20].  Tanshinone I also enhances 
endothelial integrity by stabilizing cell-cell junctions, thus 
preventing vascular leakage[21].  Lipopolysaccharide (LPS)-
stimulated macrophage cell lines, such as RAW264.7, serve as 
an excellent in vitro model for evaluating anti-inflammatory 
compounds.  Tanshinone I significantly inhibits LPS-induced 
cyclooxygenase-2 (COX-2)-mediated prostaglandin E2 (PGE2) 
production[22] as well as IL-12[23] production.  The anti-inflam-
matory effects are mediated by the inhibitory effects on NF-κB 
and AP-1 activation[23, 24].  Currently, there is no literature 
reporting the protective effects of tanshinone I against VSMC 
proliferation, migration, platelet activation and atherosclerosis 
development.  

Tanshinone IIa
Tanshinone IIa is the most well studied bioactive lipophilic 
constituent of Danshen in cardiovascular medicine.  Clinically, 
sodium sulfate derivatives of tanshinone IIa (STS) have long 
been used to treat patients with angina pectoris and coronary 
heart disease[2].  In experimental studies, tanshinone IIa has 
been shown to attenuate neointima hyperplasia[25, 26], athero-
sclerotic calcification[27], diet-induced atherosclerosis[28-41] and 
aortic aneurysm[42, 43].  During the past decade, emerging evi-
dence has suggested that tanshinone IIa modulates multiple 
key cellular events in vascular diseases, including LDL oxida-
tion, monocyte-endothelial cell interactions, endothelial cell 
injury, eNOS-dependent vasorelaxation, proliferation, migra-
tion of smooth muscle cells, macrophage cholesterol uptake 
and efflux, and platelet activation[1-4].  

Inhibitory effects of Tanshinone IIa on LDL oxidation
In 2000, the preventative effects of tanshinone IIa on inhibiting 
LDL oxidation were comprehensively analyzed in vitro[44].  In 
both cell-free (Cu2+, peroxyl radical and peroxynitrite-medi-
ated) and macrophage-derived oxidizing systems, tanshinone 
IIa potently inhibited LDL oxidation by scavenging peroxyl 
free radical and increasing LDL binding activity[44], suggesting 
that it can block the initiation of atherosclerosis.  
Protective effects of Tanshinone IIa on endothelial function
In endothelial cells, tanshinone IIa improves endothelial 
function through the following mechanisms.  (1) Protecting 
endothelial cells against endothelial injury: Chronic oxida-
tive stressors, such as H2O2 and methylglyoxal (MGO), trig-
ger endothelial injury and subsequent atherogenic events, 
such as monocyte adhesion and transmigration.  Tanshinone 
IIa has been shown to inhibit endothelial injury induced by 
H2O2

[38, 45-48] and MGO[49] via its anti-oxidant, anti-inflamma-
tory, and xenobiotic and endobiotic detoxification effects.  Bi et 
al [48] designed and tested the endothelial protective effects of 
tanshinone IIa derivatives and found that several derivatives 
have increased efficacy against H2O2-induced injury via Nrf2 
(nuclear factor (erythroid-derived 2)-like-2 factor) activation 
and superior water solubility.  (2) Preventing inflammatory 
responses in endothelial cells and endothelial progenitor cells 
and preventing monocyte adhesion to diseased endothe-
lium: Tanshinone IIa has potent anti-inflammatory effects by 
blocking the upregulation of pro-inflammatory mediators, 
such as tumor necrosis factor α (TNF-α), intercellular cell 
adhesion molecule-1 (ICAM-1), vascular cell adhesion mol-
ecule 1 (VCAM-1), monocyte chemotactic protein 1 (MCP-1), 
E-selectin, and interleukins (IL-8 & IL-1β), in response to pro-
inflammatory stimuli[50-56], thus reducing monocyte adhesion 
to endothelial cells[50, 54, 56].  (3) Regulation of vascular tone 
and vasorelaxation by increasing NO and decreasing endo-

Table 1.  Anti-atherosclerotic effects of TCM formula containing Danshen.

Formula	 Subjects or models	 Effects and mechanisms	 References

Cardiotonic Pill	 Rabbit+HCD+Ad-p53	 ↓Plaque vulnerability	 [311]
(Fufang Danshen 	 ↓ICAM-1, ↓VCAM-1
Dripping Pill)	 ApoE-/- mice+HFD	 ↓Lesion size, ↓ICAM-1	 [312]
	 Hypercholesterolemic patients	 ↓ICAM-1, ↓E-selectin	 [313]
Naoxintong	 ApoE-/- mice+HFD	 ↓Lesion size, vulnerability	 [314]
		  ↓MMP2, ↓TNFα, ↑SM22α
	 Rabbit+HCD	 ↓Lesion size, ↓iNOS/NO	 [315]
	 LDLr-/- mice+HFD	 ↓Lesion size, ↓DC and Mφ content	 [316]
Danshen-Gegen Injection	 Postmenopausal women with early hypercholesterolemia	 ↓Carotid intima/media thickness	 [317]
Danhong Injection	 Rats+HFD	 ↓Hyperlipidemia, PPARα	 [318]
	 Rabbits+HCD	 ↓Lesion size, iNOS, COX2, MDA	 [319]
	 ApoE-/- mice +HFD
	 LDLr-/- mice+HFD	 ↓Lesion size, TNFα, IL-1β, IL-6↑ABCA1	 [320]

Abbreviations: ABCA1, ATP-binding cassette transporter A1; ApoE-/-, ApoE deficient; COX2, cyclooxygenase 2; DC, dendritic cells; HCD, high cholesterol 
diet; HFD, high fat diet; ICAM-1, intercellular adhesion molecule-1; IL, interleukin; iNOS, inducible nitric oxide (NO) synthase; LDLr, LDL receptor; Mφ, 
macrophage; MDA, malondialdehyde; MMP-2, matrix metalloproteinase 2; TNFα, tumor necrosis factor alpha; VCAM-1, vascular cellular adhesion 
molecule-1.
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thelin-1 (ET-1): Several reports have revealed that tanshinone 
IIa increases the production of NO[57-59] under different stress 
conditions in endothelial cells by increasing eNOS levels[58, 60, 61] 

and eNOS phosphorylation at ser1177[61] while blocking eNOS 
ser1177 dephosphorylation[61].  Tanshinone IIa also regulates 
vascular tone via decreasing cyclic strain and TNFα-induced 
ET1 production[62, 63].  In a model of chronic intermittent 
hypoxia, tanshinone IIa decreases the expression of ETA recep-
tors while increasing that of ETB receptors, thereby dampening 
ET1 production and induced signaling[64].  (4) Prevention of 
eNOS uncoupling: Tanshinone IIa ameliorates eNOS uncou-
pling induced by multiple agents, such as high glucose.  The 
underlying mechanism is linked to the upregulation of key 
components in the recoupling of eNOS including the follow-
ing: ratios of eNOS dimer/monomer and tetrahydrobiop-

terin (BH4)/dihydrobiopterin (BH2), GTP cyclohydrolase I 
(GTPCH1), dihydrofolate reductase (DHFR) and heat shock 
protein 90 (HSP90) [11, 61, 65].
Inhibitory effects of Tanshinone IIa on VSMC proliferation and 
migration
In VSMCs, tanshinone IIa inhibits the proliferation and migra-
tion of VSMCs by inhibiting the activation of ERK[25] and 
PDK1 (3-phosphoinositide-dependent protein kinase 1)[66] 

while activating the BKCa (large-conductance Ca2+-activated 
K+ channel)[67], AMPK (adenosine 5’-monophosphate-activated 
protein kinase)[68] and Nrf2[69] pathways.  Tanshinone IIa also 
suppresses the apoptosis of VSMCs[39], indicating its potential 
to reduce plaque vulnerability.
Inhibitory effects of Tanshinone IIa on foam cell formation
In macrophages, tanshinone IIa inhibits LPS-induced inflam-

Table 2.  Therapeutic benefits of bioactive components of Danshen in atherosclerotic vascular diseases.

Compound	 Animal Model	 Effects and mechanisms	 References

Tanshinone IIA	 ApoE-/- mice+HFD	 ↓Lesion size and instability, ↓CLIC1, ↓SRA, ↓CD36, 	 [28-32, 38, 39, 41]
		  ↓LOX1, ↓PPARγ, ↓CD68, ↓NF-κB, ↓MMP-9
	 ApoE-/- (OVX)	 ↓Lesion size, ↓NF-κB, ↓sICAM-1 ↓AP1, ↓E-selectin, 	 [30]
	 mice+HFD	 ↓p-ERK1/2, ↓HDL, ↑SOD
	 Rabbits+HCD	 ↓Lesion size, ↓neointima, ↓CD40, ↓MMP-2/9, SOD, 	 [33-36]
		  ↓MDA, ↓oxLDL, ↑GPx, ↓VCAM-1, ↓IL-1β	 [27, 321]
	 Rats+HFD	 ↓Hepatic lipid deposition
		  ↓Aortic calcification, ↓ROS, ↓MDA, ↓oxLDL, ↑Cu/Zn-SOD
	 Rats+balloon injury	 ↓Intimal hyperplasia, ↓PCNA	 [25]
	 Mice+carotid artery	 ↓Intimal hyperplasia, ↓PCNA	 [26]
	 ligation
	 Rats+ elastase perfusion	 ↓AAA incidence, ↑elastin fibers, ↑VSMC content, ↓TLR4, 	 [42, 43]
		  ↓pNF-κB, ↓MyD-88, ↓MMP-2, ↓MMP-9, ↓MCP-1, ↓ iNOS
Cryptotanshinone	 ApoE-/- mice+HFD	 ↓Lesion size and instability, ↓IL-1β, ↓TNFα, ↓IL-6, ↓IL-17A	 [80]
		  ↓IFNγ, ↓MMP-9, ↓LOX1, ↓ROS
Dihydrotanshinone	 ApoE-/- mice+HFD	 ↓Lesion size, ↓TLR4, ↓NF-κB, ↓MyD88, ↓ROS, ↓LOX1, ↓NOX4	 [88]
Danshensu	 Rats+ methionine-rich diet	 ↓Lesion size, ↓Hcy, ↓TNFα, ↓ICAM-1, ↓ET1, ↑NO	 [94]
Salvianolic acid A	 ApoE-/- mice+HFD	 ↓Lesion size, ↓CCL20, ↓CCR6	 [105]
	 ApoE-/- mice+HFD	 ↓Aneurysm severity, ↓MMP-2/9	 [106]
		  ↓Elastin fragmentation,
		  ↓Macrophage infiltration	 [109]
	 SHR	 ↑Relaxation	 [111]
	 Rat+STZ+HFHS	 ↓vWF, vasorelaxation, ↓MDA, ↓AGE	 [109]
Salvianolic acid B	 Rabbits+HCD	 ↓Lipid deposition, ↓neointimal formation, ↓LDL oxidation	 [135]
	 ApoE-/- mice+HFD	 ↓Neointimal formation, ↓foam cell, ↓MMP-2/9, ↓COX-2, ↓CD36	 [148, 154, 155]
	 Rats+balloon injury	 ↓Neointimal formation, ↓CXCR-4	 [152]
Protocatechuic aldehyde	 Rats+balloon injury	 ↑Re-endothelization, ↓neointima, ↑GPER1, ↑CD31, ↓VCAM-1, ↓CD40	 [161]

Abbreviations: AAA, abdominal aortic aneurysm; ABCA1, ATP binding cassette subfamily A member 1; AGE, advanced glycation endproducts; AP1, 
activator protein-1; CCL20, Chemokine (C-C motif) ligand 20; CCR6, C-C motif chemokine receptor 6; CD36, cluster of differentiation 36; CD40, cluster 
of differentiation 40; CLIC1, intracellular channel protein 1; COX2, cyclooxygenase 2; CXCR4, chemokine (C-X-C motif) receptor 4; ERK, extracellular 
signal–regulated kinases; GPER1, G-protein coupled estrogen receptor 1; GPx, glutathione peroxidase; HCD, high cholesterol diet; Hcy, homocysteine; 
HDL, high density lipoprotein; HFD, high fat diet; ICAM-1, intercellular adhesion molecule 1; IFNγ, interferon gamma; IL, interleukin; iNOS, inducible nitric 
oxide synthase;  LOX1, lectin-like oxidized low-density lipoprotein receptor-1; MCP-1, monocyte chemoattractant protein-1; MDA, malondialdehyde; MMP, 
matrix metalloproteinase; MyD88, Myeloid differentiation primary response gene 88; NF-κB, nuclear factor kappa B; NOX4, NADPH oxidase 4; oxLDL, 
oxidized LDL; OVX,  ovariectomized; PCNA, Proliferating cell nuclear antigen; PPARγ, peroxisome proliferator-activated receptor gamma; ROS, reactive 
oxygen species; SHR, spontaneously hypertensive rat; SOD, Superoxide dismutase; STAT3, signal transducer and activator of transcription 3; sCD40L, 
soluble CD40 ligand; sICAM1, soluble intercellular adhesion molecule 1; SRA, scavenger receptor A; TLR4, toll-like receptor 4; TNFα, tumor necrosis 
factor-alpha;  VCAM-1, vascular cell adhesion protein 1; vWF, von Willebrand factor.
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mation[70-72], oxLDL-induced proliferation and macrophage 
migration[39] and blocks scavenger receptor-mediated oxLDL 
uptake[29, 32, 73] while promoting ATP-binding cassette trans-
porters ABCA1 and ABCG1-mediated cholesterol efflux via 
the Nrf2/HO1 pathway[32], thereby decreasing foam cell for-
mation.
Inhibitory effects of Tanshinone IIa on platelet aggregation
In platelets, tanshinone IIa inhibits platelet aggregation and acti-
vation induced by collagen and ADP[74].  All the vasoprotective 
effects of tanshinone IIa contribute to its atheroprotective effects 
as observed in different animal models and in cultured cells.

Cryptotanshinone
We[75-78] and others[79] have previously shown that cryptotan-
shinone is a neuroprotective compound in various models of 
neurodegenerative diseases in vitro and in vivo.  However, the 
atheroprotective effects of cryptotanshinone have not been 
well recognized until very recently.  
Endothelial protective effects of cryptotanshinone against 
atherosclerosis
Considering the potent anti-inflammatory effects of cryptotan-
shinone in various systems and participation of inflammation 
in all import phases of atherosclerosis, it is highly plausible 
that cryptotanshinone may also ameliorate atherosclerosis via 
its anti-inflammatory effects.  Recently, we[80] and several other 
independent groups[81, 82] have shown that cryptotanshinone 
shares some of the properties of tanshinone IIa in inhibiting 
inflammatory stimuli (such as TNFα- and oxLDL)-induced 
monocyte adhesion to endothelial cells, foam cell formation 
and platelet activation, thereby attenuating experimental ath-
erosclerosis in ApoE-/- mice.  Specifically, cryptotanshinone 
inhibits monocyte adhesion by suppressing the scavenger 
receptor LOX1-mediated pro-inflammatory response (ICAM-1 
and VCAM-1 upregulation) in endothelial cells[80].  Because 
LOX1 functions as the upstream major receptor for oxLDL in 
endothelial cells[18, 83], LOX1 inhibition could be one major anti-
atherosclerotic mechanism of cryptotanshinone.  The endothe-
lial protective effect of cryptotanshinone is mainly related to 
the attenuation of endothelial inflammation[80].  Therefore, the 
potential effects of cryptotanshinone on other critical aspects 
of endothelial function (such as eNOS phosphorylation and 
uncoupling) warrant further studies.  
Effects of cryptotanshinone on VSMC proliferation and migration
Like tanshinone IIa, the inhibitory effects of cryptotanshinone 
on the proliferation and migration of VSMCs have also been 
reported[84].  The underlying mechanism is related to the inhi-
bition of matrix metalloproteinase-9 (MMP-9) expression via 
the NF-κB (nuclear factor-kappa B) and AP1 (Activator protein 
1) pathway[84].  
Anti-inflammatory effects of cryptotanshinone in macrophages
Although cryptotanshinone has minimal inhibitory effects 
against macrophage-derived foam cell formation[85], a recent 
study has reported that cryptotanshinone displays superior 
anti-inflammatory effects in LPS-stimulated macrophages 
compared with tanshinone IIa[86], confirming and extending 
our previous observation that cryptotanshinone inhibits the 

LPS-induced inflammatory response in murine macrophages 
by blocking activation of the NF-κB  and MAPK (mitogen-
activated protein kinase) pathways[87].  These findings also 
suggest the necessity to chemically modify cryptotanshinone 
to increase its therapeutic efficacy.  Currently, there is no 
literature available regarding the thrombo-protective effects 
of cryptotanshinone in vitro and in vivo, which merit further 
studies in the future.

Dihydrotanshinone
A recent study[88] from Chen’s laboratory has shown that 
dihydrotanshinone attenuates diet-induced atherosclerosis in 
ApoE-/- mice.  The underlying mechanism is related to block-
ade of the NOX4 (NADPH oxidase 4)/ROS (reactive oxygen 
species)/NF-κB/LOX-1 signaling pathway in LPS-stimulated 
human endothelial cells and subsequent oxLDL endocytosis 
and monocyte adhesion to endothelial cells[88].  Dihydrotanshi-
none also inhibits proliferation, migration and tube formation 
in endothelial cells, thereby inhibiting angiogenesis[89].  Cur-
rently, the regulatory effects of dihydrotanshinone on eNOS-
derived NO production remain unknown.  Based on a previ-
ous study[90] showing that dihydrotanshinone has vasorelaxant 
activities in an aortic ring assay, it is plausible that dihydro-
tanshinone may have potential effects on NO production in 
the endothelium.  In LPS-stimulated RAW264.7 macrophages, 
dihydrotanshinone significantly inhibits LPS induced pro-
duction of COX2-mediated PGE2 as well as iNOS (inducible 
NO synthase)-dependent NO by blocking the activation of 
NF-κB and AP-1[22].  Similarly, dihydrotanshinone also exhibits 
greater inhibitory effects against LPS-induced IL-12 produc-
tion than tanshinone I and cryptotanshinone, without affecting 
IL-10 production[23].  In platelets, dihydrotanshinone functions 
as a potent thrombin inhibitor compared with tanshinone IIa 
and cryptotanshinone[91].  It also significantly inhibits colla-
gen induced platelet aggregation (more potent than green tea 
component EGCG) by suppressing calcium mobilization and 
thromboxane B2 production[92].  The effects of dihydrotanshi-
none on VSMC pathophysiology and macrophage-derived 
foam cell formation warrant further studies.  

Major hydrophilic components
Danshensu (or Salvianic acid A)
A high level of circulating homocysteine (Hcy) is a risk fac-
tor for cardiometabolic diseases, such as atherosclerosis and 
hyperhomocysteinemia[93].  In a rat model of hyperhomo-
cysteinemia (by feeding rats with a methionine-rich diet), 
Danshensu decreases foam cell formation by reducing the 
expression of TNFα, ICAM-1, and ET-1 while increasing NO 
production, thus protecting the vascular endothelium from 
injury[94].  In cultured human endothelial cells challenged with 
Hcy (5 mmol/L), Danshensu represents the strongest com-
ponent in the aqueous extract of Danshen that inhibits Hcy-
induced injury[95].  Danshensu also prevents H2O2 induced 
endothelial cell injury by inhibiting CD40[96] as well as TNFα-
induced endothelial permeability by blocking VEGF (vascular 
endothelial growth factor) production and ERK activation[97].  
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In keeping with this function, an excellent study from Zhu’s 
laboratory identified Danshensu as the major component of 
Danhong injection to exert endothelium-dependent vasodila-
tion in an eNOS/NO-independent, but prostacyclin-depen-
dent, manner[98].  This evidence provides mechanistic insight 
into the previously observed ability of Danshensu to dilate 
swine coronary artery[99].  In VSMCs, Danshensu has inhibi-
tory effects on the proliferation of VSMCs by decreasing ET1 
production while increasing NO production[100].  In an in vitro 
model of foam cell formation (RAW264.7 macrophages stimu-
lated with oxLDL), Danshensu inhibits lipid accumulation and 
foam cell formation by decreasing CD36-dependent oxLDL 
uptake while promoting ABCA1- and ABCG1-dependent cho-
lesterol efflux[101], further extending a previous study that dis-
covered  Danshensu as a potential inhibitor of soluble CD36 
binding to oxLDL and resultant oxLDL uptake[102].  In platelets, 
Danshensu displays excellent anti-platelet and anti-thrombotic 
activities in vivo by inhibiting COX2 and normalizing the ratio 
of thromboxane A2 (TXA2)/prostacyclin (PGI2) [103] despite the 
low inhibitory effects on platelet aggregation observed in vitro 
[104].  Currently, no literature is available regarding the protec-
tive effects of Danshensu in experimental animal models of 
atherosclerosis.

Salvianolic acid A
In vivo, salvianolic acid A (Sal-A) has recently been shown 
to inhibit diet-induced atherosclerosis[105] and angiotension 
II (Ang II)-induced aortic aneurysm formation[106] in ApoE-/- 

mice.  It is one of the strongest anti-oxidant phenolic acids in 
Danshen due to its polyphenolic structure.  
Inhibitory effects of Sal-A on LDL oxidation
In 2002, the effect of Sal-A on CuSO4-mediated LDL oxidation 
was investigated[107].  The authors observed that Sal-A could 
chelate Cu2+ and inhibit Cu2+-mediated LDL oxidation.  As a 
result, Sal-A scavenges free radicals and decreases the end-
product of the lipid peroxidation- malondialdehyde (MDA)[107].
Effects of Sal-A on endothelial dysfunction and vascular remodeling
Seminal studies from Du’s laboratory[108-110] and others[111] have 
recently investigated the effects of Sal-A on endothelial dys-
function and vascular remodeling.  The studies have revealed 
that Sal-A is not hypotensive, but it ameliorates hyperten-
sion and high-fat, high-sucrose diet-associated impairment 
of endothelium-dependent vasorelaxation in spontaneously 
hypertensive rats[111] and diabetic rats[109], respectively.  In vitro, 
Sal-A increases endothelial barrier function in LPS-stimulated 
endothelial cells [111].  Multiple disease conditions, such as 
ischemia/reperfusion, impair NO production.  Sal-A reverses 
the ischemia/reperfusion-induced decrease in NO bioavail-
ability by decreasing MKP-3 (mitogen-activated protein kinase 
phosphatases 3)[112].  Sal-A also inhibits AGE (advanced glyca-
tion end products)-induced endothelial cell injury[109].  A more 
recent study has shown that Sal-A is a safe ET1 type A recep-
tor (ETAR) antagonist in HEK293 cells overexpressing ETAR 
(IC50=5.7 µmol/L)[113], suggesting that Sal-A could have thera-
peutic effects in hypertension-associated vascular remodeling.  
Sal-A does not affect basal endothelial cell proliferation and 

NO production, but it reduces Ang II-induced proliferation of 
human endothelial cells by inhibiting ROS generation as well 
as blocking the phosphorylation of Src and Akt[114].  Recent 
studies have shown that Sal-A represses TGF-β1 (transform-
ing growth factor-β)- and hypoxia-induced endothelial-to-
mesenchymal transition by activating Nrf2 and modulating 
Smads[115, 116].  Sal-A also attenuates PDGF-BB (platelet-derived 
growth factor-BB)-induced proliferation and migration of 
VSMCs via the PDGFRβ/ERK[108] and cAMP (cyclic adenos-
ine monophosphate)/PKA (protein kinase A)/CREB (cAMP-
response element binding protein) signaling pathways and 
shows efficacy in preventing neointimal hyperplasia[110].
Effects of Sal-A on macrophages
In macrophages, Sal-A serves as an NF-κB inhibitor by target-
ing IKKβ (inhibitor of NF-κB kinase) as well as an activator of 
anti-oxidant HO-1, thereby suppressing LPS-induced upregu-
lation of pro-inflammatory mediators (COX2, iNOS, TNFα and 
IL-6) and the generation of NO and PDE2[117, 118].  Sal-A also 
attenuates Ang II-induced macrophage apoptosis by inhibiting 
the activation of Akt and NF-κB[119], suggesting the occurrence 
of broad anti-inflammatory activities induced by multiple pro-
inflammatory stimuli.  It remains to be investigated whether 
Sal-A affects cholesterol uptake and efflux and resultant foam 
cell formation in macrophages.  
Anti-thrombotic effects of Sal-A, its derivatives and preparations
In 1994, Yu et al[120] evaluated the thrombo-protective effects 
of acetylsalvianolic acid A, a chemically modified derivative 
of Sal-A.  The authors observed that acetyl-Sal-A could inhibit 
platelet aggregation induced by multiple pro-aggregative 
stimuli, including thrombin, collagen, ADP, and arachidonic 
acid, suggesting that acetyl-Sal-A has potent anti-thrombotic 
activities.  Subsequent in vitro and in vivo studies have con-
firmed that Sal-A inhibits ADP and collagen-induced platelet 
aggregation and arterial thrombus formation in mice[121-124].  
Salvianolic acids, in particular Sal-A and Sal-C, are core com-
ponents of Danhong injection exerting anti-thrombotic activ-
ity[125].  The cardiovascular actions of salvianolic acids have 
recently been comprehensively reviewed elsewhere[126].  

Salvianolic acid B
Salvianolic acid B (Sal-B) and its derivative magnesium litho-
spermate B (also known as magnesium tanshinoate B) are 
commercially available and named Sal-B for simplicity hereafter.  
Protective effects of Sal-B on endothelial function
In 2001, two research groups simultaneously reported that 
Sal-B improved endothelial function by decreasing TNFα-
activated monocyte adhesion to endothelial cells[127] as well 
as VEGF-triggered hyperpermeability in endothelial cells[128], 
respectively.  Subsequent studies have shown that Sal-B 
decreases TNFα-induced upregulation of PAI1 (plasminogen 
activator inhibitor-1), ICAM-1 and VCAM-1 by inhibiting 
NF-κB and AP1 activity as well as upregulating the anti-oxi-
dant Nrf2/HO1 pathway[129-131], underscoring its therapeutic 
effects in ameliorating inflammation by activating Nrf2 in 
vivo[132].  Sal-B modulates endothelial hemostasis by increas-
ing tissue-type plasminogen activator (t-PA), anti-coagulant 
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thromomodulin (TM), and eNOS-dependent NO production, 
while decreasing pro-thrombotic PAI1[133, 134].  Sal-B also inhib-
its LDL oxidation[135, 136], extravasation[137] and ensuing oxLDL-
induced endothelial cell injury[135] and apoptosis[138].  Sal-B also 
prevents oxidant H2O2-induced endothelial cell injury by acti-
vating the GRP78 (glucose regulated protein 78 kDa)/ATF6 
(activating transcription factor 6) and PI3K (phosphoinositide 
3-kinase) pathways[139, 140].  In addition, Sal-B also improves 
endothelium-dependent vasorelaxation in diabetic rats with 
fluctuating blood glucose levels [141], as well as angiotensin II-
infused mice[142], by inhibiting AT1 receptor and NADPH oxi-
dase-dependent ROS production,  as well as restoring eNOS 
phosphorylation at Ser1177.  
Inhibitory effects of Sal-B on VSMC proliferation and migration
In VSMCs, Sal-B attenuated the proliferation and migration of 
VSMCs (induced by PDGF-BB, serum, LPS and stromal cell-
derived factor-1α (SDF-1α)) by cell cycle arrest and blocking 
CXCR4 as well as activating the Nrf2/HO1 pathway[131, 143, 144].  
Another anti-proliferative mechanism of Sal-B is exerted by 
inhibiting TNFα-induced upregulation of MMP-2 expression 
and activity[145].
Inhibitory effects of Sal-B on foam cell formation
In LPS-activated RAW264.7 macrophages, Sal-B inhibits iNOS-
dependent NO production by activating the HO1 pathway[146].  
Sal-B also reduces CD36-dependent oxLDL uptake while pro-
moting cholesterol efflux via the PPARγ/LXRα/ABCA1 path-
way[147], thereby inhibiting foam cell formation[102, 147, 148].  
Inhibitory effects of Sal-B on platelet aggregation
In platelets, Sal-B significantly inhibits ADP and thrombin-
induced platelet aggregation by reducing the release of sol-
uble P-selectin and antagonizing the activity of phosphodi-
esterase (PDE) and P2Y12 receptor[130, 149, 150].  As a result, Sal-B 

reduces the adhesion of ADP-activated platelets to endothelial 
cells via the NF-κB-driven inflammatory response[149] and 
limits LPS-induced disseminated intravascular coagulation in 
rabbits[151].

The above-mentioned combined effects potentially contrib-
ute to the protective effects of Sal-B against neointimal hyper-
plasia[135, 152], angiotensin II-induced hypertension[142], hyper-
glycemia/dyslipidemia[153], and atherosclerosis development 
in ApoE-/- mice [154, 155].

Protocatechuic aldehyde
In 2004, Chan et al[95] compared the efficacy of several compo-
nents from the aqueous extract of Danshen in preventing Hcy-
induced endothelial injury and observed that protocatechuic 
aldehyde also possesses protective effects, although it is less 
efficacious than danshensu.  Subsequent studies have revealed 
that protocatechuic aldehyde inhibits LPS-induced endothe-
lial cell injury and apoptosis by inhibiting caspase 3, thereby 
maintaining endothelial cell barrier integrity[156].  Protocat-
echuic aldehyde and its precursor compound 3-hydroxybenz-
aldehyde also inhibit TNFα-induced endothelial inflammation 
(ICAM-1 and VCAM-1 upregulation) and monocyte adhesion 
to endothelial cells by inhibiting the activation of JNK, AP1 
and NF-κB[157-159].  In VSMCs, protocatechuic aldehyde and its 
precursor compound 3-hydroxybenzaldehyde show activity in 
attenuating PDGF-BB-stimulated migration and proliferation 
(via MAPK and PI3K/Akt pathways) of VSMCs and inhibit-
ing platelet aggregation and the occurrence of neointimal 
hyperplasia as well as intravascular thrombosis in vivo[159, 160].  
A more recent study has identified GPER1 (G protein-coupled 
estrogen receptor-1) as the protective mechanism of proto-
catechuic aldehyde against endothelial dysfunction both in 

Figure 2.  The multi-component nature of Danshen in cardioprotection and vasoprotection.
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vitro and ex vivo [161].  In TNFα-stimulated macrophages, pro-
tocatechuic aldehyde reduces HMGB1 (high mobility group 
box-1 protein) expression by blocking the activation of NF-κB, 
underscoring its protective effects against the inflammatory 
response associated with rat sepsis (induced by cecal ligation 
and puncture)[162].  Based on the protective effects mentioned 
above, protocatechuic aldehyde could potentially ameliorate 
experimental atherosclerosis in animal models, warranting 
further studies.

In addition to the above-described vasoprotection, bioactive 
constituents from Danshen also show prominent cardioprotec-
tive effects in several heart diseases.  In the next section, we 
will provide an overview of the protective effects and mecha-
nism of individual compounds in cardioprotection.

Cardioprotective effects of Danshen
Pathophysiology of heart diseases
Coronary heart disease is the leading cause of death and dis-
ability worldwide.  The acute occlusion of the coronary artery 
commonly induced by atherosclerosis and plaque rupture 
subjects the myocardium to acute myocardial ischemia [163].  Isch-
emia of the heart resulting from oxygen and nutrient supply 
deprivation can lead to cardiomyocyte death and subsequently 
demarcate the area at risk of myocardial infarction[164].  Restora-
tion of blood flow in the ischemic heart using either thrombo-
lytic therapy or primary percutaneous coronary intervention 
induces additional cardiac damage, termed “myocardial 
ischemia-reperfusion injury”[164, 165].  Chronically, the distur-
bance of cardiac homeostasis, implied by the loss of myocytes, 
inflammatory events and oxidative stress insult, leads to 
the development of pathological cardiac remodeling[166].  A 
prominent feature of the remodeling heart is cardiomyocyte 
hypertrophy[167], which is due to the dysregulation of a num-
ber of cardiac transcription factors[168, 169].  Extracellular matrix 
remodeling is also involved, which is characterized as fibrosis 
and activation of MMPs[170].  Cardiac remodeling is the key 
pathophysiological process leading to heart failure[163, 166, 171].

Effects of Danshen components on heart diseases
A huge amount of experimental and clinical research have 
reported that Danshen, either the crude medicine or its prepa-
rations (Danshen injection, Danshen dripping pill, Danhong 
injection, and Danshen-Gegen decoction, among others), are 
favorable for the heart during pathological processes, such as 
myocardial ischemia, myocardial infarction, and reperfusion 
injury[172-180].  Danshen components, in particular the lipophilic 
tanshinone IIa and cryptotanshinone as well as the hydrophilic 
Danshensu, Sal-A and Sal-B, show potent beneficial effects 
on the heart.  Most of these bioactive components protect the 
heart against acute ischemic injury due to their anti-oxidant, 
anti-inflammatory and anti-apoptotic properties.  Addition-
ally, some of them show favorable effects on pathological car-
diac remodeling, reflecting their potential therapeutic promise 
in treating chronic heart diseases, such as heart failure.  In the 
following section, we focus on the cardioprotective effects and 
mechanisms of the major Danshen components (Supplemen-

tary Table S2).

Major lipophilic components
Tanshinone IIa
Tanshinone IIa is one of the major components of lipophilic 
tanshinones in Danshen.  Due to its poor absorption through 
the intestine, its sodium sulfate derivative STS has been devel-
oped to enhance the bioavailability[181].  The cardioprotective 
effects of tanshinone IIa and STS are discussed below with 
respect to their potent protective effects against acute cardiac 
ischemic injury, including myocardial infarction, myocardial 
I/R injury and arrhythmia, as well as chronic pathological car-
diac remodeling, including cardiac hypertrophy and cardiac 
fibrosis.
Protective effects of Tanshinone IIa against ischemic injury of the 
heart
STS has been widely used in clinics for the treatment of coro-
nary heart disease.  Pharmacological studies have demon-
strated that tanshinone IIa protects the heart against ischemic 
injury and would be a promising therapeutic agent in MI, 
myocardial I/R injury and arrhythmia.  

MI is an orchestrated event that combines cardiomyocyte 
death (reflected as necrosis, apoptosis and autophagy), a mas-
sive inflammatory burst and ROS generation, in response to 
arrhythmic injury[182].  In animal models of MI, tanshinone IIa 
can reduce the MI size and preserve cardiac function[183-188].  
These beneficial effects are not limited to the ability of tanshi-
none IIA to dilate the coronary artery and increase coronary 
blood flow but also to its anti-oxidant, anti-inflammatory, 
and anti-apoptotic effects on cardiomyocytes.  The antioxi-
dant effect of tanshinone IIa is attributed to the modulation 
of the redox-sensitive ERK/Nrf2/HO1 and AMPK/ACC 
(acetyl-coenzyme A carboxylase)/CPT1 (carnitine palmito-
yltransterase-1) pathways[185] and the stimulation of an elec-
tron transfer reaction in mitochondria[189].  Inflammation is 
critically involved in the pathogenesis of MI.  In this regard, 
tanshinone IIa inhibits the activation of NF-κB, eventually 
attenuating the expression of the inflammatory mediators 
MCP1, TGF-β1 and TNFα and preventing macrophage infil-
tration into the infarcted myocardium[184].  Additionally, tan-
shinone IIa attenuates the formation of the NOD-like receptor 
(NLR) family, pyrin-domain containing 3 (NLRP3) inflamma-
some, which has been identified as a mediator of the inflam-
matory response in MI[190], and subsequently prevents the 
downstream inflammatory cascades and lipid metabolism dis-
order[183].  Tanshinone IIa prevents cardiomyocyte apoptosis 
induced by oxidative stress[191-194], hypoxia[195, 196], and oxygen-
glucose deprivation/recovery[197].  The mechanisms underly-
ing these anti-apoptotic effects involve the downregulation 
of caspase-3 and upregulation of the Bcl-2/Bax ratio via the 
PI3K/Akt-dependent[192, 195, 198] or JNK/SAPK (stress-activated 
protein kinase)/MAPK signaling pathway[194], as well as the 
regulation of microRNAs[192, 196, 199, 200].  MicroRNAs are short, 
highly conserved, non-coding RNAs that regulate gene expres-
sion at the post-transcriptional level by inhibiting translation 
or promoting degradation of target mRNAs [201].  Tanshinone 
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IIa upregulates the anti-apoptotic miR-133[192, 196] and miR-
152-3p[200], whereas it decreases the apoptotic miR-1[199].  All 
these observations have yielded promising results indicating 
that tanshinone IIa might be favorable for the treatment of MI.  
In addition to its benefits alone, tanshinone IIa also interacts 
with other agents or therapeutics in MI treatment.  Combined 
therapy of tanshinone IIa and simvastatin reduces circulat-
ing inflammatory markers and improves symptoms of angina 
and blood stasis syndrome in post-MI patients[202].  Due to 
its ability to increase bone marrow mesenchymal stem cell 
(BMSC) engraftment in the ischemic myocardium, tanshinone 
IIa enhances the efficacy of BMSC transplantation treatment, 
which aims to confine myocardial damage and regenerate the 
myocardium in acute MI[203, 204].  In contrast, tanshinone IIa can 
ameliorate the cardiotoxicity effect of adriamycin (also known 
as doxorubicin), an effective antineoplastic agent, mainly by 
preventing against cardiac apoptosis and lipid oxidation[205-208].  

Myocardial I/R injury refers to the damage to the heart 
caused by the restoration of coronary blood flow after an isch-
emic episode[164, 165].  Treatment of tanshinone IIa, prior[209-213] or 
after[214, 215] I/R injury, reduces the infarct size and ameliorates 
several consequences of myocardial I/R, including the myo-
cardial zymogram, oxidative status, cardiac dysfunction and 
microstructure disorder.  These observations have confirmed 
that tanshinone IIa is able to prevent and cure myocardial I/
R injury.  Optimization of the therapeutic time window for 
sodium tanshinone IIa sulfonate (8 mg/kg) resulted in 2 h to 
4 h after reperfusion[214].  The underlying pathophysiology of 
myocardial I/R injury likely involves many factors, such as 
oxidative stress, intracellular calcium overload, altered cardiac 
energy metabolism, activation of cardiomyocyte apoptosis, and 
inflammatory responses[164].  Tanshinone IIa can decrease ROS 
production[209, 214], inhibit inflammation[209, 212, 213], and protect 
cardiomyocytes against apoptosis[211, 213, 216], potentially contrib-
uting to its beneficial effects on myocardial reperfusion injury.

During cardiac ischemia, arrhythmia commonly occurs, 
which might consequently lead to cardiac death.  Tanshinone 
IIa decreases the incidence of arrhythmias induced by acute 
cardiac ischemia.  This anti-arrhythmic effect is not fully 
understood.  Shan et al reported that tanshinone IIa restored 
the diminished inward rectifying K+ (Kir) current and Kir2.1 
protein level after MI in rat ventricular myocytes by suppress-
ing miR-1[199].  Controversially, Sun et al have demonstrated 
that tanshinone IIa predominantly activates cardiac KCNQ1/
KCNE1 K+ channels without affecting other K+ channels, 
including Kir, Kv1.5, or hERG (human ether-a-go-go-related 
gene)[217].  In addition to K+ channels, hyperpolarization-acti-
vated cyclic nucleotide-modulated (HCN) channels have also 
been reported to be involved in the anti-arrhythmic effect of 
tanshinone IIA.  The precise underlying mechanisms remain 
to be determined to draw more definite conclusions.  
Protective effects of Tanshinone IIa against pathological cardiac 
remodeling
The protective effects of tanshinone IIa or STS against patho-
logical cardiac remodeling are associated with its ameliora-
tive effect against cardiac hypertrophy and cardiac fibrosis.  

The anti-hypertrophic properties of tanshinone IIa have been 
observed in spontaneously hypertensive rats [218, 219],  two-kid-
ney one-clip hypertensive rats[220], two-kidney two-clip hyper-
tensive rats[221], angiotensin II-infused rats[222], and pressure-
overloaded rats induced by transverse aortic constriction[223].  
In most of these studies, favorable effects of tanshinone IIa 
have reflected the decrease in the ratio of left ventricular 
weight to body weight, and the decrease in cardiomyocyte 
size and diameter are independent of the alteration of systemic 
blood pressure[218, 220-222], thus eliminating the possibility that 
tanshinone IIa modulates cardiac hypertrophy by lowering 
blood pressure.  The main drivers of pathological hypertrophy 
are neurohumoral mediators, particularly the renin–angioten-
sin system and the beta-adrenergic system[224].  Tanshinone IIa 
represses the hypertrophic process in response to hypertro-
phic stimuli, including angiotensin II[222, 225, 226], isoproterenol 
(ISO)[227], and insulin-like factor-II (IGF-II)[228], suggesting a 
broad anti-hypertrophic effect of tanshinone IIa.  The regula-
tion of tanshinone IIa in cardiomyocyte hypertrophy involves 
multiple mechanisms: (1) tanshinone IIa suppresses intracellu-
lar signaling pathways that regulate expression of the cardiac 
genes encoding structural proteins or regulatory proteins, 
including MEK/ERK[222], AP1 (c-jun/c-fos)[225, 226], calcineurin/
NFAT3 (nuclear factor of activated T cells 3)[227, 228], and the 
Cys-C/Wnt signaling pathway[219]; (2) tanshinone IIa upregu-
lates eNOS expression and promotes the phosphorylation of 
eNOS in the myocardium[187, 219]; (3) tanshinone IIa activates 
silent information regulator 1 (SIRT1) to attenuate oxidative 
stress and inflammation involved in cardiac hypertrophy[223]; 
(4) tanshinone IIa diminishes NADPH oxidase-derived oxida-
tive stress[221].  The anti-fibrotic effects of tanshinone IIa involve 
inhibition of myofibroblast proliferation [229]; prevention of the 
deposition of extracellular matrix (ECM) components, such as 
collagen and fibronectin[230-234]; and regulation of the balance 
between MMPs and tissue inhibitor of metalloproteinases 
(TIMPs)[220, 232, 235, 236].  Mechanistically, these anti-fibrotic effects 
are mainly associated with the reduction of ROS production 
via the repression of NADPH oxidase[221, 230, 236] and suppres-
sion of the typical fibrotic signaling pathway TGFβ1/Smad-2 
or -3[233, 234].  It has recently been reported that microRNAs are 
also involved in the regulation of tanshinone IIa in cardiac 
fibrosis.  Tanshinone IIa upregulates the expression of miR-
29b, which inhibits the synthesis of collagen through directly 
binding to its 3’ untranslated regions[233].  Taken together, these 
detailed studies suggest a promising effect of tanshinone IIa 
on attenuating pathological cardiac remodeling.  Indeed, clini-
cal studies provide evidence that STS treatment in patients 
with ST-segment elevation myocardial infarction, when used 
in combination with current therapies, may significantly 
reduce adverse left ventricular remodeling and potentially 
improve clinical outcomes[237, 238].  Because of close association 
of cardiac remodeling with the development of heart failure, 
such experimental and clinical observations might suggest an 
emerging role of tanshinone IIa in chronic heart diseases, such 
as heart failure.  
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Cryptotanshinone
A limited number of reports regarding the cardioprotective 
effect of cryptotanshinone are available to date.  We[239] and 
others[240] have previously reported that cryptotanshinone has 
protective effects against MI and myocardial I/R injury in vivo.  
In an acute MI experimental model induced by coronary artery 
ligation, cryptotanshinone dose-dependently ameliorated the 
disordered arrangement of myocardial tissues and accumula-
tion of inflammatory cells[239].  In a rat model of myocardial  
I/R injury induced by occluding the left anterior descend-
ing coronary artery, pre-treatment of cryptotanshinone sig-
nificantly reduced the infarct size and improved myocardial 
contractile dysfunction[240].  The underlying mechanisms 
were concluded to be the amelioration of microcirculatory 
disturbances through inhibition of endothelial inflammation.  
Unfortunately, the effects of cryptotanshinone on cardiac cells 
were not assessed in that study[240].  Jin et al reported that cryp-
totanshinone prevents cardiomyocyte apoptosis induced by 
hypoxia, potentially by modulating the mitochondrial apopto-
sis signaling pathway (referring to the regulation of mitochon-
drial hyperpolarization, cytochrome c release and caspase-3 
activity) and expression of pro-apoptosis proteins[195].  In 
addition, a more recent study has revealed that cryptotan-
shinone improves mitochondrial function in cardiomyocytes 
by promoting mitochondrial biogenesis and ATP production 
and by suppressing the generation of free radicals[241].  These 
observations might at least partially explain the cardiopro-
tective effect of cryptotanshinone on MI and myocardial I/
R injury.  Furthermore, the effect of cryptotanshinone against 
cardiac fibrosis has been investigated by our group[239] and 
others[242].  The underlying mechanisms are mainly related to 
the suppression of MMP-2 production and NADPH oxidase-
dependent ROS production[239, 242].  The therapeutic potential 
of cryptotanshinone in the treatment of heart diseases must be 
further elucidated.  

Tanshinone IV
Tanshinone IV and its water-soluble derivatives can recover 
cardiac contractility during hypoxia/reoxygenation injury 
by improving myocardial energy production and inhibiting 
calcium overloading[243-245].  These observations suggest the 
potential role of tanshinone IV against cardiac ischemia.  In 
addition, tanshinone IV has been reported to prevent cardio-
myocyte hypertrophy and cardiac fibrosis after stimulation by 
several humoral factors, including Ang II, ET1, IGF1 and the 
α-adrenoceptor agonist phenylephrine[246, 247].  Further in vivo 
studies are still needed to assess the cardioprotective effects of 
tanshinone IV.

Major hydrophilic components
Danshensu
Protective effects of Danshensu against myocardial ischemia injury 
and I/R injury
In a rat model of myocardial ischemia injury induced by ISO, 
Danshensu can reverse changes in heart morphology and elec-
trocardiographic patterns, and it can reduce the serum level of 

creatine kinase and lactate dehydrogenase, which are regarded 
as diagnostic marker enzymes for altered cardiac membrane 
integrity and/or permeability in MI[248].  In the rat MI model 
induced by left anterior descending coronary artery ligation, 
Danshensu can alleviate myocardial ischemia injury by poten-
tiating post-ischemia neovascularization, probably by improv-
ing endothelial progenitor cell survival against hypoxia and 
accelerating proangiogenic functions[249].  By using the whole-
cell patch-clamp techniques, Danshensu has been observed to 
inhibit the L-type calcium current, leading to a recovery of the 
augmented myocardial contractility that responds to myocar-
dial ischemia injury[248].

Additionally, Danshensu has been demonstrated to prevent 
myocardial I/R injury, which is related to its anti-apoptotic 
effects, by activating the PI3K/Akt and ERK1/2 signaling 
pathways[250], as well as its antioxidant effects by activating the 
Akt/ERK/Nrf2/HO-1 signaling pathways [251].  A recent study 
using a coexpression network-based approach by integrating 
gene expression profile and protein-protein interaction data 
suggests that the protective effect of Danshensu in coronary 
heart disease is associated with sodium/hydrogen exchanger 3 
(SLC9A3), prostaglandin G/H synthase 2 (PTGS2), oxidized 
low-density lipoprotein receptor 1 (OLR1), and fibrinogen 
gamma chain (FGG)[252].
Protective effects of Danshensu against pathological cardiac 
remodeling
In pathological cardiac remodeling, Danshensu can diminish 
cardiac hypertrophy and cardiac fibrosis in response to spon-
taneous hypertension or β-adrenergic activation[253, 254].  Dansh-
ensu also inhibits aldosterone-induced cardiomyocyte apopto-
sis by interfering with the p53 signaling pathway, suggesting 
that Danshensu is protective against heart failure caused by 
overactivation of the renin-angiotensin-aldosterone system[255].  
Moreover, Danshensu is anti-arrhythmic, as implied by obser-
vations that Danshensu reduces the incidence of ventricular 
tachycardia and ventricular fibrillation[253, 254].  
Cardioprotective effects of Danshensu derivatives and preparations
Although Danshensu has shown promising cardioprotective 
effects, its poor chemical stability, poor cellular permeability 
and low bioavailability have limited its therapeutic applica-
tions[256].  Thus, a series of novel derivatives of Danshensu 
have been developed.  Pharmacological investigations have 
shown that these derivatives prevent myocardial ischemia 
injury in the heart, confirming their therapeutic potential in 
heart diseases[256-261].  Additionally, the combination of Dan-
shensu and other agents, such as hydroxysafflor yellow A[262], 
paeonol[263, 264], and puerarin[265, 266], shows synergistic cardio-
protective effects, thus providing additional options for the 
clinical uses of Danshensu.

Salvianolic acid A
The predominant cardioprotective effects of Sal-A are to con-
fine myocardial damage during the progression of MI and 
reperfusion injury.  In MI models induced by either coronary 
artery ligation or ISO, Sal-A decreases the infarct size and 
improves systolic function post-MI[267-270].  One of the pos-
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sible underlying mechanisms is suggested to be associated 
with its antioxidant properties.  Sal-A is a potent free radical 
scavenger due to its polyphenolic structure[271].  Additionally, 
Sal-A improves cellular anti-oxidative defense against oxida-
tive stress by elevating the activity of superoxide dismutase, 
catalase and glutathione peroxidase[269].  Moreover, Sal-A is 
able to maintain mitochondrial integrity and protect against 
mitochondrial respiratory function[269].  Considering these 
antioxidant properties together, Sal-A ameliorates oxidative 
stress-induced impairment of cellular functions and cell death 
in the myocardium.  Another possible involved mechanism 
might be the ability of Sal-A to promote angiogenesis around 
the infarcted area[268, 272].  Sal-A enhances the expression of pro-
angiogenic factors, such as VEGF and VEGFR2, and elevates 
the numbers and function of endothelial progenitor cells 
(EPCs), leading to vasculogenesis and subsequently increas-
ing the blood flow supply in the ischemic myocardium[268].  In 
addition to MI, Sal-A has also been shown to protect against 
myocardial I/R injury[273-277].  This protection is achieved by the 
reduction of myocardial cell apoptosis and damage induced 
by oxidative stress[274, 275, 278], prevention of intracellular calcium 
overload by blocking L-type calcium current[276], and inhibition 
of platelet aggregation and inflammation[277].  

Although comprehensive investigations of Sal-A in cardiac 
remodeling are not currently available, a study has revealed 

that Sal-A acts as a MMP-9 inhibitor to attenuate cardiac fibro-
sis in the spontaneously hypertensive rat[279], shedding new 
light on the cardioprotective effects of Sal-A in pathological 
remodeling.

Salvianolic acid B
Protective effects of Sal-B against MI and I/R injury
Similarly to Sal-A, Sal-B has demonstrated cardioprotective 
effects on cardiac ischemic injury[187, 280-282] and reperfusion 
injury[283-288].

During acute MI, Sal-B regulates multiple targets involved 
in cell apoptosis pathways, including the pivotal poly (ADP-
ribose) polymerase-1 (PARP-1) and NF-κB signaling path-
ways[282].  In addition, Sal-B disrupts the interaction between 
p38 and TGFβ-activated protein kinase 1-binding protein 1 
(TAB1), inhibiting the autophosphorylation of p38 and finally 
inhibiting TAB1/p38-mediated apoptosis signaling[280].  In 
addition to these anti-apoptotic effects, Sal-B inhibits voltage-
dependent Ca2+ channels[289] and the Ca2+-dependent cAMP 
and downstream PKA signaling[281], which might also contrib-
ute to its anti-MI effects.  Like tanshinone IIa, treatment with 
Sal-B could enhance BMSC transplantation[290, 291] and suppress 
the apoptosis of embryonic stem cell (ESC)-derived cardio-
myocytes[292], suggesting that Sal-B holds therapeutic potential 
in stem cell therapy for MI.

Figure 3.  The major signaling pathways involved in the cardiovascular effects of Danshen components.
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The predominant mechanism underlying the beneficial 
effect of Sal-B against myocardial I/R injury is associated 
with its anti-apoptotic properties[283, 287].  This anti-apoptotic 
effect involves the regulation of relevant signaling pathways 
during myocardial I/R damage, including the PI3K/Akt-
dependent[287] and SAPK signaling pathways[283].  Additionally, 
the cardioprotective effects of Sal-B against myocardial I/R 
injury have also been attributed to its anti-oxidant and anti-
inflammatory properties[286, 288, 293].  Moreover, Sal-B suppresses 
autophagy by upregulating miR-30a to improve cardiomyo-
cyte viability during myocardial I/R damage[285, 294].
Protective effects of Sal-A against cardiac remodeling
Jiang et al have previously identified Sal-B as a MMP-9 inhibi-
tor to prevent cardiac remodeling[295].  Our recent study has 
shown that Sal-B prevents cardiomyocyte hypertrophy by 
inhibiting PARP1[296].  These observations thus suggest the 
potential effects of Sal-B in the treatment of heart failure, 
which develops as an automatic response to pathological car-
diac remodeling.  In agreement with this notion, a recent study 
has demonstrated that Sal-B alleviates heart failure induced by 
pressure overload[297].  Therefore, Sal-B holds promise for car-
dioprotection against heart failure but requires confirmation 
in more experimental and clinical studies.

Protocatechuic aldehyde
An accumulating amount of research has shown that proto-
catechuic aldehyde exerts multiple biological activities, such 
as antioxidant, anti-inflammatory, anti-apoptosis and anti-
proliferation in different tissues[298, 299].  In the heart, protocate-
chuic aldehyde prevents myocardial I/R injury due to its anti-
inflammatory, anti-apoptosis, and anti-platelet aggregation 
effects[300]; prevents against cardiomyocyte apoptosis induced 
by hypertension[301]; and ameliorates angina by decreasing 
fatty acid oxidation, which is beneficial for the ischemic heart 
by switching the energy substrate preference from fatty acids 
to glucose[302].  Moreover, protocatechuic aldehyde is regarded 
as a promising cardioprotective complementary medicine, as 
determined from observations that protocatechuic aldehyde 
improves cardiac function in streptozotocin-induced type 1 
diabetic rats[303] and prevents cardiotoxicity by exposure to the 
highly toxic environmental contaminant 2,3,7,8-tetracholorod-
ibenzo-p-dioxin (TCDD)[304].  

Conclusions and perspectives
Danshen is a multi-component herbal medicine that benefits 
the cardiac and vascular system[2].  The eminent cardiovas-
cular actions and therapeutic potential of the lipophilic and 
hydrophilic components have sparked broad research interest 
in the past decade.  Understanding the pharmacological and 
therapeutic profiles of these constituents may broaden the 
potential clinical applications of these compounds in the treat-
ment of cardiovascular diseases, and they may promote small-
molecule cardiovascular drug discovery and development 
through the use of these compounds as important sources of 
lead compounds.  Based on the broad cardiovascular protec-
tive profile of these bioactive constituents, it can be recognized 

that both lipophilic and hydrophilic components may function 
in concert, targeting different tissues and signaling pathways 
to achieve the versatile cardiovascular actions of Danshen in 
experimental animals and humans.  However, the differential 
pharmacokinetic and pharmacodynamics properties of indi-
vidual compounds remain a hurdle to the systematic evalua-
tion of the cardiovascular efficacy of Danshen.  In particular, 
tanshinone IIa[305] and cryptotanshinone[306] have relatively low 
oral bio-availability.  Therefore, new formulation strategies 
and combination therapy that might maximize the beneficial 
actions and reduce the potential side effects would have great 
therapeutic potential in this regard[307].

Although research investigating the cardiovascular effects 
of Danshen is expanding, many questions remain unad-
dressed.  In the vascular system, although sodium tanshinone 
IIa sulfate is widely used in the clinic to treat patients with 
coronary artery disease, clinical studies addressing the effi-
cacy of tanshinone IIa in patients with atherosclerosis merit 
further investigations.  Additionally, understanding of the 
therapeutic basis of other bioactive components remains lim-
ited.  In the cardiac system, although most of the Danshen 
components demonstrate promising therapeutic potential for 
the management of MI and myocardial I/R injury, investiga-
tions of their pharmacological actions on cardiac hypertrophy 
and cardiac fibrosis remain limited.  The possible therapeutic 
role of Danshen components for the treatment of chronic heart 
diseases related to cardiac remodeling must be further eluci-
dated.  Future directions of cardiovascular research involving 
Danshen include the following: (1) use of the total synthesis of 
bioactive components of Danshen for the purpose of cardio-
vascular therapeutics as an alternative to obtaining purified 
compounds from the medicinal plant, such as the recently 
described synthesis of tanshinone I[308]; (2) use of a systems 
biology approach, such as RNA-sequencing[309], or network-
based pharmacological research[310] to understand the gene 
regulation profile of each individual compound at the genome-
wide level; and (3) elucidation of the therapeutic effects of 
Danshen components in cardiovascular aging, which is a com-
mon basis for all major cardiovascular and metabolic diseases.  
Overall, Danshen and its bioactive constituents represent an 
invaluable source for small-molecule cardiovascular drug 
discovery.  Currently, Danshen and its preparations (such as 
Fufang Danshen Dripping Pill, Fufang Danshen injection, and 
Danhong injection, among others) have been widely used in 
China[1-4].  However, clinical applications of these Danshen 
preparations in other countries are still limited.  Investigations 
of the cardiovascular effects and mechanisms of Danshen and 
its bioactive constituents may also broaden our understanding 
of Danshen and its preparations for therapeutic applications 
worldwide.
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