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Abstract
Stroke can lead to long-term neurological deficits.  Adult neurogenesis, the continuous generation of newborn neurons in distinct 
regions of the brain throughout life, has been considered as one of the appoaches to restore the neurological function following 
ischemic stroke.  However, ischemia-induced spontaneous neurogenesis is not suffcient, thus cell-based therapy, including infusing 
exogenous stem cells or stimulating endogenous stem cells to help repair of injured brain, has been studied in numerous animal 
experiments and some pilot clinical trials.  While the effects of cell-based therapy on neurological function during recovery remains 
unproven in randomized controlled trials, pharmacological agents have been administrated to assist the cell-based therapy.  In this 
review, we summarized the limitations of ischemia-induced neurogenesis and stem-cell transplantation, as well as the potential 
proneuroregenerative effects of drugs that may enhance efficacy of cell-based therapies.  Specifically, we discussed drugs that enhance 
proliferation, migration, differentiation, survival and function connectivity of newborn neurons, which may restore neurobehavioral 
function and improve outcomes in stroke patients.
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Introduction
Cerebral infarction (CI) is a major health problem worldwide.  
It is the second leading cause of death and the third most 
common cause of disability[1].  Numerous efforts have been 
made to reduce ischemia-induced neuron injury and restore 
neurological function by various mechanisms, such as inhibi-
tion of neuroinflammation[2], blocking N-methyl-D-aspartate 
(NMDA) receptor[3], opening of KATP channel[4] , suppression 
of melastatin-like transient receptor potential cation channel, 
subfamily M, member 7 (TRPM7) channel[5], and inhibition of 
postsynaptic density-95[6].  Despite of this, recombinant tissue 
plasminogen activator (rtPA) is still the only FDA-approved 
drug treatment for ischemic stroke and must be used within 
4.5 h of onset[7].  Spontaneous neuroplasticity in perilesional 
tissue following ischemic insult may promote map reorganiza-
tion abilities in human and animal models[8].  Neurogenesis 
was wildly accepted as a fundamental mechanism of neural 
plasticity[9, 10].  Recent studies suggest that after central ner-

vous system (CNS) injuries, regeneration and reparation may 
occur in the brain through adult neural stem/progenitor cells.  
Stem-cell-based therapies, including cell transplantation and 
stimulation of endogenous neurogenesis, are potential strate-
gies to repair and regenerate the injured brain and may pro-
vide the second therapeutic time window for ischemic stroke 
treatment[11].  However, whether stem cell transplantation 
would be beneficial for neuronal function following stroke 
insults is still indefinite.  So in this review we will discuss 1) 
the evidence of neurogenesis in adult brain; 2) the contribu-
tions and limitations of ischemia-induced neurogenesis for  
cerebral repair; 3) the potentials and limitations of stem cell 
transplantation therapies; and 4) the potential role of drugs to 
enhance efficacy of the cell-based therapy by enhancing the 
proliferation, migration, differentiation, survival, and func-
tional connectivity of newborn neuron.

The discovery of neurogenesis in normal adult brain
It was considered for a long time that neurogenesis ended 
in the period shortly after birth and adult neurogenesis was 
impossible.  However, in 1992, adult neurogenesis in mouse 
brain was verified by Reynolds[12].  Only 6 years later, in 1998, 
adult neurogenesis in human brains was also found under 
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physiologic conditions[13-17].  Then it was believed that prolif-
eration of adult neural stem cells (NSCs) in the central nervous 
system (CNS) might have the ability to replace lost or dam-
aged neural cells.  Transplantation of exogenous or stimula-
tion of endogenous stem cells could be potential treatments for 
human brain repair after an ischemic stroke or other neurode-
generation diseases[18-20].

Ischemic stroke promotes neurogenesis 
The evidence of ischemic stroke-induced neurogenesis
Ischemic stroke is one of the most important causes of long-
term disability and mortality worldwide.  Vascular recanaliza-
tion therapy is one of the few effective therapies; however, it 
can only be used within a narrow therapeutic time window 
(within 4.5–6 h post-stroke).  The discovery of continuous 
adult neurogenesis in human brains provides a second thera-
peutic time window and gives hope to neural repair after 
ischemic stroke.  Encouragingly, it was found that com-
pared to quiescent state, the production of neuroblasts was 
significantly increased in the adult brain after ischemic 
stroke[21-26].  It was found that stroke gave rise to a 31-fold 
increase of the number of new-born neurons in the ipsilat-
eral striatum[15].  The generated neuroblasts migrate toward 
the injured brain region, differentiate into mature striatal 
neurons, establish appropriate long-distance connections, 
integrate into the neuronal circuitry and may contribute to the 
recovery of ischemic stroke[27-29].  

Cell responses associated with the ischemia-induced neurogenesis
While a series of evidence showing the presence of ischemic-
enhanced neurogenesis in rodents and human, their mecha-
nisms remain to be elucidated.  For a better understanding of 
the promise and limitations of ischemia-enhanced neurogen-
esis on brain repair, the mechanisms underlying ischemia-
enhanced neurogenesis, especially the cell response, are dis-
cussed in this section (Figure 1).

Ischemia-induced astrocyte-to-neuron conversion
After cerebral ischemia, astrocytes are activated, which indeed 
can give rise to neurons in vivo in the adult mouse striatum 
through Notch signaling pathway[30].  By local transduction 
of striatal astrocytes with adenoviruses expressing Cre under 
regulatory elements of the GFAP promoter in Connexin-
30-CreER transgenic mice, researchers were able to visualize 
doublecortin (DCX)-positive neuroblasts striatal astrocyte 
origin[31].  Another study showed that striatal astrocytes could 
transdifferentiate into immature neurons at 1 week and mature 
neurons at 2 weeks after middle cerebral artery occlusion 
(MCAO).  In addition, these astrocyte origin neurons could 
form synapses with other neurons at 13 weeks after MCAO.  It 
has been shown that these astrocyte origin newborn neurons 
could produce connections with other neurons in the injured 
brain[32].  VEGF helps striatal astrocytes transdifferentiate into 
new mature neurons[33].  These results indicate that astrocytes 
were one of the sources of new-born neurons after ischemic 
stroke.

Astrocyte-derived neurotrophic factors involved in ischemia-
included neurogenesis
Recently astrocytes are considered to be involved in adult neu-
rogenesis through the releasing of neurotrophic factors[34, 35].  
In stroke model, activated astrocytes enhanced the expression 
of BDNF[36], which enhanced the differentiation of CNS stem 
cell-derived neuronal precursors[37], resulted in higher initial 
NSCs engraftment and survival[38].  Glial cell line-derived neu-
rotrophic factor (GDNF), another neurotrophic factor secreted 
by astrocytes, induces neural differentiation in neural progeni-
tor cells[39], promotes striatal neurogenesis after stroke in adult 
rats[40].  Nerve growth factor (NGF) expressed in astrocytes 
and enhanced after ischemic stroke in peri-infarct area[41], has 
been shown to improve survival of newly generated cells in 
the ipsilateral striatum and subventricular zone (SVZ)[42].

Vasculature is associated with neurogenesis
The vasculature is an important component of the adult neural 
stem cell niche.  After cerebral ischemia, neurotrophic factors 
secreted by endothelial and pericyte affect the neurogenesis in 
a variety of aspects, such as promoting the proliferation, neu-
ronal differentiation of NSCs[43].  Vascular endothelial growth 
factor (VEGF), which is secreted by endothelial cells and 
pericytes, is one of the most important neurotrophic factors 
stimulating cell proliferation in the SVZ[44, 45], facilitating the 
migration of immature neurons towards the ischemic tissue[46].  
Besides VEGF, several other cytokines or growth factors have 
been implicated in poststroke neurogenesis.  Betacellulin 
(BTC), placenta growth factor (PlGF-2) and Jagged1 were also 
found to induce NSCs proliferation during postnatal and adult 
neurogenesis[43, 47, 48].  Neurotrophin-3 (NT-3), a mediator of 
quiescence in the SVZ adult neural stem cell niche, promotes 
newly differentiated neurons in hippocampal dentate gyrus 
(DG)[49, 50] and cholinergic neuronal differentiation of bone 
marrow-derived neural stem cells[51].  Another endothelial-
derived neurotrophic factor, pigment epithelium-derived fac-
tor (PEDF), was shown to promote the self-renewing cell divi-
sion and multipotency maintenance of neural stem cells[52, 53].

Ischemia-induced pericytes-to-neuron conversion
Besides glial cells, pericytes were also found to be involved 
in neurogenesis.  Studies found that 3 days after transient 
ischemia/reperfusion platelet-derived growth factor receptor 
beta-positive (PDGFR beta+) pericytes within injured areas 
began to express the NSCs marker Nestin, and at day 7, some 
of them expressed the immature neuronal marker DCX.  These 
findings suggest that brain pericytes may contribute to new 
neurons in response to ischemia condition[54, 55].

The polarization of microglia adjusts neurogenesis
Microglia, one of the resident immune cells in CNS, plays a 
crucial role in neurogenesis, which includes 1) Resting microg-
lia in the neurogenic niche releasing neurotrophic factors such 
as insulin-like growth factor 1 (IGF-1) which are essential for 
new neurons proliferation and survival[56]; 2) activated microg-
lia converting to neuron[57], and 3) bidirectionally adjusting 
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neurogenesis through polarization.  In this section, we mainly 
discuss the third role of microglia, which is closely related to 
the regulation of neurogenesis and the recovery of neurologi-
cal function.

Under physiological circumstances, microglia retain a rela-
tive quiescent surveillance phenotype for constant monitoring 
of the brain parenchyma[58].  Shortly after ischemic stroke, due 
to the change of cellular environments, such as the deletion of 
ATP, microglia were activated to clear the cell debris[59].  The 
activated microglia present two polarization phenotypes, M1 

and M2, which exhibit distinct roles in influencing neurogen-
esis.  Acute M1 microglial activation along with secreted pro-
inflammatory cytokines [interleukin 6(IL-6), tumor necrosis 
factor α (TNF-α), interferon gamma (IFN-γ), interleukin 23(IL-
23), interleukin 12 (IL-12) and interleukin 1β (IL-1β), etc.][60-62] 
and reactive oxygen species (ROS)[63, 64].  It is widely consid-
ered that M1 microglia causes neuronal death, neurogenesis 
inhibition and exacerbates neuronal injury[65].  However, some 
studies do not fully support this notion.  For instance, the 
neuro-inflammatory environment is not entirely harmful and 

Figure 1.  Schematic diagram of two major routes of stem cells and neurogenesis in stroke.  Endogenous stem cells (Left) and transplanted exogenous 
stem cells (Right).  Important processes towards improved neurological outcomes as shown are proliferation, differentiation, migration, and functional 
connection.  Drug and peptides (Purple) and herbal medicines (Green) tested in animal and cell culture models are shown along side their suspected 
targeted processes. Endogenous compounds are denoted in Red text.
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may have dual roles in regulating neurogenesis after stroke [66].  
Advantages or disadvantages of neuroinflammation on neu-
rogenesis depends on its severity and location.  During mild, 
acute inflammation, activated, ramified or intermediate 
microglia in ipsilateral SVZ has been shown to accompany 
neuroblast migration after stroke, indicating a beneficial 
role in neurogenesis, while amoeboid microglia in the peri-
infarct, accompanied with the uncontrolled inflammation, 
induced the death of newborn neuron, and inhibited neural 
progenitors from differentiating into neurons which were det-
rimental to neurogenesis [67-69].  

In contrast, an increase in activated M2 microglia promotes 
neurogenesis[70].  In addition to cytokines and chemokines, 
microglial cells also synthesized and secreted neurotrophic 
factors like basic fibroblast growth factor (bFGF), brain 
derived neurotrophic factor (BDNF) and interleukin 4 (IL-4)[71]  
which are known to stimulate the proliferation, migration, dif-
ferentiation, the survival of neuron[72] and regulate synaptic 
maturation[73].  According to the above studies, promoting M1 
to M2 phenotype transition may be a promising strategy to 
minimize detrimental effects and/or maximizing protective 
effects.

In summary, ischemia induces astrocyte, pericytes and 
microglia to neuron conversion (Figure 1).  Activated microg-
lia bi-directionally adjusted the process of neurogenesis partly 
through the polarization.  During the course of neurogenesis, 
molecules, such as ATP, glucose, signaling pathways, such as the 
notch, Ras/MAPK and PI3K/TOR/PTEN, and transcription-
related factors, such as Hes1, miRNA 210, help regulate the pro-
cess of neurogenesis[74].  Strategies to promote neuron conver-
sion, microglia M2 polarization by targeting molecular path-
ways and transcription factors may promote neurogenesis.

The role of ischemia-induced neurogenesis in brain repair and 
recovery: favorable or harmful
Ischemia stroke enhances cell proliferation.  Stroke-generated 
new neurons migrate into the severely damaged area, partly 
replenish the damaged or lost neuron, and promote the repair 
of injured-brain[15, 75].  Most studies suggest that ischemia-
induced neurogenesis is a means of self-repairing which partly 
contributes to the neurological recovery and may be related to 
the spontaneous recovery after ischemic stroke insults.  How-
ever, whether this injury-induced neurogenesis contributes to 
recovery after brain injury remains controversial.  

Ischemia-induced neurogenesis promotes brain recovery
Most of the studies provided evidence that ischemia-induced 
neurogenesis is helpful to brain repair and recovery.  After 
ischemia, spontaneous neurogenesis is enhanced and accom-
panied by the course of spontaneous recovery of neurological 
function, suggesting a possible relationship between neuro-
genic potential and recovery after injury[76, 77].  Once ischemia-
induced neurogenesis and associated neuromigration was 
abolished in transgenic mice expressing herpes simplex virus 
thymidine kinase under control of DCX promoter by the anti-
viral drug ganciclovir (GCV), infarct size was enlarged, and 

post-ischemic sensorimotor behavioral deficits were measured 
by rotarod, limb placing, and elevated body swing tests were 
exacerbated[78].  In another study, when neuroprogenitor cells 
were conditionally ablated using a transgenic mouse model 
containing modified Herpes Simplex Virus Thymidine Kinase 
Gene (HSV-TK gene) driven by Nestin promoter, learning and 
memory outcomes were worsened and synaptic connectivity 
in the performant pathway reduced[79].  The above two studies 
present evidence that spontaneous ischemia-induced neuro-
genesis contributes to the recovery of neurological function 
and might therefore be a target for stroke therapy.

Spontaneous Ischemia-induced neurogenesis has its own 
limitation
Studies suggested the major limitation of spontaneous neuro-
genesis in the brain is the lack of surviving high-quality new-
born neuron.  Three major possibilities support this notion.

First, there are few surviving neurons.  Despite the large 
number of new-born neurons that are generated following 
stroke, more than 80% of them die during the first 2 weeks, 
most of them do not differentiate to mature neurons after 4 
weeks post-stroke[80], and no surviving differentiated mature 
neural cells were observed by 90 days[26].  These data indicate 
that although many neuroblasts are produced and migrate to 
the site of injury, the ability of new-born neurons to replace 
lost neurons is limited.  The limited number of surviving NCSs 
is partly due to unfavorable microenvironment post stroke 
attack (high levels of detrimental inflammatory factors and 
lack of trophic factors).  In addition, normal aging may lead 
to further decreases in the number and maturation of newly 
generated neurons in the ischemic penumbra.  To this day, 
the mechanisms underlying the low survival rate of new-born 
neurons remain unclear.

Second, the morphological features of the new neurons 
remain abnormal.  Despite the fact that stroke enhanced SVZ 
neurogenesis and attracted new-born neurons to the injury 
area in rodents[81, 82] and patients[23], approximately 5% to 10% 
of newborn granule cells display significant morphologi-
cal abnormalities.  The main features are additional basal 
dendrites, ectopic cell position, and an increased portion of 
mushroom spines in aberrant neurons, which suggests stable 
synaptic integration[83].

Finally, there is a lack of diversity in the new neurons.  Isch-
emia-induced neurogenesis generates predominantly GAB-
Aergic interneurons in SVZ, which cannot replace the broad 
spectrum of neuronal subtypes damaged by stroke.  Therefore, 
SVZ neurogenesis may not be sufficient to replenish the loss of 
neuron after ischemic stroke[16] 

In summary, ischemia-induced neurogenesis promotes brain 
recovery to some extent; however, it has been proven weak.  
Endogenous neurogenesis by itself is insufficient for effective 
brain repair after stroke.  More ideal strategies are needed to 
enhance the number of surviving neurons, alleviate morpho-
logical abnormalities, enrich the cell subtype and construct the 
new neural network.  



699
www.chinaphar.com
Zhu SZ et al

Acta Pharmacologica Sinica

Potential of cell-based therapy for clinical trans-formation
Numerous animal experiments provide evidence that promot-
ing neurogenesis is a potential way to protect and repair dam-
aged brain tissues post-stroke[82, 84-87].  However, the role of cell-
based therapy in ischemic stroke still needs to be established, 
because of the demonstrated challenges of cell-based therapies 
for ischemic stroke.  It has been proposed that transplantation 
of neurons could improve neurological function by a variety 
of mechanisms including neuron replacement, alleviation of 
the neuroinflammation[88], inhibition of MMP-9 activation[89], 
secretion of neurotrophic factors, thereby survival of new-
born ​​neurons in injured-brain.  In recent years, many pre-
clinical studies and clinical trials on stem cells transplantation 
have been performed (Figure 1).  Stem cell-based therapies 
were found to reduce infarct size and improve neural func-
tional recovery in pre-clinical studies; however, its efficacy in 
humans still needs to be determined.

Stem cells
Bone marrow stem cells (BMSCs) are an array of differ-
ent types of multipotent and pluripotent cells homed in the 
spongy tissue of almost all bones.  Three basic lineages pre-
vail: mesenchymal stem cells (MSCs), bone marrow mono-
nuclear cells (BM-MNCs) and immortalized human neural 
stem-cell line.  BMSCs were widely used to treat cerebral 
ischemic stroke in animal experiments and clinical trials for 
their advantages, such as easy collection, lack of ethical issues, 
pluripotency, and safely transplanted.  MSCs transplanta-
tion was found to inhibit microglia activation, secrete growth 
factors, enhance angiogenic factor expression and vascular 
density, reduce scar size, limit apoptosis, and exert beneficial 
function on neurological recovery after ischemic brain injury 
in rats [11].  In the clinic, a long-term follow-up study for 5 years 
study of 16 patients showed that MSCs intravenous injection 
decreased modified Rankin score (mRS)[90].  Another study of 
40 stroke patients by Bhasin group showed statistically sig-
nificant improvement in modified Barthel Index (mBI) in stem 
cell group 6 months post-stroke[91].  MSCs also improved mBI 
at 39 and 52 months after transplantation[92] Despite the effi-
cacy of MSCs proved in some clinical trials, the results from 
different clinical trials are partly contradictory (Table 1).  For 
instance, a small clinical trial of 5 patients with acute middle 
cerebral artery (MCA) infarction by Band group reported a 
better Barthel index (BI) at 3 or 6 months but not at 12 months 
post-stroke when the patients received intravenous injection 
with autologous MSCs, In addition, MSCs transplantation did 
not improve mRS at 3, 6, 12 months post-stroke[93].  A random-
ized blinded phase II clinical trial showed at 6 months, there is 
no difference in BI, mRS, NIHSS and infarct volume between 
treatment group and control group[94].  In this study, 120 sub-
acute stroke patients were enrolled, among them, 58 received 
2.8×108 MSCs intravenously injected at a medium of 18.5 days 
post-stroke.  

BM-MNCs are another type of stem cells widely used in 
clinical trials.  In 2012, a prospective clinical trial was per-
formed by Friedrich group.  In this study, 20 patients with 

acute MCA infarct, spontaneous recanalization but persis-
tent deficits were enrolled.  BM-MNCs were intra-arterially 
injected between 3 and 7 days after stroke onset.  At 3 months, 
clinical improvement occurred in 30% patients[95].  In the same 
year, a single-blinded (outcomes assessor) controlled Phase 
I/II trial was performed and a total of 20 MCA infarction 
patients were enrolled.  Ten of them received MNCs injection.  
Results showed that BM-MNCs enhanced β-Nerve growth fac-
tor (β-NGF), however, did not improve neurological function 
at 6 months[96].  In 2015, a Phase I/IIa clinical Trial enrolled 12 
severe embolic stroke patients[97].  At 6 months, intravenous 
MNCs enhanced cerebral blood flow (CBF), metabolic rate of 
oxygen consumption and neurologic outcomes.  Another ran-
domized, controlled, dose-finding, multicenter trial, IBIS, has 
sought to further test the efficacy of MNCs.  This trial has just 
started the recruitment phase[98].  The findings are summarized 
in Table 1.

Besides mesenchymal stem cells, recently, immortalized 
human neural stem-cell lines were also used in clinical trials.  
Kalladka D enrolled 13 patients, among them, 11 received cell 
transplantation, and results showed that stem cell therapy 
with single intracerebral doses of up to 20 million cells signifi-
cantly improved neurological function and was not associated 
with adverse events[99].

Neural progenitor cells (NPCs) transplant
Neural progenitor cells (NPCs) derived from adult brain and 
embryonic/fetal tissues can differentiate into neurons, astro-
cytes, or oligodendrocytes[100-102].  The transplantation of NPCs 
into brains with cerebral infarction increased dendritic length 
and the number of branch points and improved sensorimotor 
function[103].  These beneficial effects are thought to be associ-
ated with the secretion of trophic factors such as BDNF[104], 
vascular endothelial growth factor (VEGF)[105, 106], glial cell 
derived neurotrophic factor (GDNF)[107], basic fibroblast 
growth factor (FGF-2)[108, 109] and others by transplanted NPCs.  
Despite numerous animal experiments, the efficacy of pro-
genitor cells on brain repair after stroke still need to be deter-
mined in more clinical trials.  Recently a phase 2, randomized, 
double-blind, placebo-controlled, dose-escalation trial of intra-
venous NPCs was performed in 33 centers in the UK and the 
USA.  Patients aged 18–83 years with moderately severe acute 
ischemic stroke were enrolled to treatment with intravenous 
NPCs (400 million or 1200 million cells) between 24 h and  
48 h after symptom onset.  Results showed that NPCs showed 
good efficacy in improvements in clinical functional scores 
(mRS and NIHSS score) and reductions in lesion volume[110].  

Neuronal precursors transplant
Collective evidence showed that neuronal precursor cells 
improved animal survival following ischemic brain injury.  
Grafted neuronal precursor cells in ischemic stroke rats sur-
vived 3 months after transplantation and differentiated into 
neurons of diverse neurotransmitter-subtypes and the surviv-
ing neurons exhibit electrophysiological properties and ability 
to fire action potentials[111].  An independent group further 
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showed that cell transplantation increased neurogenesis in 
the ipsilateral SVZ in both young adult (3 months old) and 
aged (24 months old) rats with focal cerebral ischemia[112], and 
improve sensory recovery after ischemic stroke[113].  Unfortu-
nately, there is no clear clinical evidence to demonstrate the effi-
cacy of neuronal precursors on cerebral ischemia recovery [92].

Despite significant improvements found in some case 
reports, prospective studies and single arm studies, no clear 
difference has been found in randomized, controlled, blinded 
clinical trials (RCT).  These differences could be due, at least in 
part, to the diverse designs of experiments, such as the dose, 
route of administration, initial time of stem cells therapy, 
severity of disease, choice of neurological evaluation scales 
and design types of clinical trials.  Yet it is possible that the 
limited capacity for neurogenesis in humans is the primary 
reason for the failure of stem cells on cerebral ischemia recov-
ery in RCT clinical trials.  Therefore, there is a pressing need 
to provide novel measures to improve the cell-based therapies 
for ischemic stroke.  Because the consecutive process of cell-
based therapy includes neuronal differentiation, migration, 
survival and functional connection, more effective measures 
need to be developed to successfully go through the full pro-
cess and help us get out of the plight.

Drugs assisting stem cell-based therapy
Neurogenesis following ischemic stroke has been considered 
as a potential mechanism for neuronal restoration, however, 
endogenous neurogenesis by itself is insufficient for effec-
tive brain repair as most newborn neurons do not survive.  
Replenishment of stem cells does not perfectly solve the prob-
lem of neurogenesis and neurofunction restoration following 
ischemic stroke insults.  Mobilization, promotion of migra-
tion, improvement of differentiation of neural stem/progeni-
tor cells, and promotion of connection of newly-developed 
mature neurons may be a potential way for brain repair.  In 
view of the clinical transformation of exogenous cells is not 
easy, using pharmacological drugs to improve stem cell-based 
therapies has recently become a new focus.  In this section, we 
will discuss the drugs that promote neurogenesis via differ-
ent ways in recent studies (Figure 1).  Some drugs enhancing 
neurogenesis and improving neurological outcomes in animal 
experiments are shown in Table 2.  

Chemical drugs
Proliferation of new stem cells
The proliferation of stem cells was the first step of neurogen-
esis.  Neuroinflammation, neurotrophic factors and apoptosis- 
related signal pathway are involved in the process of prolifera-
tion (Figure 1).  

Modulation of neuroinflammation
C-X-C chemokine receptor type 4 (CXCR4) is a receptor for a 
pleiotropic chemokine CXCL12.  CXCR4 antagonist AMD3100 
and CX549 mobilized bone marrow hematopoietic stem cells 
(HSCs) for transplantation by reducing neuroinflammation in 
stroke brain[114].  The neural cell adhesion molecule-derived    

Au
th

or
	

N
am

e 
of

 T
ria

l	
D

es
ig

n 
	

Pa
tie

nt
	

Ce
lls

	
Ti

m
e 

	
D

os
ag

e	
D

el
iv

er
	

Fo
llo

w
-	

Ef
fic

ac
y	

Ad
ve

rs
e 

								











up
		


Ef

fe
ct

s

Ab
br

ev
ia

tio
n:

 B
D

N
F,

 b
ra

in
-d

er
iv

ed
 n

eu
ro

tro
ph

ic
 fa

ct
or

; β
-N

G
F,

 β
-n

er
ve

 g
ro

w
th

 fa
ct

or
; B

M
SC

s,
 M

od
ifi

ed
 B

on
e 

M
ar

ro
w

-D
er

iv
ed

 M
es

en
ch

ym
al

 S
te

m
 C

el
ls

; B
I, 

Ba
rt

he
l i

nd
ex

; C
BF

, c
er

eb
ra

l b
lo

od
 fl

ow
; C

M
CI

, 
ce

re
be

llo
m

ed
ul

la
ry

 c
is

te
rn

 in
je

ct
io

n;
 D

TI
, d

iff
us

io
n 

te
ns

or
 im

ag
e;

 E
SS

, E
ur

op
ea

n 
St

ro
ke

 S
ca

le
; F

LA
IR

, F
lu

id
-a

tte
nu

at
ed

 in
ve

rs
io

n 
re

co
ve

ry
; F

-M
: F

ug
l-M

ey
er

 to
ta

l s
co

re
; F

N
A,

 fi
be

r n
um

be
rs

 a
sy

m
m

et
ry

; 
G

M
-C

SF
, g

ra
nu

lo
cy

te
-m

ac
ro

ph
ag

e 
co

lo
ny

-s
tim

ul
at

in
g 

fa
ct

or
; I

AT
, I

nt
ra

-a
rt

er
ia

l t
he

ra
py

; I
V,

 In
tra

ve
no

us
; M

AP
C,

 m
ul

tip
ot

en
t a

du
lt 

pr
og

en
ito

r c
el

l, 
M

CA
, m

id
dl

e 
ce

re
br

al
 a

rt
er

y;
 M

EP
, m

ot
or

-e
vo

ke
d 

po
te

nt
ia

l; 
M

M
P-

2,
 m

at
rix

 m
et

al
lo

pr
ot

ei
na

se
 2

; M
M

P-
9,

 m
at

rix
 m

et
al

lo
pr

ot
ei

na
se

 9
; m

RS
, m

od
ifi

ed
 R

an
ki

n 
Sc

al
e;

 M
RI

, m
ag

ne
tic

 r
es

on
an

ce
 im

ag
in

g;
 M

SC
, M

es
en

ch
ym

al
 s

te
m

 c
el

ls
; N

/A
, n

ot
 a

va
ila

bl
e;

 N
IH

SS
, 

N
at

io
na

l I
ns

tit
ut

es
 o

f H
ea

lth
 S

tro
ke

 S
ca

le
; N

PC
s,

 N
eu

ra
l p

ro
ge

ni
to

r c
el

ls
; O

EC
s,

 O
lfa

ct
or

y 
en

sh
ea

th
in

g 
ce

lls
; P

D
G

F-
BB

, p
la

te
le

t-d
er

iv
ed

 g
ro

w
th

 fa
ct

or
-B

B;
 P

RO
BE

, P
ro

sp
ec

tiv
e,

 ra
nd

om
iz

ed
, o

pe
n-

la
be

l, 
bl

in
de

d-
en

dp
oi

nt
; S

Cs
, S

ch
w

an
n 

ce
lls

; T
M

S,
 tr

an
sc

ra
ni

al
 m

ag
ne

tic
 s

tim
ul

at
io

n;
 U

CM
SC

s,
 U

m
bi

lic
al

 c
or

d 
m

es
en

ch
ym

al
 s

tro
m

al
 c

el
ls

; V
EG

F,
 v

as
cu

la
r e

nd
ot

he
lia

l g
ro

w
th

 fa
ct

or
.

M
on

ic
he

[9
6]

20
12

Sp
ai

n
Fr

ie
dr

ic
h

[9
5]

20
12

Br
az

il

In
tr

a-
ar

te
ria

l b
on

e 
m

ar
ro

w
 m

on
on

uc
le

ar
 

ce
lls

 in
 is

ch
em

ic
 s

tro
ke

: a
 p

ilo
t c

lin
ic

al
 tr

ia
l

(N
CT

 0
07

61
98

2)
In

tra
-a

rt
er

ia
l i

nf
us

io
n 

of
 a

ut
ol

og
ou

s 
bo

ne
 

m
ar

ro
w

 m
on

on
uc

le
ar

 c
el

ls
 i

n 
pa

tie
nt

s 
w

ith
 m

od
er

at
e 

to
 s

ev
er

e 
m

id
dl

e 
ce

re
br

al
 

ar
te

ry
 a

cu
te

 is
ch

em
ic

 s
tro

ke

A 
si

ng
le

-
bl

in
d 

Ph
as

e 
I/

II 
tri

al
Pr

os
pe

ct
iv

e 

M
CA

 s
tro

ke
 n

=2
0

(n
=1

0)

Ac
ut

e 
M

CA
 in

fa
rc

ts
n=

20
 

BM
-M

N
Cs

BM
-M

N
Cs

5–
9 

d

3–
7d

1.
59

×1
08

In
tra

-a
rt

er
ia

lly

IA
T

6 
m

6 
m

Cl
in

ic
al

ou
tc

om
es

↑ 
Sa

fe



703
www.chinaphar.com
Zhu SZ et al

Acta Pharmacologica Sinica

Ta
bl

e 
2.

  P
ro

m
ot

io
n 

ne
ur

og
en

es
is

 w
ith

 d
ru

gs
 a

fte
r i

sc
he

m
ic

 s
tro

ke
.

(T
o 

be
 c

on
tin

ue
d)

In
te

rv
en

tio
n

EG
CG

 (
pr

ed
om

in
an

t 
co

ns
tit

ue
nt

 o
f 

gr
ee

n 
te

a)
 Z

ha
ng

, X
u 

et
 a

l 2
01

7 
[8

4]
M

C-
21

(th
e 

an
ti-

CC
R2

 a
nt

ib
od

y)
,L

at
er

za
, e

t 
al

, 2
01

7 
[1

59
]

B
um

et
an

id
e 

(a
 s

el
ec

tiv
e 

N
a+ -K

+ -C
l--

co
-

tra
ns

po
rt

er
 in

hi
bi

to
r) 

,X
u,

 M
u 

et
 a

l, 
20

17
 

[1
60

]
6-

Br
om

oi
nd

iru
bi

n-
3'

-o
xi

m
e 

(B
IO

)(G
SK

3β
 

sp
ec

ifi
c 

in
hi

bi
to

r)
 ,

W
an

g,
 L

i e
t 

al
, 2

01
7 

[1
61

]
G

ua
no

si
ne

 (
G

UO
), 

D
en

g,
 Q

iu
 e

t 
al

, 2
01

7 
[1

62
]

4a
lp

ha
-P

D
D

(T
RP

V4
 a

go
ni

st
), 

Ch
en

, H
su

 e
t 

al
, 2

01
7 

[1
63

]
Fl

uo
xe

tin
e 
①

,S
un

, Z
ho

u 
et

 a
l, 

20
16

 [1
64

]

Fl
uo

xe
tin

e 
②

,S
un

, S
un

 e
t a

l, 
 2

01
5 

[1
65

]

Li
po

-P
G

E1
, L

in
g,

 Z
ha

ng
 e

t a
l, 

20
16

 [1
66

]

10
0K

/b
FG

F①
,L

i, 
Ts

ai
 e

t a
l, 

20
16

 [1
67

]

bF
G

F②
,W

an
g,

 e
t a

l 2
00

8[
16

8]

AB
AH

(M
PO

 In
hi

bi
to

r),
 K

im
, W

ei
 e

t a
l, 

20
16

 [1
69

]

Pr
og

es
te

ro
ne

 .J
ia

ng
, Z

uo
 e

t a
l, 

 2
01

6 
[1

70
]

In
te

rv
en

tio
n

M
B 

,A
hm

ed
, T

uc
ke

r e
t a

l, 
20

16
 [1

71
]

Re
la

te
d 

m
ec

ha
ni

sm

M
2 

ph
en

ot
yp

e 
of

 m
ic

ro
gl

ia

D
ep

le
tio

n 
of

 c
irc

ul
at

in
g 

m
on

oc
yt

es
;

Re
du

ce
d 

as
tro

cy
te

 a
ct

iv
at

io
n 

in
 S

VZ
 a

nd
 

ad
ja

ce
nt

 s
tri

at
um

Ef
fe

ct
s 

on
 in

fla
m

m
at

io
n−

−−

N
/A

BD
N

F,
 V

EG
F↑

eN
O

S 
ex

pr
es

si
on

 a
nd

 p
ho

sp
ho

ry
la

tio
n 

(s
er

in
e 

11
77

) ↑

N
/A

N
/A

N
/A

N
/A

N
/A

BD
N

F,
Ph

os
ph

or
yl

at
io

n 
of

 c
AM

P 
re

sp
on

se
 

el
em

en
t-b

in
di

ng
 p

ro
te

in
 (S

er
 1

33
)↑

, A
ce

ty
-

la
te

d 
H

3 
↑,

 C
he

m
ok

in
e 

CX
C 

re
ce

pt
or

 4
↑

VE
G

F↓
, B

D
N

F↑

Re
ac

tiv
e 

gl
io

si
s↓

 , 
pr

o-
in

fla
m

m
at

or
y 

↓,
 

cy
to

ki
ne

s 
cy

to
ch

ro
m

e 
c 

ox
id

as
e 

ac
tiv

ity
↑,

 
AT

P 
pr

od
uc

tio
n 

in
 p

er
i-i

nf
ar

ct
 re

gi
on

s↑

Th
er

ap
eu

tic
 e

ffe
ct

s

Pr
ol

ife
ra

tio
n 

of
 S

VZ
 N

PC
s↑

M
ig

ra
tio

n 
of

 S
VZ

 n
eu

ro
bl

as
ts

↑ 
En

ha
nc

es
 s

tri
at

al
 n

eu
ro

ge
ne

si
s 

at
 o

ne
 w

ee
k 

po
st

-in
su

lt,
 m

os
t l

ik
el

y 
by

 in
cr

ea
si

ng
 s

ho
rt

-te
rm

 s
ur

vi
va

l o
f t

he
 n

ew
ly

 fo
rm

ed
 n

eu
ro

bl
as

ts
 in

 
th

e 
SV

Z 
an

d 
ad

ja
ce

nt
 s

tri
at

um
.

M
ig

ra
tio

n 
of

 n
eu

ro
bl

as
ts

 in
 th

e 
SV

Z 
to

w
ar

ds
 th

e 
in

fa
rc

t a
re

a↑
 L

on
g-

te
rm

 s
ur

vi
va

l o
f n

ew
bo

rn
 n

eu
ro

ns
↑

G
en

er
at

io
n 

of
 n

eu
ro

bl
as

ts
 in

 th
e 

SV
Z↑

N
eu

ro
bl

as
ts

 m
ig

ra
te

d 
to

 th
e 

pe
ri-

in
fa

rc
t r

eg
io

n↑
N

ew
ly

 fo
rm

ed
 n

eu
ro

ns
 ↑

N
eu

ro
ge

ne
si

s 
an

d 
an

gi
og

en
es

is
 ↑

N
PC

 p
ro

lif
er

at
io

n 
↑

N
PC

 m
ig

ra
tio

n 
in

 th
e 

is
ch

em
ic

 h
em

is
ph

er
e 

↑

Pr
ol

ife
ra

tio
n 

of
 n

ew
bo

rn
 n

eu
ro

ns
 in

 th
e 

SV
Z↑

SG
Z 

−−
−

Pe
ril

es
io

na
l a

po
pt

os
is

 ↓
Su

rv
iv

al
 o

r d
iff

er
en

tia
tio

n 
of

 n
ew

ly
 g

en
er

at
ed

 c
el

ls
 in

 th
e 

SV
Z−

−−
N

eu
ro

bl
as

ts
 in

 b
ot

h 
th

e 
SV

Z 
an

d 
D

G
↑ 

D
en

dr
iti

c 
co

m
pl

ex
ity

 o
f n

ew
bo

rn
 d

en
ta

te
 g

ra
nu

le
 c

el
ls

↑
Su

rv
iv

al
 o

r d
iff

er
en

tia
tio

n 
of

 n
ew

ly
 g

en
er

at
ed

 c
el

ls
−−

− 
Pr

ol
ife

ra
tio

n↑
M

ig
ra

tio
n 

of
 e

nd
og

en
ou

s 
ne

ur
al

 s
te

m
 c

el
ls

 in
 th

e 
ip

si
la

te
ra

l S
VZ

 ↑
N

SP
Cs

 p
ro

lif
er

at
io

n↑
M

AP
-2

 c
el

ls
 ↑

G
FA

P 
ce

lls
 a

t t
he

 S
VZ

 a
re

a 
an

d 
in

 th
e 

in
fa

rc
te

d 
re

gi
on

s 
−−

− 
 

In
fa

rc
t s

iz
e 

−−
−

Pr
ol

ife
ra

tio
n 

of
 p

ro
ge

ni
to

r 
ce

lls
 in

 t
he

 s
ub

ve
nt

ric
ul

ar
 z

on
e 

an
d 

th
e 

su
bg

ra
nu

la
r z

on
e 

of
 th

e 
de

nt
at

e 
gy

ru
s 

(D
G

) ↑
N

eu
ra

l s
te

m
s 

ce
lls

 ↑
As

tro
cy

te
s↑

N
eu

ro
pr

og
en

ito
r c

el
ls

↑
N

eu
ro

bl
as

ts
 ↑

in
 th

e 
is

ch
em

ic
 S

VZ
, a

nt
er

io
r S

VZ
 s

tri
at

um
, a

nd
 c

or
te

x
N

ew
ly

 g
en

er
at

ed
 n

eu
ro

ns
 in

 th
e 

SV
Z↑

N
eu

ro
bl

as
t c

el
ls

 in
 th

e 
pe

ri-
in

fa
rc

t r
eg

io
n 

↑
Ce

ll 
pr

ol
ife

ra
tio

n 
an

d 
ne

ur
og

en
es

is
 in

 th
e 

pe
ri-

in
fa

rc
t z

on
e 

↓

N
eu

ro
lo

gi
ca

l o
ut

co
m

e

Fu
nc

tio
na

l r
ec

ov
er

y↑

Se
ns

or
im

ot
or

 re
co

ve
ry

↑

Se
ns

or
im

ot
or

 re
co

ve
ry

↑

Fu
nc

tio
na

l r
ec

ov
er

y↑

Fu
nc

tio
na

l o
ut

co
m

es
 o

n 
da

y 
5↑

Be
ha

vi
or

al
 o

ut
co

m
e 

 −
−−

Se
ns

or
im

ot
or

 re
co

ve
ry

 −
−−

N
eu

ro
lo

gi
ca

l r
ec

ov
er

y 
↑

M
ot

or
 c

oo
rd

in
at

io
n 

↑

N
eu

ro
be

ha
vi

or
al

 re
co

ve
ry

 ↑

N
/A

N
eu

ro
lo

gi
c 

fu
nc

tio
n 

on
 d

ay
s 

7 
an

d 
14

 p
os

t-o
cc

lu
si

on
 ↑

N
eu

ro
lo

gi
ca

l d
efi

ci
ts

 ↓



704
www.nature.com/aps

Zhu SZ et al

Acta Pharmacologica Sinica

Ab
br

ev
ia

tio
n:

 A
BA

H
, 4

-a
m

in
ob

en
zo

ic
 a

ci
d 

hy
dr

az
id

e;
 A

kt
, p

ro
te

in
 k

in
as

e 
B;

 A
ng

-1
, A

ng
io

po
ie

tin
-1

; B
D

N
F,

 b
ra

in
-d

er
iv

ed
 n

eu
ro

tro
pi

c 
fa

ct
or

; b
FG

F,
 b

as
ic

 fi
br

ob
la

st
 g

ro
w

th
 fa

ct
or

; B
rd

U,
 5

-b
ro

m
o-

2’
-d

eo
xy

ur
i-

di
ne

; C
RE

B,
 c

AM
P 

re
sp

on
se

 e
le

m
en

t-b
in

di
ng

 p
ro

te
in

; D
CX

, d
ou

bl
ec

or
tin

; D
G

, d
en

ta
te

 g
yr

us
; E

G
CG

, E
pi

ga
llo

ca
te

ch
in

-3
-g

al
la

te
; G

D
N

F,
 G

lia
l c

el
l-d

er
iv

ed
 n

eu
ro

tro
pi

c 
fa

ct
or

; H
BM

-M
SC

 ,H
um

an
 b

on
e 

m
ar

-
ro

w
 s

te
m

 c
el

l; 
H

2S
, h

yd
ro

ge
n 

su
lfi

de
; L

-N
BP

, L
-3

-n
-b

ut
yl

ph
th

al
id

e;
 M

B,
 m

et
hy

le
ne

 B
lu

e;
 N

/A
 , 

no
n-

av
ai

la
bl

e;
 N

T-
3,

 n
eu

ro
tro

ph
in

 3
; N

PC
: n

eu
ra

l p
ro

ge
ni

to
r c

el
l; 

PK
A,

 p
ro

te
in

 k
in

as
e 

A;
 P

G
E1

, P
ro

st
ag

la
nd

in
 

E1
; S

G
Z,

 s
ub

gr
an

ul
ar

 z
on

e;
 S

TA
T3

, s
ig

na
l t

ra
ns

du
ce

r a
nd

 a
ct

iv
at

io
n 

of
 tr

an
sc

rip
tio

n 
3;

 S
VZ

, s
ub

ve
nt

ric
ul

ar
 z

on
e;

 T
CM

, T
ra

di
tio

na
l C

hi
ne

se
 M

ed
ic

in
e;

 V
EG

F 
,v

as
cu

la
r e

nd
ot

he
lia

l g
ro

w
th

 fa
ct

or
; V

IP
, v

as
o-

ac
tiv

e 
in

te
st

in
al

 p
ep

tid
e.

 ↑
: e

nh
an

ce
d 

or
 im

pr
ov

ed
; −

−−
: n

o 
ch

an
ge

; ↓
de

cr
ea

se
d.

In
te

rv
en

tio
n

 l-
N

BP
 ,Y

an
g,

 L
i e

t a
l 2

01
5 

[1
19

]

VI
P 

,Y
an

g,
 S

hi
 e

t a
l 2

01
5 

[1
72

]

M
el

an
oc

or
tin

 ,
G

iu
lia

ni
, Z

af
fe

 e
t 

al
 2

01
1 

[1
73

]

G
in

se
no

si
de

 R
d 

5 
,L

iu
, Z

ho
u 

et
 a

l 2
01

5 
[1

74
]

Co
po

ly
m

er
-1

 (C
op

-1
)

(G
la

tir
am

er
 a

ce
ta

te
), 

Cr
uz

, L
or

ea
 e

t 
al

 
20

15
 [1

75
]

H
ua

ng
-L

ia
n-

Jie
-D

u-
D

ec
oc

tio
n 

(H
LJ

D
D

)
(T

CM
) ,

Zo
u,

 L
on

g 
et

 a
l. 

20
16

 [1
39

]
H

ua
tu

o 
Za

iz
ao

 p
ill

 (
TC

M
) 

,D
ua

n,
 W

an
g 

et
 

al
 2

01
7 

[1
40

]
To

ng
xi

nl
uo

 (T
CM

) ,
Ch

en
, W

an
g 

et
 a

l 2
01

6 
[1

76
]

D
an

gg
ui

-S
ha

oy
ao

-S
an

(T
CM

), 
Re

n,
 W

an
g 

et
 a

l 2
01

5 
[1

42
]

Re
la

te
d 

m
ec

ha
ni

sm

PK
A↑

, A
kt

↑,
 C

RE
B↑

,S
TA

T3
↓,

 c
le

av
ed

 C
as

-
pa

se
-3

↓,
 B

ax
↓

VE
G

F 
in

 th
e 

SV
Z 

↑

W
nt

-3
A 

si
gn

al
in

g 
pa

th
w

ay
s 

↑

p-
Ak

t 
↑,

VE
G

F↑
,B

D
N

F↑
,P

-E
RK

↑,
PC

12
 c

el
l 

ap
op

to
si

s 
↓

N
T-

3 
↑

VE
G

F,
 A

ng
-1

, A
ng

-2
 ↑

ph
os

ph
or

yl
at

io
n 

of
 

AK
T,

 a
nd

 G
SK

-3
be

ta
↑

BD
N

F,
 p

ho
sp

ho
ry

la
te

d 
PK

A,
 C

RE
B↑

N
/A

va
sc

ul
ar

 e
nd

ot
he

lia
l g

ro
w

th
 fa

ct
or

 ↑
eN

OS
 p

ho
sp

ho
ry

la
tio

n 
↑

Th
er

ap
eu

tic
 E

ffe
ct

s

N
eu

ro
ge

ne
si

s 
(D

G
) ↑

N
ew

bo
rn

 c
el

ls
 a

nd
 n

ew
ly

 M
at

ur
e 

ne
ur

on
s 

↑
St

em
 c

el
ls

 a
nd

 n
eu

ro
bl

as
t 

in
 t

he
 S

VZ
 a

t 
7,

 1
4 

an
d 

28
 d

ay
s 

af
te

r 
is

ch
em

ia
 ↑

St
em

 c
el

ls
 c

o-
lo

ca
liz

ed
 w

ith
 N

eu
N

 (
us

ed
 a

s 
in

di
ca

to
r 

of
 m

at
ur

e 
ne

ur
on

s)
 a

nd
 Z

if2
68

 (
us

ed
 a

s 
in

di
ca

to
r 

of
 f

un
ct

io
na

lly
 in

te
gr

at
ed

 
ne

ur
on

s)
 D

ay
 5

0 
po

st
-s

tro
ke

 in
 th

e 
D

G
 ↑

Br
dU

/D
CX

 a
nd

 N
es

tin
/G

FA
P 

do
ub

le
-p

os
iti

ve
 c

el
ls

 in
 is

ch
em

ic
 a

re
a 

↑

N
eu

ro
ge

ne
si

s 
(a

t 
7 

an
d 

60
 d

ay
s)

 in
 t

he
 S

VZ
, S

G
Z,

 a
nd

 c
er

eb
ra

l 
co

rt
ex

 ↑

Al
ka

lo
id

s 
an

d 
Ir

id
oi

ds
: n

eu
ro

na
l d

iff
er

en
tia

tio
n 

in
 t

he
 c

or
te

x 
↑ 

Al
ka

lo
id

s:
 n

eu
ro

ge
ne

si
s↑

N
eu

ro
ge

ne
si

s↑

N
eu

ro
ge

ne
si

s 
↑

an
gi

og
en

es
is

 in
 th

e 
pe

ri-
in

fa
rc

t a
re

a 
an

d 
SV

Z↑
M

ic
ro

ve
ss

el
 d

en
si

ty
 in

 th
e 

pe
ri 

fo
ca

l r
eg

io
n 

↑
St

em
 c

el
ls

 a
nd

 n
eu

ro
bl

as
t i

n 
th

e 
SV

Z↑

N
eu

ro
lo

gi
ca

l o
ut

co
m

e

Be
ha

vi
or

al
 re

co
ve

ry
 ↑

N
eu

ro
lo

gi
ca

l s
ev

er
ity

 s
co

re
 ↓

in
fa

rc
t v

ol
um

e 
↓

Le
ar

ni
ng

, m
em

or
y 

↑

N
/A

N
eu

ro
lo

gi
ca

l o
ut

co
m

e 
↑

N
/A

Fu
nc

tio
na

l  
re

co
ve

ry
 ↑

N
eu

ro
lo

gi
ca

l f
un

ct
io

n 
de

fic
it↑

N
eu

ro
be

ha
vi

or
al

 o
ut

co
m

es
 ↑



705
www.chinaphar.com
Zhu SZ et al

Acta Pharmacologica Sinica

peptide FG loop significantly increased endogenous NSC 
mobilization in the neurogenic niches, which is associated 
with the modulation of the activation of microglia and modu-
lation of neuroinflammation[115].  rIL-6 significantly increased 
the proliferation of NPCs in the ipsilateral SVZ[116].

Modulation of neurotrophic factors
Salvianolic acids for injection (SAFI) promoted the prolifera-
tion of NPCs, enhanced the number of surviving newborn 
neurons in the SVZ and led to the improvement of neurologi-
cal outcome.  In addition, SAFI activated sonic hedgehog–
Patched–Gli (Shh-Ptch-Gli) signal pathway and induced the 
production of BDNF and NGF.  The beneficial effect of SAFI 
was abolished by Cyclopamine (CYC) significantly through 
decreasing BDNF and NGF level.  These data indicated that 
SAFI significantly improved long-term functional recovery 
by enhancing BDNF and NGF production and promoting 
neurogenesis[117].  Besides SAFI, in another study, cystamine 
was also found to significantly enhance neuronal progenitor 
cell proliferation and plasticity through BDNF/TrkB pathway 
after stroke[118] .

Modulation of apoptosis-related signal pathway
L-3-n-butylphthalide (L-NBP) was found to markedly increase 
5-bromo-2’-deoxyuridine (BrdU)-positive cells in the hip-
pocampal dentate gyrus (DG) on day 28 after ischemia by 
activating CREB and Akt and inhibiting STAT3 signaling [119].  
Sodium ferulate (SF) and n-butylidenephthalide (BP) com-
bined with BMSC can significantly improve neurogenesis fol-
lowing stroke through the enhancement of VEGF and BDNF 
expressions and activation of AKT/mTOR signal pathway[120].

3K3A-APC (3K3A-activated protein C) has been demon-
strated to stimulate transplanted NSCs to neurons and pro-
mote neurological recovery via a protease-activated receptor-1 
(PAR1)-protease-activated receptors(PAR3)-sphingosine-
1-phosphate-receptor 1 (S1PRs)-Protein Kinase B (Akt) path-
way in vitro[121].

Polyphenol ellagic acid (EA) was found to enhance the 
proliferation of NSCs and the content of nestin protein in the 
brain semidarkness zone through the Wnt/beta-catenin sig-
naling pathway[122].  

Tat-NR2B9c, a peptide disrupting the N-methyl-D-aspartate 
receptor-postsynaptic density protein-95 interaction, substan-
tially increased neurogenesis in the dentate gyrus by revers-
ing the ischemia-induced formation of S-nitrosylation-cyclin-
dependent kinase 5 and increasing cyclin-dependent kinase 5 
(CDK5) activity in the ipsilateral hippocampus[123].  

Enhancement of migration of NPCs
Neurotrophic factors
BDNF enhanced the recruitment of NPCs into the lesioned site 
after ischemic stroke.  Atorvastatin, a chemical that activates 
the expression of BDNF, enhanced migration of SVZ cells[124].  
Similarly, overexpression of BDNF through gene therapy via 
Adeno-associated virus (AAV) infection facilitated endog-
enous NPC migration from the SVZ [125].  

PI3K/AKT signal pathway
Tetramethylpyrazine (TMP) was found to promote NPC 
migration, this effect was reversed by inhibiting the molecu-
lar, such as phosphatidylinositol 3-kinase/protein kinase B 
(PI3K/Akt), protein kinase C (PKC) and extracellular signal-
regulated kinase (ERK).  These data show that the PI3K/AKT 
signaling pathway is involved in the process of migration of 
NPCs[126].

Promoting cell differentiation
nNOS-PSD-95 was found to be involved in the course of dif-
ferentiation during ischemic stroke.  A small-molecular inhibi-
tor of nNOS-PSD-95 interaction, SCR-4026, was found to pro-
mote neural stem cells to differentiate into neuron-like cells[127].  
Complement-derived peptide C3a regulates neural progenitor 
cell migration and differentiation in vitro[128] .

Enhancing the survival of stem cells
Transplantation of cells is a promising strategy for neurore-
generation, however cell survival is one of the key barriers 
to the success of cell implantation treatment.  Studies have 
explored the protective effects of pharmacological agent pre-
conditioning to enhance the viability of stem cells.

Modulation of neuroinflammation
Cerebral ischemia stimulated inflammatory processes and 
affected NSCs in multiple ways.  Drugs modulating neuroin-
flammation are likely to provide neuroprotection during neu-
rogenesis.

5-Fluorouracil (5-FU) pre-treatment enhanced the viability 
of transplanted bone marrow mononuclear cells (BMMNCs) in 
the hippocampus, which was found to be associated with the 
increased microvessel density (MVD), reduced levels of pro-
inflammatory cytokines and increased levels of growth factors 
in the penumbra.  These results indicate that 5-FU improve the 
local microenvironment and increase number of viable cells [129].

Quercetin is another drug found to be effective in improving 
the survival rate of human umbilical cord mesenchymal stro-
mal cells (HUMSCs) in the injury site after local cerebral isch-
emia.  The protective mechanisms include reducing proinflam-
matory cytokines (IL-1β and IL-6), increasing anti-inflamma-
tory cytokines (IL-4, IL-10, and transforming growth factor-β1) 
and inhibiting cell apoptosis (caspase-3 expression)[130].

Apoptosis-related signal pathway
Although stroke stimulates the proliferation of NPCs, most 
of these cells die after injury.  Alleviating apoptosis is a major 
way to improve the survival of stem cells.  A number of anti-
apoptotic drugs were found to improve the survival of neu-
rons via a variety of singling pathways.

The tolerance of HWJ-MSC-derived neural-like cells was 
improved when they are preconditioned with deferoxamine 
(DFO).  The tolerance may be due to the increase of HIF-1, 
BDNF, pAkt-1 and decrease of Bax/Bcl-2 ratio[131].

Pifithrin-a (PFT-a), a p53 inhibitor, starting from day 6 after 
MCAO, was found to enhance the survival of endogenous 
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NPCs in the SVZ.  These data suggest that inhibition of p53 
may extend the survival of endogenous NPCs after stroke.

Ginsenoside Rg1 prevents NSCs from oxygen-glucose depri-
vation (OGD) insult through inhibiting oxidative stress and 
the activity of p38/JNK2 signaling way in NSCs[132].

Relieve neuronal morphological damage
Noggin is a signaling molecule involved in embryonic devel-
opment.  Grafting NSCs modified by noggin gene reduced the 
percentage of apoptotic neurons and relieved neuronal mor-
phological damage, which was accompanied by the decrease 
of the MDA levels, the SOD activity, and downregulation of 
the bone morphogenesis protein 4 (BMP4), VEGF, and bFGF 
proteins[133].  

Promote the functional connection
Establishment of cell-cell interaction is considered to be crucial 
after stem cell transplantation.  However, in recent studies, 
the functional connection, which is the key step for successful 
neurogenesis and was regarded as important for the repair 
of host brain architecture, is seldom considered.  In order to 
promote the functional communication of neuron, the fol-
lowing methods may be useful in future studies.  First, use of 
cell sheet as opposed to cell suspension.  Previous transplant 
approaches have utilized injection of the cells in a cell suspen-
sion; however, these cells cannot establish a connection to the 
damaged tissues.  However, the cell sheet was supposed to 
maintain cell-cell interactions and improve neurological func-
tions [134].  Second, sensory stimuli promoted pluripotent stem 
cell-derived cortical neurons to incorporate into injured corti-
cal circuitry and contribute to functional recovery in stroke[135].  

Multiple functions on neurogenesis
Some pharmacological agents serve multiple functions in neu-
rogenesis.  For instance, after cerebral ischemia, IL-1Ra was 
found to increased stem cell proliferation, enhance neuroblast 
migration and promote the survival of newly born neurons[136].  
IL-17A, secreted by astrocytes, augments survival of SVZ neu-
ral precursor cells (NPCs), neuronal differentiation and syn-
aptogenesis via p38 MAPK/calpain 1 signaling pathway after 
ischemic stroke[137].  Indomethacin, a modulator of microglia 
activation, contributed to increased neuroblast proliferation 
in the SVZ and migration to the ischemic striatum following 
stroke[138].

Herbal medicine
Epigallocatechin-3-gallate (EGCG), the predominant constitu-
ent of green tea, was found to increase proliferation of SVZ 
NPCs and migration of SVZ neuroblasts, improve functional 
recovery, and attribute to the M2 phenotype induction in 
microglia[84].  

Huang-Lian-Jie-Du-Decoction (HLJDD) is broadly used in 
Traditional Chinese Medicine (TCM) and shown to enhance 
neurogenesis.  The main ingredients of HLJDD are alkaloids 
and iridoids.  Alkaloids and iridoids enhance the level of 
VEGF, Ang-1, Ang-2, phosphorylation of AKT, and GSK-

3beta, increasing the number of BrdU-positive cells[139].  
Huatuo Zaizao pill (HT), a widely used TCM in clinic for 

the treatment of cerebrovascular disease, was also found to 
effectively enhance neurogenesis.  HT treatment for 3 days 
increased neurogenesis in cerebral ischemia reperfusion ani-
mal models, and its effects may be associated with the increase 
of BDNF mRNA, PKA, and phosphorylated CREB[140].  

Tongxinluo was shown to enhance neurogenesis and angio-
genesis in the peri-infarct area and SVZ, which partly contrib-
utes to the amelioration of the neurological function deficit [141].  

Danggui-Shaoyao-San (DSS) treatment significantly acti-
vated vascular endothelial growth factor, enhance microves-
sel density in the perifocal region, increased the numbers of 
BrdU+/DCX+ cells in the SVZ and improved neurobehavioral 
outcomes[142].

Buyang Huanwu Decoction (BYHWD) could markedly 
facilitated stem cell migration by increasing the expression 
of neurotrophic factors, such as stromal cell-derived factor-1, 
vascular endothelial growth factor, reelin, and BDNF in the 
ipsilateral infarct area after MCAO[143].

Enhance neurogenesis with GCSF
Stimulating the proliferation of neural stem/progenitor cells 
is another method to be used to improve neurobehavioral 
functions.  Granulocyte colony-stimulating factor (GCSF), a 
glycoprotein that stimulates the bone marrow to produce and 
release granulocytes and stem cells into the bloodstream, has 
been considered as a promising cytokine to promote neuro-
genesis in ischemic stroke mice.  A pre-clinical trial performed 
by Kawada in 2006 determined the role of GCSF in stimulating 
the proliferation of intrinsic neural stem/progenitor cells [144].  
A randomized, blinded controlled trial enrolled 10 patients 
(7 for GCSF therapy) found that GCSF improved neurologic 
functioning (NIHSS, ESS, EMS, and BI) and fluorodeoxyglu-
cose in the area surrounding the core[145].  To further determine 
the efficacy of GCSF on ischemic stroke, in 2016, a randomized 
controlled multicenter phase II trial enrolled more patients (49 
patients, among them, 40 patients received GCSF therapy).  
However, this study found that GCSF neither improved func-
tional recovery (NIHSS, ESS, EMS, and BI) nor reduced infarct 
volume[146] (Table 3).  These results indicate that successful 
neurogenesis includes multiple steps, besides proliferation, 
other steps such as migration, differentiation, survival of 
mature neurons and functional connections are also critical.  
Pharmacological drugs targeting multiple steps of neurogene-
sis are potential ways to improve neurogenesis and neurologi-
cal outcomes of ischemic stroke patients.

Conclusion ans future directions
Neurogenesis after stroke has been considered as an impor-
tant mechanism for functional recovery.  Numerous stud-
ies of animal experiments, prospective or pilot clinical trials 
and single arm trails showed that stem cell transplantation 
therapy improved neurological function.  However, no clear 
evidence has validated the role of cell-transplantation therapy 
in improving stroke outcome from multicenter, large sample, 
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randomizes, controlled, and blinded clinical trials.  Pharmaco-
logical drugs may enhance the efficacy of cell-transplantation 
therapy by promoting the proliferation, migration, differentia-
tion, survival of newborn neuron and the function connection.  
Thus, using pharmacological drugs in combination with cell-
based therapy can be a potential strategy to improve the post-
stroke outcomes in clinical trials.  Many drugs and herbal 
compounds that have been tested in animal models.  Future 
studies could consider to selectively test these drugs and 
herbal compounds in well-designed randomized clinical trials.
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