Skip to main content
. 2018 Feb;24(5):576–594. doi: 10.2174/1381612823666170711112510

Table 3.

Statistical data of MLR models generated from the pharmacophoric characteristics of the training set in respect to pICT50 values.

Mono-parametric Models
Eq. Descriptor R R2 R2A SEE F
1 GF 0.8004 0.6406 0.6217 0.2703 33.8612
2 A 0.7675 0.5890 0.5674 0.2890 27.2268
3 SF 0.7383 0.5451 0.5212 0.3040 22.7680
4 Ar 0.0876 0.0076 -0.0445 0.4491 0.1470
Di-parametric Models
Eq. Descriptor R R2 R2A SEE F
1 GF +Ar 0.8177 0.6686 0.6317 0.2666 18.1548
2 GF + SF 0.8092 0.6548 0.6164 0.2721 17.0700
3 A + GF 0.8068 0.6510 0.6122 0.2737 16.7865
4 A + Ar 0.7990 0.6384 0.5982 0.2786 15.8859
5 A + SF 0.7698 0.5926 0.5473 0.2956 13.0909
6 SF + Ar 0.7559 0.5714 0.5238 0.3032 11.9987
Tri-parametric Models
Eq. Descriptor R R2 R2A SEE F
1 A + GF + SF 0.8336 0.6949 0.6410 0.2632 12.9045
2 A + GF + Ar 0.8312 0.6909 0.6363 0.2650 12.6643
3 GF + SF + Ar 0.8238 0.6787 0.6220 0.2701 11.9706
4 A + SF + Ar 0.7999 0.6399 0.5764 0.2859 10.0714
Tetra-parametric Model
Eq. Descriptor R R2 R2A SEE F
1 A + SF + GF + Ar 0.8587 0.7374 0.6717 0.2517 11.2318