Skip to main content
. 2018 May 10;14:35. doi: 10.1186/s13007-018-0303-x

Table 5.

Performance summary of algorithm 1 on UNL-CPPD dataset (Naming convention for plant sequence is: Plant_ID-Genotype ID [1])

Plant sequence Dataset No. leaves Detected leaves False leaves Accuracy
Plant_001-9 CPPD-I 116 93 1 0.79
CPPD-II 168 157 5 0.83
Plant_006-25 CPPD-I 138 136 0 0.98
CPPD-II 205 188 5 0.91
Plant_008-19 CPPD-I 142 140 0 0.98
CPPD-II 210 200 9 0.86
Plant_016-20+ CPPD-I 103 86 0 0.83
CPPD-II 141 129 0 0.88
Plant_023-1 CPPD-I 113 101 0 0.89
CPPD-II 154 135 8 0.83
Plant_045-1 CPPD-I 122 120 3 0.96
CPPD-II 177 170 6 0.93
Plant_047-25 CPPD-I 148 142 2 0.94
CPPD-II 212 196 5 0.88
Plant_063-32 CPPD-I 149 138 0 0.93
CPPD-II 214 174 18 0.72
Plant_070-11 CPPD-I 125 111 0 0.89
CPPD-II 177 148 5 0.83
Plant_071-8 CPPD-I 141 131 0 0.93
CPPD-II 199 163 7 0.77
Plant_076-24 CPPD-I 135 126 2 0.92
CPPD-II 191 152 2 0.78
Plant_104-24 CPPD-I 144 140 0 0.97
CPPD-II 186 185 0 0.96
Plant_191-28* CPPD-I 137 111 0 0.96
CPPD-II 178 151 7 0.81
Average CPPD-I 132 123 < 1 0.92
CPPD-II 186 165 6 0.85

* Plant sequence used to demonstrate inaccuracy in leaf detection due to self-occlusion and leaf crossover

+Plant-level accuracy for UNL-CPPD-II is higher than that of UNL-CPPD-I

Plant-level accuracy for UNL-CPPD-II is lower than that of UNL-CPPD-I

Plant-level accuracy remains fairly similar for both UNL-CPPD-I and UNL-CPPD-II