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Abstract: About 132 thousand cases of melanoma (more severe type of skin cancer) were registered in 2014 
according to the World Health Organization. This type of cancer significantly affects the quality of life of indi-
viduals. Caffeine has shown potential inhibitory effect against epithelial cancer. In this study, it was proposed to 
obtain new caffeine-based molecules with potential epithelial anticancer activity. For this, a training set of 21 
molecules was used for pharmacophore perception procedures. Multiple linear regression analyses were used to 
propose mono-, bi-, tri-, and tetra-parametric models applied in the prediction of the activity. The generated 
pharmacophore was used to select 350 molecules available at the ZINCpharmer server, followed by reduction to 
24 molecules, after selection using the Tanimoto index, yielding 10 molecules after final selection by predicted 
activity values > 1.5229. These ten molecules had better pharmacokinetic properties than the other ones used as 
reference and within the clinically significant limits. Only two molecules show minor hits of toxicity and were 
submitted to molecular docking procedures, showing BFE (binding free energy) values lower than the reference 
values. Statistical analyses indicated strong negative correlations between BFE and pharmacophoric properties 
(high influence on BFE lowering) and practically null correlation between BFE and BBB. The two most promis-
ing molecules can be indicated as candidates for further in vitro and in vivo analyzes. 

Keywords: Epithelial cancer, caffeine, Chk1, Molecular modeling, multiple linear regression, Pharmacokinetic and toxicological properties. 

1. INTRODUCTION 

 Cancer is a disease characterized by the abnormal cell growth in 
an organism; it is also known as malignant neoplasm or malignant 
tumor. It can be caused by chemical, physical and biological agents 
and has its origin in genetic alterations of cells. The main effects 
observed in neoplastic cells are loss of function resulting from the 
absence of differentiation, uncontrolled proliferation, invasion of 
adjacent tissues and metastasis [1-3]. 

 There are several types of cancer depending on which region of 
the body is affected. Diagnoses of cancer worldwide show that the 
most common are lung cancer, with 1.8 million cases, 1.7 million 
breast of breast cancer and uterine cervix and rectum cancer with 
1.4 million. Regarding skin cancer, it is estimated that melanoma 
alone (the most aggressive of skin tumors) has an incidence of 
around 132 thousand cases per year, most of them registered in 
tropical areas [4]. 

 Also known as epithelial cancer, skin cancer is primarily caused 
by the incidence of UVB rays, in addition to being influenced by 
the individual's lifestyle [5]. Skin cancer receives several nomencla-
tures, which depends on which layer of skin the cancer develops, 
and can be of two types: non-melanomas - Basal Cell Carcinoma  
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(BCC) and Squamous Cell Carcinoma (SCC); And melanoma - 
cutaneous malignant melanoma that originates in melanocytes, 
melanin-producing cells, and has high potential to generate metas-
tases [6]. 

 The anticancer action of plant substances has been widely stud-
ied, among them there are studies related to caffeine acting as 
epithelial anticancer agent. Such as the effect of caffeine as a radio-
sensitizer on cancer cells [7], the effect of caffeine on rat skin irra-
diated by UVB rays [8] and the effect of caffeine and analogues on 
the growth of epidermal cells of rats of the JB6 P + lineage [9]. 
Caffeine (1,3,7-trimethylxanthine) is an alkaloid compound belong-
ing to the xanthine group, presents basic character and of plant 
origin, it contains in its composition nitrogen, oxygen, hydrogen 
and carbon [10]. 

 Regarding the biological receptor responsible for the epithelial 
anticancer action, when such neoplasia is caused by the UVB inci-
dence, Sarkaria et al. (1999) [7] indicate that methylxanthines in-
hibit a phosphotransferase kinase protein required for checkpoint 
signaling in cells with damaged DNA and that the possible action of 
trialkylxanthines on protein kinases can be attributed to a prominent 
target candidate: Chk1. The reference to this possible target was 
also made by Lu et al. (2008) [8], where they consider that the key 
to the pro-apoptotic effect of caffeine in the epidermis of mice ex-
posed to UVB is in the inhibition of the signal transduction pathway 
UVB → ATR → Chk1 → cdc25c → cdc2 → cdc2 / Cyclin B1. The 
presence of caffeine stimulates UVB-induced apoptosis, inhibits 
phosphorylation of Chk1 over Ser345, and restricts the decrease of 
mitotic cells acting on cyclin B1 (which occurs shortly after UVB 
irradiation). 
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 In this study, information on the biological receptor Chk1 [7, 8] 
and data of molecular structures and ICT50 from 30 molecules, se-
lected from the literature [9], were used to perform virtual screening 
(diagram shown in Fig. 1) to obtain new caffeine analog molecules 
with epithelial anticancer activity. 

2. MATERIALS AND METHODS  

2.1. Data Set Selection 

We selected 30 molecules derived from trialkylxanthine with 
experimental values of biological activity [9] related to the preven-
tion of Epidermal Growth Factor (EGF) in the malignant transfor-
mation of epidermal cells of susceptible JB6 rats (P +) C141 (JB6 P 
+). Activity values were presented as ICT50 (50% inhibition of cell 
transformation) against epithelial cancer.  

 The training set molecules used for the construction of the 
pharmacophore model were selected in decreasing biological activ-
ity sequence (from 0.01 to 0.24 mM), containing the most active, 
since the activity is a critical factor for the determination of the 
pharmacophore characteristics and for the validation of the model 
Multiple Linear Regression (MLR) [11, 12]. Caffeine and xanthine 
molecules were introduced in the training set, according to the fol-
lowing considerations: (1) introduction of caffeine, here used as the 
reference/prototype molecule; (2) introduction of xanthine, because 
it has the active scaffold of the molecules here investigated. A total 
of 21 molecules comprise of the final training set. 

 The test set comprised 9 molecules randomly selected, which 
was here used for external validation of the MLR model. Structures 
were drawn using the ChemScketch software [13] and saved in the 
mol format, except caffeine, for which the crystallographic pose 
was retrieved from the Cambridge Structural Database portal at 
http://webcsd.ccdc.cam.ac.uk/. Both files were later.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Flowchart of the virtual screening of new caffeine analog mole-
cules with potential epithelial anticancer activity. 

 

converted to mol2 using the Open Babel tool 2.3.2 [14]. The geo-
metries of the molecules were optimized according to the Molecular 
Mechanics MM+ Force Field, using the HyperChem 7 program 
[15]. 

2.2. Pharmacophore Model Perception 

 The mol2 files of the training set were inserted into the Phar-
maGist online server [16] to generate the pharmacophoric pattern of 
caffeine and analogues, with caffeine as pivot (keeped frozen) 
structure. PharmaGist generates a pharmacophore model based on 
the overlapping of individual pharmacohoric groups of input 
ligands (the training set). The method essentially aligns and over-
laps the molecules with a pivot (the caffeine molecule) seeking a set 
of chemical and spatial characteristics that are common to the larg-
est possible number of the input ligands. Assemblies with higher 
scores and with higher number of aligned ligands are considered 
better candidates for pharmacophoric models [16, 17]. 

2.3. Building and Validation of MLR Models 

 This step is crucial to evaluate the efficiency and predictive 
ability of MLR models in accurately identifying new active mole-
cules. Pharmacophoric models indicated by PharmaGist were char-
acterized according to their physicochemical and structural proper-
ties, such as: Number of atoms (A), general characteristics (GF), 
Spatial characteristics (SF), Aromatic region (Ar), Hydrophobic 
region (Hyd), hydrogen bond donor (Don), hydrogen bond receptor 
(Acc), anion (Neg) and cation (Pos). These characteristics were 
used to calculate the theoretical pICT50 values from multiple linear 
regression of the pharmacophoric characteristics of the molecules 
of the training set against the experimental pICT50 values. 

 Pearson's correlation was used to identify the relationship be-
tween the pharmacophoric properties of the 21 molecules in the 
training set associated with pICT50 values. The correlation cutoff 
was 0.3 according to previous studies conducted by Santos et al. 
(2015) [18]. After identifying the main pharmacological properties 
associated with biological activity, mono, bi, tri and tetra-
parametric models were developed. 

 The experimental ICT50 values were converted to pICT50 in 
order to reduce inconsistencies caused by the statistical steps, with 
the equation (1): pICT50 =  ̶  log ICT50. The pICT50 values were 
predicted for the training set, test set and triaged molecules as well, 
by the application of the MLR models. The MLR analyses are im-
plemented in the Statistica 7 program [19]. 

 Data of the pharmacophoric characteristics of the test set mole-
cules were obtained from the PharmaGist web server by the same 
previous way for the training set, except for the indication of a pivot 
molecule, where it was now selected automatically by the server 
itself. 

2.4. Virtual Sorting in ZINCPharmer 

 The best pharmacophore file obtained in PharmaGist for caf-
feine and analogues was inserted in the ZINCPharmer web server, 
available at http://zincpharmer.csb.pitt.edu/ [20]. This tool performs 
a virtual screening from the ZINC database [20, 21], a database 
with approximately 35 million structures of commercially available 
compounds. 

2.5. Tanimoto Similarity Search 

 The structures obtained from ZINCPharmer were selected by 
Tanimoto's similarity search procedure via the BindingDB web 
server. Molecules with similarity values greater than 0.6 were se-
lected [22]. For this selection, 12 molecules (xanthine, caffeine and 
ten most active) compose reference set. Theoretical pICT50 values 
were calculated for the molecules obtained from the Tanimonoto 
test, using the MLR models. Pharmacological data for ZINC mole-
cules were obtained in the same manner as described for both the 
training set and test set. 

2.6. Determination of Pharmacokinetic and Toxicological Prop-
erties 

 This step was performed after setting a cut-off point from the 
pICT50 values of the five most active molecules of the training set. 
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The resulting molecules were analyzed in the Derek software [23] 
(Toxicologic properties) and in the online Preadmet tool available 
at https://preadmet.bmdrc.kr/, This tool was used to determine se-
lected pharmacokinetic properties (Human Intestinal Absorption - 
HIA, Plasma Protein Binding - PPB and Blood Brain Barrier - 
BBB) and toxicological (Mutagenicity and Carcinogenicity). 

2.7. Molecular Docking Study 

2.7.1. Selection of a Receptor-Ligand Complex Used in Molecular 
Docking 
 The selection of the Chk1 receptor was based on the proposi-
tions by Sarkaria et al. (1999) [7] and Lu et al. (2008) [8] (as previ-
ously discussed), highlighting the Chk1 receptor as a prominent 
target for the action of alkylxanthines against epithelial cancer. 

 The Protein Data Bank (PDB) provides several receptor-ligand 
complex alternatives for Chk1. However, the structure of this recep-
tor complexed with caffeine is not available in the PDB, which 
makes it necessary to select the receptor-ligand complex (for further 
docking) as described below: 

 Selection of the receptor-ligand complex Chk1 (target protein) 
was performed taking into account (1) the structural similarity (vis-
ual inspection) of the ligands to the xanthine scaffold structure, 
regarding the presence of the heterocyclic rings; followed by (2) the 
overlap of the ligands with the caffeine structure, in relation to the 
overlap similarity values. 

 For PDB selection, only small ligand structures (characteristic 
common to the molecules here studied) from target in complex with 
only one ligand were selected. The structural similarity was ac-
cessed in the Discovery Studio 4.0 Client tool [24]. The ligands 
obtained were analyzed regarding the overlap similarity with caf-
feine. 

2.7.2. Molecular docking of the most promising ZINC molecules 
 Initially, the receptor Chk1 file (ID: 2WMR, with resolution of 
2.43 Å), chosen from the best caffeine overlapping ligand, was 
obtained from the PDB at http://www.rcsb.org/pdb/home/home.do 
[25], complexed with 6-morpholin-4-yl-9H-purine, PDB code ZYU 
[26]. Docking validation was performed by calculating the binding 
modes (between ZYU and Chk1) in the Autodock 4.2.6 program 
[27], using the standard genetic algorithm parameters, with popula-
tion size 150, maximum number of Ratings 250000, maximum 
number of generations 27000 and crossover rate 0.8. The values for 
the dimensions of the grid box were: X = 25, Y = 30 and Z = 20 and 
the center location was x = 12.6747, y = -2.0751 and z = 7.9635. 
Ten solutions were calculated and the poses with lower binding 
energies were analyzed. 

 Docking validation is a process wherein a ligand (structure with 
crystallographic pose experimentally determined) is withdrawn 
from the structure of a receptor-ligand complex, and reintroduced to 
the receptor with the docking parameters to be validated. This proc-
ess is conducted in order to verify that the coupling parameters 
specified in the input file for the docking method are reasonable and 
able to recover the structure and interactions of a known complex 
[27]. 

 The best molecules obtained from pharmacokinetic and toxico-
logical screening, caffeine and molecule 03 (the last two used as 
reference) were submitted to molecular docking using the same 
standard genetic algorithm parameters used in docking validation. 
The center location and grid box dimensions were also used as spa-
tial orientation of the site of interaction between the ligand and the 
Chk1 receptor. 

3. RESULTS and DISCUSSIONS 

3.1. Pharmacophore Generation 

 The best model was chosen according to the pharmacophore 
candidate containing the highest score as well as the multiple 

alignment of the 21 ligands of the training set. PharmaGist gener-
ates pharmacological candidate scores based on the alignment of 
the ligands with the pivot molecule (here treated as reference and 
keeped rigid). The server algorithm uses values with standard 
weights for each pharmacophoric characteristic. Initially, the 
alignment of the pivot + ligand pair is scored by their common 
characteristics and then the multiple alignment between the best 
scored pairs is generated. Various multiple alignments are thus 
scored by the same way [16, 17]. 

The quantitative characteristics of the best model are shown in 
Table 1, and the qualitative ones are shown in Figure 2. 

Table 1. Data found on the best PharmaGist pharmacophore 
model. 

Score GF SF Ar Hyd Don Acc Neg Pos 
Molecules in multiple 

alignment 

60.852 6 6 2 0 0 3 0 1 

01*, 02, 03, 04, 05, 06, 07, 

08, 09, 10, 11, 12, 13, 14, 

15, 16, 17, 18, 19, 20, 21. 

��
�

��
�

1��

1�
1�

��


1��

1��

�
�
�
�
�
�
�
�
�
�
�
�
�

A = number of atoms; GF = General Characteristics; SF = Spatial Characteristics; Ar = 

Aromatic; Hyd = Hydrophobic; Don = Hydrogen bond donor; Acc = Hydrogen bond 

acceptor; Neg = Anion; Pos = Cation. 

*Pivot molecule (Caffeine). 

 

 
Fig. (2). Qualitative characteristics of the best model generated by Phar-
maGist, with aligned ligands (A) and no aligned ligands (B). 

 

 The model shows six general characteristics (GF), which repre-
sent the total pharmacophoric characteristics; six spatial characteris-
tics (SF) related to the conformation of pharmacophoric regions; 
two aromatic regions (Ar); three hydrogen bond acceptor goups 
(Acc) and 1 cationic atom (Pos). 

 The training set consisted of the most active molecules, caffeine 
and xanthine. The structures and names of the molecules selected 
for the training set can be seen in Fig. 3. 

 The pharmacophoric data, the values of ICT50 and pICT50, and 
the their best correlations between with the variables of the 21 
molecules of the training set are shown in Table 2. These data de-
scribe the individual pharmacophoric characteristics with signifi-
cant correlations to the experimental activity values. 

 Properties with absolute correlation values less than 0.3 and 
greater than - 0.3 were excluded. The best correlations were related 
to the pharmacophoric properties A, GF, SF, Hyd, with positive 
correlations between them greater than 0.9. The correlation values 
between the properties and pICT50 were also significant, all be-
tween 0.7 and 0.8. These results are considered of good statistical 
quality for the selection of more significant characteristics [18, 28]. 
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3.1.1. Construction of MLR models 
 MLR models were built with the four best correlated pharma-
cophoric properties. The evaluation of the best models was carried 
out from the statistical descriptors of correlation coefficient (R), 
coefficient of determination (R2), adjusted coefficient of determina-
tion (RA

2), Standard Error of Estimation (SEE), analysis of variance 
and T test, which can be seen in Table 3. 

3.2. MLR Models and Validation 

 Data from the best MLR models resulting from combinations of 
one, two, three and four parameters are in bold. The values of R, R2 
and RA

2 increased with the increase in the number of parameters of 
the models, the highest values were found in tetra-parametric model 
and the smaller values in the mono-parametric model. The values of 
SEE decreased with increasing number of parameters, the tetra-
parametric model presented the lowest value and the mono-
parametric the highest. 

 The values of F decreased with increasing number of parame-
ters. The results of the t-test for the regression coefficients (Table 4) 
indicate that the parameters A and GF in the tetra and tri-parametric 
models presented significant values, as well as the GF parameter in 
the bi and mono-parametric models. The results for R, R2, RA

2, SEE 
and t-test, lead us to define, even with the low significance shown 
by the values of F, that the four models highlighted have a good 
level of statistical significance, being the tetra-parametric model the 
best classified. 

 The regression equations for each of the best models (shown in 
bold, in Table 3) are shown in Table 5. 

3.2.1. Internal and external validation of MLR models 
 The equations proposed in Table 5 were used to predict the 
activity of the training set molecules (internal validation), the test 
set (external validation) and the selected molecules. The results for 
the pICT50 values calculated for each molecule of the training set 
from the regression equations are available in Table 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Molecules of the training set used for pharmacophore generation. 
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 The results of Table 6 allow us to observe that the models had a 
good predictability level for the training set molecules, since the 
error values (Δ - variation of the experimental pICT50 values), in 
general, were relatively low for all models. The tetra-parametric 
model should be emphasized when considering the Δ4 modules, 
which presented a mean error of 0.1662 and a minimum and maxi-
mum interval of 0.0030 to 0.4800, lower results for this series of 
data among all the models. 

 Fig. 4 shows the correlation between the calculated experimen-
tal pICT50 and calculated pICT50 for each model. The models pre-
sented good correlation indexes, with R values around 0.8. The 
analysis of Fig. 4 also shows good results of the tetra-parametric 
model, where it has the highest value of R (0.85872), with an excel-

lent confidence level, against a value of R = 0.80037 of the mono-
parametric model. Table 7 shows the pharmacophoric data, the 
ICT50 and pICT50 values of the 9 molecules (22 to 30) of the test 
set. Figure 5 shows the structures of the test set molecules. Data on 
the pICT50 calculations for the test set are presented in Table 8. 
These calculations were performed from the best MLR models, 
similar to those performed for the training set. 

 The results of Table 8 show that the prediction using the models 
on the test set was satisfactory. The mono and tetra-parametric 
models showed mean error of 0.2150 and 0.3381, respectively. Fig. 
6 shows the correlation between the calculated and experimental 
pICT50 values in each model. The four models presented excellent 
R values, all of them above 0.9,, at the 95% confidence level. 

Table 2. Pharmacophoric Characteristics of the Training set, pICT50 and ICT50 values, and correlation between the most Significant 
properties. 

Training Set Molecules A GF SF Ar pICT50 ICT50 

1 (caffeine) 24 9 9 0 0.3188 0.48 

2 (xantine) 15 9 8 3 0.3468 0.45 

3 39 13 12 6 2.0000 0.01 

4 36 13 12 6 1.6990 0.02 

5 42 14 13 7 1.5229 0.03 

6 45 14 14 8 1.5229 0.03 

7 45 15 14 8 1.5229 0.03 

8 42 13 13 7 1.3979 0.04 

9 33 11 10 4 1.3010 0.05 

10 33 11 10 4 1.3010 0.05 

11 39 12 12 12 1.3010 0.05 

12 36 12 11 11 1.3010 0.05 

13 33 13 12 12 1.3010 0.05 

14 33 12 11 11 1.0000 0.10 

15 30 10 9 9 0.9208 0.12 

16 33 11 10 10 0.8861 0.13 

17 39 12 12 12 0.8861 0.13 

18 39 13 12 12 0.8239 0.15 

19 30 10 10 10 0.7959 0.16 

20 30 10 10 10 0.6990 0.20 

21 24 9 8 8 0.6198 0.24 

 A GF SF Hyd pICT50  

A 1.000000 0.904527 0.934078 0.974591 0.767452 - 

GF  1.000000 0.962751 0.933680 0.800355 - 

SF   1.000000 0.960847 0.738313 - 

Hyd    1.000000 0.747840 - 

pICT50     1.000000 - 
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Table 3. Statistical data of MLR models generated from the pharmacophoric characteristics of the training set in respect to pICT50 
values. 

Mono-parametric Models 

Eq. Descriptor R R2 R2
A SEE F 

1 GF 0.8004 0.6406 0.6217 0.2703 33.8612 

2 A 0.7675 0.5890 0.5674 0.2890 27.2268 

3 SF 0.7383 0.5451 0.5212 0.3040 22.7680 

4 Ar 0.0876 0.0076 -0.0445 0.4491 0.1470 

Di-parametric Models 

Eq. Descriptor R R2 R2
A SEE F 

1 GF +Ar 0.8177 0.6686 0.6317 0.2666 18.1548 

2 GF + SF 0.8092 0.6548 0.6164 0.2721 17.0700 

3 A + GF 0.8068 0.6510 0.6122 0.2737 16.7865 

4 A + Ar 0.7990 0.6384 0.5982 0.2786 15.8859 

5 A + SF 0.7698 0.5926 0.5473 0.2956 13.0909 

6 SF + Ar 0.7559 0.5714 0.5238 0.3032 11.9987 

Tri-parametric Models 

Eq. Descriptor R R2 R2
A SEE F 

1 A + GF + SF 0.8336 0.6949 0.6410 0.2632 12.9045 

2 A + GF + Ar 0.8312 0.6909 0.6363 0.2650 12.6643 

3 GF + SF + Ar 0.8238 0.6787 0.6220 0.2701 11.9706 

4 A + SF + Ar 0.7999 0.6399 0.5764 0.2859 10.0714 

Tetra-parametric Model 

Eq. Descriptor R R2 R2
A SEE F 

1 A + SF + GF + Ar 0.8587 0.7374 0.6717 0.2517 11.2318 

 

Table 4. Results of the t test for the regression coefficients of the best models. 

Model Variable t-test p Value 

Intercept -0.9925 0.3357 

A 1.1138 0.2818 

GF 2.2835 0.0364 

SF -0.9999 0.3323 

Tetra-parametric 

A + SF + GF + Hyd 

Hyd -0.2890 0.7763 

Intercept -2.1310 0.4880 

A 1.4945 0.1534 

GF 2.3871 0.0289 

Tri-parametric 

A+GF+SF 

SF -1.5637 0.1363 

 
(Table 4) Contd.... 



582    Current Pharmaceutical Design, 2018, Vol. 24, No. 5 Costa et al. 

Model Variable t-test p Value 

Intercept -1.5580 0.1366 

GF 2.0179 0.0588 
Bi-parametric 

GF+Hyd 

Hyd 0.0112 0.9912 

Intercept -3.0010 0.0073 Mono-parametric 

GF GF 5.8190 0.000013 

 

Table 5. Regression equations for the best models. 

Model (Eq.) 

(n = 21) 
Equation 

Mono-parametric (Eq1) pICT50 =  ̶ 1.2168(±0.4055) + 0.1993(±0.0342) × GF 

Bi-parametric (Eq2) pICT50 =  ̶ 1.888(±0.4007) + 0.2128(±0.0355) × GF  ̶ 0.0230(±0.0187) × Hyd 

Tri-parametric (Eq3) 
pICT50 =  ̶  0.9477(±0.4447) + 0.0334(±0.0224) × A + 0.2949(±0.1235) × GF  

 ̶  0.2295(±0.1468) × SF 

Tetra-parametric (Eq4) 
pICT50 =  ̶  0.8324(±0.4312) + 0.0415(±0.0220) × A + 0.2881(±0.1182) × GF 

  ̶  0.2364(±0.1404) × SF  ̶  0.0293(±0.0182) × Hyd 

 

Table 6. Prediction of pICT50 values of MLR models (equations 1 to 4) applied to the training set, experimental pICT50 values, mean 
error and maximum and minimum values 

Mono-parametric Bi-parametric Tri-parametric Tetra-parametric  Training set 

Eq1 Δ1 Eq2 Δ2 Eq3 Δ3 Eq4 Δ4 pICT50 

1 (Caffeine) 0.5766 -0.2578 0.7262 -0.4074 0.4432 -0.1244 0.6297 -0.3109 0.3188 

2 0.5766 -0.2298 0.6572 -0.3104 0.3719 -0.0251 0.4043 -0.0575 0.3468 

3 1.3737 0.6263 1.4393 0.5607 1.4357 0.5643 1.5200 0.4800 2.0000 

4 1.3737 0.3253 1.4393 0.2597 1.3354 0.3636 1.3954 0.3036 1.6990 

5 1.5730 -0.0501 1.6290 -0.1061 1.6014 -0.0785 1.6670 -0.1441 1.5229 

6 1.5730 -0.0501 1.6060 -0.0831 1.4721 0.0508 1.5259 -0.0030 1.5229 

7 1.7722 -0.2493 1.8188 -0.2959 1.7670 -0.2441 1.8140 -0.2911 1.5229 

8 1.3737 0.0242 1.4163 -0.0184 1.3065 0.0914 1.3790 0.0189 1.3979 

9 0.9752 0.3258 1.0597 0.2413 1.1043 0.1967 1.2260 0.0750 1.3010 

10 0.9752 0.3258 1.0597 0.2413 1.1043 0.1967 1.2260 0.0750 1.3010 

11 1.1744 0.1266 1.0885 0.2125 1.1408 0.1602 1.0561 0.2449 1.3010 

12 1.1744 0.1266 1.1115 0.1895 1.2700 0.0310 1.1971 0.1039 1.3010 

13 1.3737 -0.0727 1.3013 -0.0003 1.2352 0.0658 1.0949 0.2061 1.3010 

14 1.1744 -0.1744 1.1115 -0.1115 1.1697 -0.1697 1.0725 -0.0725 1.0000 

15 0.7759 0.1449 0.7320 0.1888 0.9386 -0.0178 0.9032 0.0176 0.9208 

16 0.9752 -0.0891 0.9217 -0.0356 1.1043 -0.2182 1.0501 -0.1640 0.8861 

17 1.1744 -0.2883 1.0885 -0.2024 1.1408 -0.2547 1.0561 -0.1700 0.8861 

18 1.3737 -0.5498 1.3013 -0.4774 1.4357 -0.6118 1.3441 -0.5202 0.8239 

(Table 6) Contd.... 
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Mono-parametric Bi-parametric Tri-parametric Tetra-parametric  Training set 

Eq1 Δ1 Eq2 Δ2 Eq3 Δ3 Eq4 Δ4 pICT50 

19 0.7759 0.0200 0.7090 0.0869 0.7091 0.0868 0.6375 0.1584 0.7959 

20 0.7759 -0.0769 0.7090 -0.0100 0.7091 -0.0101 0.6375 0.0615 0.6990 

21 0.5766 0.0432 0.5422 0.0776 0.6727 -0.0529 0.6315 -0.0117 0.6198 

*Mean error  0.1989  0.1960   0.1704   0.1662  

*Max  0.6263  0.5607   0.6118   0.4800  

*Min  0.0200  0.0003   0.0101   0.0030  

* The module of the error values was considered for this determination. 

 

Table 7. Pharmacophoric characteristics of test set, pICT50 and ICT50 values. 

Test set A GF SF Hyd pICT50 ICT50 

22 39 13 12 6 1.3010 0.05 

23 30 11 10 4 0.7447 0.18 

24 33 10 10 4 0.6021 0.25 

25 33 10 10 4 0.5229 0.30 

26 27 9 8 2 0.4202 0.38 

27 18 9 8 1 0.3279 0.47 

28 21 9 9 2 0.3279 0.47 

29 21 9 8 1 0.3098 0.49 

30 21 9 8 1 0.2924 0.51 

 

Table 8. Prediction of the pICT50 values for the MLR models (equations 1 to 4) in respect to the training set, experimental pICT50 
values, mean error and maximum and minimum values. 

 Mono-parametric Bi-parametric Tri-parametric Tetra-parametric  

Structure Eq1 Δ1 Eq2 Δ2 Eq3 Δ3 Eq4 Δ4 pICT50 

22 1.3738 -0.0727 1.4393 -0.1382 1.4357 -0.1347 1.5209 -0.2199 1.3010 

23 0.9752 -0.2305 1.0597 -0.3150 1.0041 -0.2593 1.1020 -0.3573 0.7447 

24 0.7759 -0.1739 0.8469 -0.2449 0.8094 -0.2073 0.9386 -0.3365 0.6021 

25 0.7759 -0.2531 0.8469 -0.3241 0.8094 -0.2865 0.9386 -0.4157 0.5229 

26 0.5767 -0.1565 0.6802 -0.2600 0.7729 -0.3527 0.9324 -0.5121 0.4202 

27 0.5767 -0.2488 0.7032 -0.3753 0.4722 -0.1443 0.5877 -0.2598 0.3279 

28 0.5767 -0.2488 0.6802 -0.3523 0.3429 -0.0150 0.4467 -0.1188 0.3279 

29 0.5767 -0.2669 0.7032 -0.3934 0.5724 -0.2626 0.7123 -0.4025 0.3098 

30 0.5767 -0.2842 0.7032 -0.4107 0.5724 -0.2800 0.7123 -0.4199 0.2924 

*Mean error   0.2150   0.3127   0.2158   0.3380  

*Max    0.2842   0.4107   0.3527   0.5121  

*Min   0.0727   0.1382   0.0150   0.1188  

* The module of the error values was considered for this determination. 
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Fig. (4). Correlation between the calculated and experimental pICT50 values of the training set are shown. The dashed lines near to the center line represent the 
confidence interval (95%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Molecules of the test set. 
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Fig. (6). Correlation between the calculated and experimental pICT50 values of the test set. The dashed lines near to the center line represent the confidence interval (95%). 

 

 The tetra-parametric model can be considered the most reliable 
of the models, regarding the prediction of pICT50 values, also due to 
statistical consistencies observed from the regression data (R, R2, 
RA

2, SEE e teste t) discussed above. The statistically significant 
values presented provide confidence to the MLR models and their 
predictive capacity [29, 30]. 

3.3. Selection from the ZINC Database  

 Pharmacophore-based screening performed on ZINCPharmer 
web server resulted in 350 ZINC molecules. Such tool selects the 
molecules according to the characteristics of the inserted pharma-
cophore. One of the main filters of this tool is the root mean square 
deviation (RMSD) estimation calculated between the characteristics 
of the input file (pharmacophile model) and the resulting molecules, 
as well as other filters such as molecular weight and rotational 
bonds [28]. 

3.3.1. Similarity of Tanimoto and Estimation of pICT50 Values for 
ZINC Molecules 
 The pharmacophore data and the pICT50 values calculated for 
the ZINC molecules with the best Tanimoto indices can be seen in 
Table 9. The BindingDB server was used to select, from the 350 
ZINC molecules screened in the previous step, the ones with values 
of maximum similarity greater than 0.6, which resulted in 24 mole-
cules (Table 9). 

 The bindingDB web server performs similarity search as a 
function of chemical fingerprints (a kind of set of chemical charac-
teristics treated as chemical fingerprints) that characterize the mole-
cules [31, 32]. 

 Chemical fingerprints are used in conjunction with Tanimoto's 
similarity by comparing each selected molecule with each molecule 
in the reference set and ordering the molecules in function of 

maximum similarity to any active molecule in the reference set [31-
33]. The closer to 1 the values are, the greater the degree of similar-
ity of the molecules to the molecules indicated as a reference. 

 The structures of the 24 ZINC molecules sorted out can be seen 
in Fig. 7. 

3.4. Prediction of Pharmacokinetic and Toxicological Properties 

 At this stage, the selection of the best molecules was based on 
the best pharmacokinetic and toxicological properties. The higher 
the values for the human intestinal absorption rate and Plasma Pro-
tein Binding, the more efficient the drug is in respect to each of 
these pharmacokinetic properties. However, for blood-brain barrier, 
Mutagenicity and Carcinogenicity, low values are desirable. 

 The predictions of pharmacokinetic and toxicological properties 
(Table 10) were performed for the molecules selected by Tani-
moto's similarity, located within the cut-off point having as refer-
ence molecules 3-7 (only molecules with pICT50 > 1.5229 were 
selected). The use of the cut-off point resulted in the selection of the 
10 most active molecules (Table 10). The caffeine molecule and 
molecule 03 (most active) from the training set were inserted into 
Table 10 as reference values. 

 The prediction of human intestinal absorption (HIA) is meas-
ured as a function of the absorption fraction, %HIA, described as 
the percentage of the dose of the drug administered orally to reach 
the hepatic portal vein. It is also defined as the rate of total ab-
sorbed mass divided by the dose of the drug. This property is used 
to assess the degree of absorption of a drug, orally administered, by 
the intestinal epithelium [34]. 

 Absorption levels below 25% are considered poor and greater 
than 80% are considered high. The results of HIA were considered 
excellent since, for all the sorted molecules, HIA values were 
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higher than the two reference values (caffeine = 93.82% and mole-
cule 03 = 88.13%) and close to 100%. These values attribute high-
grade intestinal absorption to the ZINC molecules. 

 Plasma protein binding property (PPB) is defined as the per-
centage of a drug bound to plasma proteins at clinically achieved 
concentrations of the drug. PPB is important for evaluating the 
performance of a drug in the bioavailable free fraction distributed 
across several tissues [35]. Values of PPB above 65% are consid-
ered of high clinical significance and lower values are of low sig-
nificance [36-38]. 

 The molecules ZINC08709887 and ZINC08725388 showed 
higher PPB values (89.15% and 94.19%, respectively), values 
higher than that of the molecule 03 used as reference. All the triad 
molecules presented PPB values (range, 50.13% to 94.19%) higher 
than that of caffeine (14.07%), showing satisfactory results when 
compared to this reference. 

 

 Experimental PPB results for caffeine, available in the litera-
ture, show values of 35% [39], 36% [40] and 40% [41]. These val-
ues show an average error of 22.93% in respect to the PPB value of 
caffeine calculated by Preadmet. The margin of error of 22.93% 
applied to the chosen molecules theoretically allows the framing of 
part of this set of molecules between the clinically relevant PPB 
values (above 65%). 

 The blood-brain barrier is a specialized structure that has a pro-
tective function of the Central Nervous System (CNS). This barrier 
controls and regulates the homeostasis of the central nervous sys-
tem through the separation of brain (Cbrain) and systemic blood 
(Cblood). For a drug with biological activity in the CNS, a high pene-
tration value is required. However, for a drug without CNS activity, 
as herein investigated, low penetration value is required, so that 
side effects are minimized [35, 42]. 

 For the ZINC molecules the values of BBB were all lower than 
the value presented by molecule 03 (<1.60), see Table 10. Accord-
ing to the literature [43], BBB values less than 1 (Cbrain / Cblood <1) 

Table 9. Pharmacophore characteristics and pICT50 values calculated for the sorted molecules. 

Pharmacophoric Characteristics Calculated pICT50 ZINC Molecules  

Selected A GF SF Hyd 
Tanimoto Index 

Eq1 Eq2 Eq3 Eq4 

ZINC08791938 34 13 13 5 0.67 1.3738 1.4623 1.0391 1.1053 

ZINC08990240 42 16 16 8 0.71 1.9716 2.0316 1.5027 1.5047 

ZINC08992920 37 14 14 6 0.66 1.5730 1.6520 1.2048 1.2522 

ZINC09060391 43 13 13 4 0.71 1.3738 1.4853 1.3399 1.5084 

ZINC10104345 42 15 15 7 0.77 1.7723 1.8418 1.4373 1.4823 

ZINC10104354 36 13 13 5 0.70 1.3738 1.4623 1.1059 1.1883 

ZINC10104357 39 14 14 6 0.73 1.5730 1.6520 1.2716 1.3353 

ZINC10233741 30 11 11 3 0.68 0.9752 1.0827 0.7746 0.8944 

ZINC10233742 39 14 14 6 0.76 1.5730 1.6520 1.2716 1.3353 

ZINC10233743 31 11 11 3 0.65 0.9752 1.0827 0.8080 0.9359 

ZINC10233744 40 13 13 4 0.61 1.3738 1.4853 1.2396 1.3838 

ZINC10233745 40 13 13 4 0.61 1.3738 1.4853 1.2396 1.3838 

ZINC10233747 33 12 12 4 0.67 1.1745 1.2725 0.9403 1.0414 

ZINC10233748 34 12 12 4 0.64 1.1745 1.2725 0.9737 1.0829 

ZINC08706084 36 14 14 6 0.70 1.5730 1.6520 1.1714 1.2107 

ZINC08706127 39 15 15 7 0.73 1.7723 1.8418 1.3371 1.3577 

ZINC08706179 41 13 13 4 0.61 1.3738 1.4853 1.2730 1.4254 

ZINC08706191 37 14 14 6 0.62 1.5730 1.6520 1.2048 1.2522 

ZINC08706200 37 11 11 2 0.62 0.9752 1.1057 1.0085 1.2145 

ZINC08706215 40 12 12 3 0.61 1.1745 1.2955 1.1742 1.3615 

ZINC08709887 43 14 14 5 0.61 1.5730 1.6750 1.4053 1.5308 

ZINC08710197 36 13 13 5 0.75 1.3738 1.4623 1.1059 1.1883 

ZINC08724916 37 11 11 2 0.61 0.9752 1.1057 1.0085 1.2145 

ZINC08725388 43 14 14 5 0.61 1.5730 1.6750 1.4053 1.5308 



Design of New Caffeine Analogues Molecules Current Pharmaceutical Design, 2018, Vol. 24, No. 5    587 

give the molecule an inactive status in the CNS. This means that 
only the molecule ZINC08990240 (BBB = 1.09) and molecule 03 
(BBB = 1.60) showed penetration into the CNS, which qualifies the 
majority of ZINC molecules as inactive in the CNS. 

 The results for the pharmacokinetic parameters found for caf-
feine and ZINC molecules, are consistent with the findings of Liu, 
Shen, Shi and Cai (2016) [44], In their study, the authors concluded 
that caffeine is directly related to the reduction of the risk of malig-
nant melanoma. Through meta-analysis, the authors identified a low 
relative risk of malignant melanoma related to high consumption of 
caffeinated coffee, suggesting that caffeine present in caffeinated 
coffee has a chemopreventive effect against malignant melanoma. 
Unlike decaffeinated coffee that showed no significant relationship 
with the risk of malignant melanoma.  

 The toxicological properties, shown in Table 10, were predicted 
by the Ames test (mutagenicity) and carcinogenicity test. The Ames 
test consists of an assay that aims the mutagenic reversal of bacteria 
(Salmonella typhimurium) tested for histidine independence. 
Preadmet simulates tests for strains TA100 and TA1535, which 
serve to evaluate the mutagenic potential of molecules, ie the ability 
to generate mutation in an organism. This test simulates an envi-
ronment in which a post-mitochondrial mouse liver supernatant 
mixture treated with a mixture of phenobarbital / β-naphthoflavone 
(s9) may be present or absent [45, 46]. The in silico carcinogenicity 
test simulates the presence of the drug in the organism of rats and 
mice, and it is possible to evaluate if the drug has the power to gen-
erate tumors [47]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Structure of the ZINC molecules selected by the Tanimoto index. 

���

���

���

��� �

�

�
�

�

�

�

2'%��!�#�#
!

���

���

���
���

��� �

�

�
�

�

�

�

�

2'%��!##����

���

���

���

���

��� �

�

�
�

�

�

�

2'%��!##�#��

���

��� �

�

�
�

�

�

�

2'%��#� �
#�

���

���

��� �

�

�
�

�

�

�

2'%������
��

���

���

���

��� �

�

�
�

�

�

�

2'%������
��

���

���

���

��� �

�

�
�

�
�

�

2'%������
��

���

���

��� �

�

�
�

�

�

�

2'%����

���

���

���

��� �

�

�
�

�

�

�

2'%����

���

���

���

��� �

�

�
�

�

�

�

2'%����

��


���

���

��� �

�

�
�

�

�

�

2'%����

���

���

���

��� �

�

�
�

�
�

�

2'%����

���

���

���

���

��� �

�

�
�

�

�

�

2'%����

���

���

���

���

��� �

�

�
�

�

�

�

2'%����

��!

���

���

���

��� �

�

�
�

�

�

�

2'%��!�� �!�

���

���
���

��� �

�

�
�

�

�

�

2'%��!�� ���

���

��� �

�

�
�

�

�

�

2'%��!�� ��#

���

���

���

��� �

�

�
�

�

�

�

2'%��!�� �#�

���

��� �

�

�
�

�

�

�

2'%��!�� ���

���

���

��� �

�

�
�

�

�

�

2'%��!�� ���

���
���

���

��� �

�

�
�

�
�

�

2'%��!�� #!!�

���

���

��� �

�

�
�

�

�

�

2'%��!����#�

���

��� �

�

�
�

�

�

�

�


2'%��!���#� 

���

���

���

��� �

�

�
�

�

�

�

2'%��!���
!!



588    Current Pharmaceutical Design, 2018, Vol. 24, No. 5 Costa et al. 

 Regarding the results for mutagenicity in Preadmet software, all 
screened and reference molecules were classified as mutagenic. 
Even showing mutagenicity, where elimination of molecules for 
this reason would be premature, studies with rats have shown that a 
mutagenic molecule when administered in combination with an 
antimutagenic (chemopreventive) agent may cause suppression of 
the mutagenic action [48, 49]. 

 For carcinogenicity in Preadmet softtware, caffeine and the 
molecule ZINC08992920 showed positive results (non-
carcinogenic) in rats and negative (carcinogenic) results in mice. 
Only the molecule ZINC08706191 presented positive results, both 
for mouse and rat, which allows to classify it with non-carcinogenic 
in Preadmet softtware. 

 Additional data on toxicological parameters for caffeine, mole-
cule 03 and ZINC molecules tested in the Derek program [23] can 
be seen in Table 11.  

 Data of Table 11 indicate that both reference molecules (caf-
feine and molecule 03) showed teratogenicity, representing the 
possibility of a substance causing abnormal formation during the 
gestation period. Only caffeine presented a possibility of chromo-
some damage, which represents the ability to generate changes in 
the molecular structure of the chromosome. The Derek software 
identified the reference scaffold/moety of xanthine present in caf-
feine and molecule 03 as part of the structure of the molecules re-
sponsible for the teratogenic and chromosome damage effects. 
None of the ZINC molecules tested showed potential for terato-
genic and chromosome damage. These results allow to classify the 
ZINC molecules as better than the reference molecules in respect to 
the two toxicological parameters mentioned. 

 However, nine of the ten ZINC molecules tested showed toxic-
ity to skin sensitization. This effect corresponds to an allergic re-
sponse after contact of a substance with the skin [50]. This sensiti-
zation was attributed by the Derek program to the imine toxicoforic 
group, being able to occur nucleophilic attack of skin proteins to the 
carbon atom of the imine group [51]. 

 Unlike the results presented for tests of mutagenicity and car-
cinogenicity carried out in Preadmet, all molecules were excluded 
from the mutagenicity and carcinogenicity alert in the Derek soft-
ware, no toxicological groups are identified that could indicate such 
toxicological parameters.  

 With respect to chromosome damage and mutagenicity, a re-
view on caffeine [52], showed that chromosome damage data from 
studies with caffeine were obtained at concentrations of about 6 to 
100 times higher than expected for frequent coffee users and with 
magnitude above the lethal dose of caffeine in humans. Such as 
most non-mutagenic substances in in vitro tests, they are non-
carcinogenic in mammals, it is unlikely that at the usual consump-
tion level caffeine presents any mutagenic and carcinogenic risk. 
Such dose-effect dependency of caffeine on mutagenicity was also 
evidenced in a study on the mutagenic action of caffeine in higher 
organisms [53]. It is possible to infer from these studies that 
mutagenicity (existing for all ZINC molecules tested in Preadmet) 
has a strong dose-effect relationship when it comes to caffeine. In 
this context, the results of Preadmet and Derek obtained for the 
tested molecules can be interpreted as a possibility of toxicity de-
pending on the level of consumption or the dose administered, 
which suggests that mutagenicity for the most promising molecules 
should be more thoroughly investigated in in vitro and in vivo ana-
lyzes, and not taken as conclusive. 

 Still in Table 11 it is possible to verify the hits related to the 
toxicity of each molecule. Such as the caffeine that has been shown 
to be mutagenic and carcinogenic in mice (Preadmet), besides tera-
togenic and promoter of chromosome damage (Derek), 4 hits of 
toxicity are predicted. Since the higher the hit value the greater the 
toxicity, the molecules ZINC08992920 (3 hits) and ZINC08706191 
(1 hit and no toxicity alert on Derek) as less toxic in comparison to 
the other molecules (all with 4 hits). The molecule ZINC08706191 
is the best one qualified in respect to toxicity, because there is no 
carcinogenic risk in both Preadmet and Derek softwares. 

 

Table 10. Prediction of pharmacokinetic and toxicological properties of molecules with better pICT50 values 

 Pharmacokinetic Parameters Toxicological Parameters 

Mutagenicity Carcinogenicity 
Molecules 

HIA 

(%) 

PPB 

(%) 

BBB 

(C.brain/C.blood) Result Rat Mouse 

Caffeine 93.82 14.07 0.33 Mutagenic Positive Negative 

Molecule 03 88.13 75.91 1.60 Mutagenic Negative Negative 

ZINC08706084 96.27 50.13 0.59 Mutagenic Negative Negative 

ZINC08706127 96.89 55.18 0.75 Mutagenic Negative Negative 

ZINC08706191 97.53 64.25 0.65 Mutagenic Positive Positive 

ZINC08709887 98.83 89.15 0.47 Mutagenic Negative Negative 

ZINC08725388 98.83 94.19 0.28 Mutagenic Negative Negative 

ZINC08990240 97.41 63.51 1.09 Mutagenic Negative   Negative 

ZINC08992920 97.53 63.15 0.80 Mutagenic Positive   Negative 

ZINC10104345 97.41 74.20 0.18 Mutagenic Negative   Negative 

ZINC10104357 96.89 60.59 0.90 Mutagenic Negative   Negative 

ZINC10233742 96.89 68.86 0.15 Mutagenic Negative   Negative 

HIA = Human Intestinal Absorption; PPB = Plasma Protein Binding; BBB = Blood-Brain Barrier Penetration 
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3.5. Molecular Docking 

 Molecular docking allows the collection of data on interactions 
between ligand and receptor, making possible the selection of the 
best ligand poses as a function of the lowest free energy which 
results from that interaction. For the molecular docking step only 
the molecules ZINC08706191 (1 hit of toxicity) and 
ZINC08992920 (3 hit of toxicity), classified as less toxic, were 
selected.  

3.5.1. Receptor-ligand Complex 
 Selection of the receptor-ligand complex Chk1 was performed 
initially by taking into account the structure of the ligand compared 
to the xanthine scaffold and size of the ligands (smaller molecules), 
which resulted in 6 molecules (Fig. 8). 

 The results for overlap similarity between the selected binders 
and caffeine can be seen in Table 12. Values for overlap similarity 
attributed to 100% estrogenic contribution (100ste), 100% electro-
static contribution (100elt), 60% steric and 40% electrostatic 
(60ste/40elt), 40% steric and 60% electrostatic (40ste / 60elt) and 
50% of both contributions (50ste / elt), were determined. 

 The ZYU ligand presented higher values of similarity of over-
lap with caffeine at the 100ste, 60ste/40elt and 50ste/elt levels 
(0.8967, 0.6860 and 0.6476, respectively), second higher values of 
40ste/60elt (0.6098) and median value for 100elt (0.4818). The 
closer to 1 the values are, the greater the degree of similarity be-
tween the binder and the caffeine. While, in contrast, for smaller 
values, the greater the degree of structural difference [24]. 

 The results for overlap similarity allow us to consider the ZYU 
ligand with a high degree of similarity with caffeine. This ligand 
complexed to the Chk1 receptor, is available from the PDB code 
2WMU, and its IUPAC name is 6-morpholine-4-yl-9H-purine. Fig. 
9 shows the overlap of ZYU with caffeine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Structure of the complexed ligands with Chk1 selected from PDB. 

 

 

 

 

 

 

 

Fig. (9). Caffeine overlap (yellow) with ZYU ligand (green). (The color 
version of the figure is available in the electronic copy of the article). 

3.5.2 Validation and Molecular Docking 
 The comparison between the conformations of the crystallo-
graphic ligand (complexed with Chk1 and experimental values of 
crystallography) with the computational data resulting from the 
redocking (RMSD = 0.570), shows that the parameters used in the 
docking protocol were representative. RMSD values below the  
 

Table 11. Toxicity results obtained using the Derek software. 

Molecule 
Toxicity Prediction Alert 

(Lhasa prediction) 
Toxicophoric Group Toxicity Alert Hits* 

Chromosome damage Xhantine Certain 
Caffeine 

Teratogenicity Xhantine Probable 
4 

Molecule 03 Teratogenicity Xhantine Plausible 4 

ZINC08706084 Skin sensitisation Imine or alpha,beta-unsaturated imine Plausible 4 

ZINC08706127 Skin sensitisation Imine or alpha,beta-unsaturated imine Plausible 4 

ZINC08706191 No Alerts — No Alerts 1 

ZINC08709887 Skin sensitisation Imine or alpha,beta-unsaturated imine Plausible 4 

ZINC08725388 Skin sensitisation Imine or alpha,beta-unsaturated imine Plausible 4 

ZINC08990240 Skin sensitisation Imine or alpha,beta-unsaturated imine Plausible 4 

ZINC08992920 Skin sensitisation Imine or alpha,beta-unsaturated imine Plausible 3 

ZINC10104345 Skin sensitisation Imine or alpha,beta-unsaturated imine Plausible 4 

ZINC10104357 Skin sensitisation Imine or alpha,beta-unsaturated imine Plausible 4 

ZINC10233742 Skin sensitisation Imine or alpha,beta-unsaturated imine Plausible 4 

* Sum of hits corresponding to the toxicological analyzes performed in Preadmet and Derek. 
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tolerance level of up to 2.0 Å are considered to be of good quality 
[54, 55]. The alignment between experimental and computational 
conformations, which qualitatively shows this result, can be seen in 
Fig. 10. 

 

 

 

 

 

 

 

 

 

Fig. (10). Comparison between crystallographic ligand pose (in green) and 
the top-ranked pose resulting from docking (yellow). (The color version of 
the figure is available in the electronic copy of the article). 

 

 The interactions resulting from the docking pose of the ZYU 
with the Chk1 receptor were: two hydrogen bonds with CYS87 and 
GLU85, and four carbon-hydrogen bonds with CYS87, GLU91, 
LEU15 and GLY16, in a total of six interactions. Fig. 11 shows the 
interactions of ZYU with Chk1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). Interactions between the ZYU ligand and the Chk1 receptor, 
calculated by Autodock 4.2.6. 

 The parameters related to the dimensions of the grid box and 
coordinates of the ligand's center, used in the docking validation, 
were applied to the reference molecules (caffeine and molecule 03), 
ZINC08992920 and ZINC08706191. 

 Fig. 12 shows the interactions for individually docked mole-
cules. Caffeine showed two carbon-hydrogen bonds, with GLU85 
and CYS87, and a pi-sigma bond with LEU15, with three interac-
tions in total. The molecule 03 showed two hydrogen bonds with 
CYS87, one carbon-hydrogen bond with TYR86 and two pi-sigma 
bonds, with LEU137 and LEU15, in a total of five interactions. The 
molecule ZINC08992920 interacted with the receptor through two 
hydrogen bonds, with CYS87 and GLU91, one carbon-hydrogen 
bond with CYS87 and two pi-sigma bonds with LEU137 and 
LEU15, in a total of five interactions. The molecule ZINC08706191 
interacted with two hydrogen bonds with CYS87 and GLU91, one 
carbon-hydrogen bond with CYS87 and two pi-sigma bonds with 
LEU15, in a total of five interactions. 

 Quantitative data of distances and binding free energies (BFE) 
between the ligands and the Chk1 receptor can be seen in Table 13. 
It is possible to verify that, among the reference molecules (caffeine 
and molecule 03), the increase in the number of interactions re-
sulted in the lowering of free binding energy, which indicates a 
higher degree of spontaneity of the interactions. This effect is no-
ticeable in molecules ZINC08992920 and ZINC08706191 with five 
interactions each and smaller binding energies than the reference 
molecules. Common interactions with the amino acids CYS87 and 
LEU15 occurred in all molecules analyzed, indicating that they 
have key importance in the epithelial anticancer activity.  

 It is noted that the pi-sigma interaction with LEU15 and 
LEU137 on molecules 03, ZINC08992920 and ZINC08706191, 
attributed lower BFE to these three molecules when compared to 
the interactions and BFE of ZYU and caffeine that have no Pi-
sigma interactions with none of these amino acids. 

 Comparing the molecules ZINC08992920 and ZINC08706191, 
we can observe the lowering of the free energy of binding (-7.41) in 
ZINC08706191 that has two interactions with LEU15 in respect to 
the BFE (-7.13) in ZINC08992920, that has a Pi-sigma interaction 
with LEU15 and LEU137, indicating that the interaction with 
LEU15 is a favorable factor for lowering BFE between these two 
molecules. The pi-sigma interactions have strong hydrophobic 
characteristic, and when related to favorable entropic factors can 
promote the lowering of the free energy of ligand-receptor binding 
[56]. 

 It is interesting to note that, due to structural similarity, the 
numerical values of the pharmacophoric characteristics, pharma-
cokinetics properties and the activity values calculated by the MLR 

Table 12. Overlap similarity values of the ligands analyzed. 

Complex Ligand Overlap 

PDB Code  PDB Code 100ste 100elt 60ste/40elt 40ste/60elt 50ste/elt 

2WMU ZYU 0.8967 0.4818 0.6860 0.6098 0.6476 

2CGX 3D3 0.8349 0.5361 0.6068 0.6226 0.5645 

2WMV ZYV 0.8138 0.3378 0.5865 0.4969 0.5384 

2BRM DFZ 0.7152 0.5368 0.5709 0.5852 0.5503 

2BRN DF1 0.6874 0.4597 0.6244 0.5991 0.6131 

2BRO DF2 0.6658 0.3912 0.5616 0.4997 0.5408 

100ste = 100% of steric contribution; 100elt = 100% of electrostatic contribution; 60ste/40elt = 60% steric and 40% electrostatic; 40ste/60elt = 40% steric and 60% electrostatic; and 

50ste/50elt = 50% of both contribution. 
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models were similar for the molecules ZINC08992920 and 
ZINC08706191 (see Table 14), which resulted in approximate val-
ues of BFE, due to the interactions similarity. 

Caffeine 

 

Fig. (12). Interactions between the best screened molecules and the Chk1 
receptor calculated by Autodock 4.2.6. 

3.5.3. Correlation Between Pharmacophoric Properties, Pharma-
cokinetics and pICT50 with BFE 
 Correlations between pharmacophoric, pharmacokinetic proper-
ties as well as the calculated pICT50 with BFE (Table 14) showed 
negative values for all analyzed variables, which indicate an inverse 
proportionality relationship between them and BFE. These results 
are consistent with the significance of each analyzed variable, 
which allows us to consider that an increase in the values of the 
pharmacophoric properties, HIA and PPB promotes increase of the 
activity and decrease of BFE. 

 The low correlation with BBB (-0.02) indicates that the value of 
BFE has no respect to this property, as expected, since this variable 
is related to CNS side effects, signalizing that molecules 
ZINC08992920 and ZINC08706191 do not show such effect. 

 The calculated pICT50 values and their correlations with BFE 
for the molecules ZINC08992920 and ZINC08706191, the mono 
(Eq1) and bi (Eq2) parametric models, with correlations -0.89 and -
0.90, respectively, have a higher correlation with the BFE values 
than the tri (Eq3) and tetra (Eq4) parametric models, which is con-
sistent with the activity observed for these molecules predicted by 
the mono and bi parametric models. 

CONCLUSION 

 The virtual screening performed here showed reliable results in 
all its stages. The MLR models built from the pharmacophoric data 
were classified with excellent statistical quality, due to the high 
values of R, R2, RA

2 and low SEE values, and good statistical sig-
nificance confirmed by the t-test, with emphasis on the tetra-
parametric model, considered the best model. The validation of the 
MLR models indicated excellent predictive power of the models, 
indicated by the low values of errors in both the predictions for the 
training set and the test set. These results were also qualified by the 
good correlations between experimental and calculated pICT50 val-
ues. 

 The pharmacophore model inserted in the ZINCPharmer web-
server aided us to select 350 molecules, and subsequently 24 were 
selected using the BindingDB by Tanimoto similarity. The low 
amount of molecules found from the virtual screening in this web-
server evidences the quality of the analytical filters used in the 
screening. 

 The pharmacokinetic properties indicated in general better re-
sults than the reference values and limits available in the literature, 
with HIA values higher than 90% and PPB (considered prediction 
errors) within the limits of clinical significance. BBB also indicated 
good results, where only molecules 03 (reference) and 
ZINC08990240 showed possible effects on the CNS. 

 The molecules ZINC08992920 (3 hits of toxicity, with 
mutagenicity and carcinogenicity alerts) and ZINC08706191 (1 hit 
of toxicity, only with one mutagenicity alert) presented lower tox-
icities among all the tested molecules. The attested mutagenicity 
needs to be better evaluated (in vitro e in vivo tests), because 
mutagenicity may have an effect depending on the level of con-
sumption or dose of administered substance. 

 BFE values correlated to the properties analyzed show that 
BBB has no respect to BFE values, as expected, due to the low 
BBB values observed and this indicates side effect. High negative 
correlations between BFE and pharmacophoric properties, HIA, 
PPB, pICT50 calculated by Eq1 and by Eq2, indicate that these 
properties are fundamentally related to the low BFE values. 

 Results here obtained and discussed, which sought to evaluate 
the potential epithelial anticancer activity of the screened mole-
cules, allowed us to classify the molecules ZINC08992920 and 
ZINC08706191 as the best ones along the observed series, and to 
point to ZINC08706191 (presented minor hit in toxicity) as the best 
among all. However, these two molecules can subsequently be
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Table 13. Distances and BFE between ligands and Chk1. 

Molecule Aminoacid Distance (Å) Type BFE (kcal mol-1) 

CYS87 2.865 Hydrogen bond 

CYS87 3.302 Carbon-hydrogen bond 

GLU85 1.730 Hydrogen bond 

GLU91 3.402 Carbon-hydrogen bond 

LEU15 3.515 Carbon-hydrogen bond 

ZYU 

GLY16 3.236 Carbon-hydrogen bond 

-5.37 

GLU85 2.916 Carbon-hydrogen bond 

CYS87 2.940 Carbon-hydrogen bond Caffeine 

LEU15 3.528 Pi-sigma 

-5.14       

CYS87 2.879 Hydrogen bond 

CYS87 2.401 Hydrogen bond 

TYR86 2.985 Carbon-hydrogen bond 

LEU137 3.560 Pi-sigma 

Molecule 03 

LEU15 3.581 Pi-sigma 

-5.90    

CYS87 2.911 Hydrogen bond 

CYS87 3.337 Carbon-hydrogen bond 

GLU91 2.007 Hydrogen bond 

LEU137 3.753 Pi-sigma 

ZINC08992920 

LEU15 3.867 Pi-sigma 

-7.13    

CYS87 2.947 Hydrogen bond 

CYS87 3.165 Carbon-hydrogen bond 

GLU91 2.428 Hydrogen bond 

LEU15 3.836 Pi-sigma 

ZINC08706191 

LEU15 3.930 Pi-sigma 

-7.41  

 

Table 14. Correlation between the variables analyzed and BFE.  

 Pharmacophoric Characteristics Pharmacokinetic Properties Calculated pICT50   

Molecule  A GF SF Hyd HIA% PPB% BBB Eq1 Eq2 Eq3 Eq4 BFE 

Caffeine 24 9 9 0 93.82 14.07 0.33 0.58 0.73 0.44 0.63 -5.14 

Molecule 03 39 13 12 6 88.13 75.91 1.60 1.37 1.44 1.44 1.52 -5.90 

ZINC08992920 37 14 14 6 97.53 63.15 0.80 1.57 1.65 1.20 1.25 -7.13 

ZINC08706191 37 14 14 6 97.53 64.25 0.65 1.57 1.65 1.20 1.25 -7.41 

CoBFE -0.70 -0.89  -0.96  -0.79 -0.66 -0.64 -0.02 -0.89 -0.90 -0.61 -0.54  

A = number of atoms; GF = General Characteristics; SF = Spatial Characteristics; Ar = Aromatic; Hyd = Hydrophobic; HIA% = Human Intestinal Absorption; PPB = Plasma Protein 

Binding; BBB = Blood Brain Barrier. 

 

subjected to further analysis to a better evaluation of their pharma-
cological potential against epithelial cancer. 
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