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Abstract
Although several factors are known to play a role in the development and progression of glaucoma, intraocular pressure
(IOP) remains the only modifiable risk factor. Medical and surgical treatments for glaucoma both aim to reduce IOP to
minimize disease progression. Tonometry is therefore an essential element of the ophthalmological exam. There are several
types of tonometers available currently. These range from well-established instruments that have been in clinical use for
decades to new devices, which are the result of recent technological advances. The various instruments have advantages and
disadvantages that affect their suitability for a given setting, purpose, and patient population. In this review, we aim to
describe the most commonly available tonometers today along with their advantages, disadvantages, and applicability.

Introduction

Aqueous humor is produced in the eye by the non-
pigmented ciliary epithelium and provides nourishment to
the cornea, lens, and the trabecular meshwork [1]. The
balance between its production and drainage pressurizes the
eye and this is measured as the intraocular pressure (IOP).
IOP is a key factor in the development and worsening of
glaucoma, a leading cause of irreversible blindness world-
wide [2, 3]. IOP reduction has been shown to delay or
prevent the onset of glaucoma in individuals with high IOP
and is associated with slowing of disease progression in
individuals with established glaucoma [4, 5]. Accurate
measurement and management of IOP are crucial para-
meters of glaucoma monitoring and therapy.

Tonometry is an essential component of routine oph-
thalmological examination. This review aims to discuss the
most common types of tonometers available today with
their applicability, advantages, and disadvantages.

Applanation tonometry

Applanation tonometry is based on the Imbert–Fick law,
according to which, the pressure inside a sphere surrounded

by an infinitely thin and flexible membrane can be measured
by the force required to flatten a certain area of the mem-
brane [6, 7]. There are several instruments that use an
applanating force to flatten an area of the cornea.

Goldmann applanation tonometer

The Goldmann applanation tonometer (GAT) [Haag-Streit,
Koeniz, Switzerland and other manufacturers] consists of a
biprism mounted on a slit lamp. Fluorescein dye is instilled
in the eye to highlight the tear film of the patient.
The double prism splits the formed image of the tear film
meniscus into a superior and inferior arc. The moment of
applanation is ascertained when the arcs are aligned
such that their inner margins just touch. GAT uses an
applanating force to flatten a constant area of 7.35 mm²
(diameter of 3.06 mm). At this selected area, the forces of
tear surface tension pulling the tonometer tip toward the eye
and the corneal elasticity pushing the tip away are almost
equal and opposite. Moreover, at this area, the flattening
force(g) multiplied by 10 is equivalent to the IOP (mmHg)
[6, 7].

GAT is considered the reference standard for IOP mea-
surement in current clinical practice due to its historical use
in most clinical research studies to date and the extensive
publications on its validity, reliability, and reproducibility
[8, 9]. GAT has relatively low intra and inter-observer
variability [10]. In a population-based study including two
parts: an inter-observer variation study (n= 40) and an
intra-observer variation study (n= 22), subjects had their
IOP measured by GAT thrice in a consecutive manner.
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After a wait of 10 min, the three measurements were
obtained again by the same observer in the intra-observer
variation study and a different observer in the inter-observer
variation study. Median values for the three measurements
were calculated for both series of measurements. In the
intra-observer variation study, the mean difference was 1.64
(SD 2.07) mmHg between the first measurements and 1.50
(SD 1.96) mmHg between the medians of the three mea-
surements. In the inter-observer variation study, the mean
difference was 1.79 (SD 2.41) mmHg between the first
measurements and 1.60 (SD 2.15) mmHg between the
medians of the three measurements [10]. In another study
comprising 420 eyes, Phelps and Phelps reported an inter-
observer variability of 3 mmHg or more in 30% of the eyes
[11]. Another study including various tonometers found
GAT to have the best repeatability followed by non-contact
tonometry, ocular blood flow tonography, and Tono-Pen,
respectively [12].

There are several limitations associated with GAT.
Corneal factors such as corneal thickness and elasticity can
be a source of error and affect the accuracy of measure-
ments obtained. Thin corneas can lead to underestimation,
whereas thick corneas can lead to overestimation of the IOP
[13–15]. That said, a population-based study in Singapore
found that IOP increased by 0.15 mmHg in right eyes and
0.19 mmHg in left eyes for every 10 μm increase in central
corneal thickness (CCT). As the standard deviation of CCT
was found to be around 30 μm across all 10-year age groups
in the study, it was deduced that a CCT range of 120 μm
would include 95% of the study population in each age
group. Thus, a variation in GAT-measured IOP of only
between 1.8 mmHg and 2.3 mmHg, based on data from
right and left eyes respectively, was determined to be
attributable to variations in CCT among individuals of equal
age [16]. Using similar reasoning, authors of another
population-based study in East Asia determined a variation
in GAT-measured IOP of between 2.3 mmHg and 3.1
mmHg to be attributable to variations in CCT [17]. Another
study used a corneal biomechanical model to evaluate errors
in applanation tonometry measurements due to corneal
factors. The results showed that variation in corneal bio-
mechanical properties may cause a larger error in IOP
measurements as compared with CCT and corneal curvature
[18]. Moreover, factors such as corneal irregularities and
scarring, inappropriate amounts of fluorescein dye, pressure
applied on the eyelids, Valsalva maneuver, breath holding,
and high astigmatism can all affect the accuracy of mea-
surements taken with the GAT [7]. The GAT also requires
the use of fluorescein dye, topical anesthetics, and a slit-
lamp arrangement. It is not portable and requires patients to
be seated upright. Therefore, it might not be suitable for
certain populations, such as the pediatric, elderly, or those
with disabilities [19, 20]. Moreover, it requires a trained

person to operate it and it’s calibration needs to be checked
monthly [8, 21].

Perkins tonometer

The Perkins tonometer (Clement Clarke, Haag-Streit,
UK) uses the same underlying principles as GAT, but is
portable and can be used in any position. IOP is similar to
GAT [22]. These qualities make it useful in situations where
the patient is unable to sit upright or GAT is not possible
such as in the operating room or at the patient bedside [8].

Non-contact tonometer

The non-contact tonometer (NCT) [various manufacturers]
also called the air-puff tonometer is an applanation ton-
ometer, which uses a column of air to flatten the cornea. The
force of the air increases in a steady and linear fashion. The
instrument contains a light emitter and a photodetector. The
light emitter generates a beam of light that is aimed at the
cornea and the reflected light is captured by the detector.
The wave form of the reflected light is used to determine
when the cornea is applanated. The NCT uses an internal
algorithm to convert the force required to flatten the cornea
to IOP in mmHg [8, 9].

The advantages of the NCT include its non-contact nat-
ure, which eliminates the risk of infection and corneal
abrasions. It does not require topical anesthesia or instilla-
tion of fluorescein dye and can be used by paramedical
staff, making it a potential screening tool [23, 24]. Several
studies have reported NCT to compare well with GAT [25–
27]. However, the NCT has shown to overestimate IOP at
higher levels and underestimate at lower levels of GAT-
measured IOP [12]. In another study, the NCT was found to
overestimate IOP as compared with GAT with the differ-
ence being greater at higher IOP values [9]. Corneal prop-
erties can also affect the measurements. There is a trend
toward the readings being more comparable to GAT in
thinner corneas whereas higher measurements are obtained
in thicker corneas [28]. The NCT has been shown to be
more influenced by CCT than GAT, with a reported change
in IOP for a 10 μm increase in CCT of 0.46 mmHg as
compared with 0.28 mmHg for GAT [29]. A suggested
reason behind this observation is greater stiffness of the
cornea when deformation occurs at a rapid pace, which is
around 8 ms for the NCT [29].

Ocular Response Analyzer

The Ocular Response Analyzer (ORA) [Reichert Technol-
ogies, Depew, NY, USA] is a relatively new device that
also uses a jet of air as the applanating force for the cornea.
It has a sophisticated alignment system, which can apply air
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pressure to a precise location relative to the apex of the
cornea. The force from the air pulse flattens the cornea
beyond applanation into a slight indentation. The air pulse
stops and the cornea returns back to its original position,
passing through a second flat stage. The ORA measures the
force at both applanation points, the initial flattening caused
by the air pulse and the second point of flattening as the
cornea returns to its original shape. It relies on an algorithm
to produce two IOP summary measures, a Goldmann-
correlated IOP and a corneal compensated IOP (IOPcc)
[30–32]. The ORA also measures corneal hysteresis and
corneal resistance factor [30–33]. Low corneal hysteresis is
associated with progression of glaucoma in some studies
[34, 35]. The ORA appears to provide higher IOP mea-
surements as compared with GAT [36, 37] with one study
reporting a mean difference of 3.65± 3.85 mmHg between
IOPcc and GAT [38]. In another study, the ORA was shown
to be less repeatable but more reproducible than GAT,
whereas the dynamic contour tonometer was reported to be
more precise than both ORA and GAT [39]. The ORA is
also relatively expensive, limiting its use to more affluent
settings.

Pneumatonometer

The pneumatonometer (Model 30, Reichert Technologies,
Depew, NY, USA) contains a silicone tip, measuring 5 mm
in diameter, at the end of a floating piston. The tip is used to
gently indent the cornea with pressure from a controlled
flow of air. The pressure forcing the tip ahead, when the tip
and cornea are both flat and an equilibrium is achieved, is
used to provide an IOP measurement [7, 40].

The pneumatonometer is portable, easy to use, and has
minimal contact with the cornea. This makes it a useful tool
for screening purposes. However, the tip can be difficult to
disinfect [7] and anesthetic is required. Calibration is
essential to acquire reliable readings [8]. As compared with
GAT, a study found it to underestimate IOP at lower values
and overestimate it at higher values [12]. The measurements
were also affected by variation in CCT with a reported
change in IOP of 0.38 mmHg for a 10 μm increase in CCT
as compared with 0.28 mmHg for GAT, 0.31 mmHg for
Tono-Pen, and 0.46 mmHg for NCT [29]. This study used a
pneumatonometer, which had disposable tips and a probe
that was mounted on a slit-lamp.

Tono-Pen

The Tono-Pen (Reichert Technologies, Depew, NY,
USA) is a portable, hand-held tonometer that combines
applanation and indentation to determine IOP. The Tono-
Pen consists of a small plunger connected to a strain gauge
that projects from the applanating surface. The plunger

faces increasing resistance from the eye as the tonometer
touches the cornea. At the point of applanation, this force is
shared by the plunger and the footplate. This causes a
momentary decrease in the rising force. The force at this
point is used to determine the IOP in mmHg based on
empirical studies as the area of applanation is known [7].

The Tono-Pen is an electronic hand-held device, which is
lightweight, portable, and easy to use. It can be used in any
position and does not require special training. It takes
multiple readings and displays the average and provides an
estimate of the accuracy of the reading based on the stan-
dard deviation of the measures. As it only requires a small
contact area, it can be used to measure IOP in patients with
irregular corneas [32]. Similarly, it has been shown to
provide reliable measurements in eyes with therapeutic
contact lenses with no significant difference in the measured
IOP with and without a lens. Therapeutic contact lenses
may be indicated for an array of reasons and their repeated
removal may disrupt epithelial healing of the cornea.
Therefore, the Tono-Pen may be useful for situations where
measurement of IOP without removal of the lens is pre-
ferred [41]. Despite its various advantages, the Tono-Pen
has several limitations. As compared with GAT, it can over
or underestimate the IOP [42, 43]. Geyer et al. reported the
Tono-Pen to overestimate IOP as compared with GAT [44].
In a study by Salvetat et al., a nonsignificant trend was
observed towards Tono-Pen underestimating IOP at lower
GAT values (<24 mmHg) and overestimating it at higher
GAT values (>24 mmHg) [42]. On the other hand, some
studies have reported the Tono-Pen to overestimate GAT-
measured IOP at lower values and underestimate it at higher
values [45, 46]. CCT can also influence Tono-Pen readings
[42, 47], with one study reporting a mean change of 0.74
mmHg in the obtained IOP for a 10 μm increase in CCT
[42].

Indentation tonometry

Indentation tonometry is based on the principle that a force
or weight will cause more indentation in a soft object as
compared with a hard object [7].

Schiotz tonometer

The Schiotz tonometer (various manufacturers) is based on
the principle of indentation. It became the most widely used
tonometer worldwide for the bulk of the 20th century until
GAT took over during its last quarter. It consists of a
plunger that floats in a barrel. The barrel has a curved
footplate attached to its bottom. The weight of the plunger
can be altered from 5 to 15 g in order to indent the cornea.
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The amount of indentation is indirectly proportional to the
IOP [7].

The Schiotz tonometer is cumbersome as the patient
needs to assume a supine position, but it is affordable and
robust. It has no complicated electronics. Therefore, it is
suitable for screening especially in low resource and remote
settings [48]. On the other hand, a study comprising 1280
eyes found Schiotz obtained measurements to be lower than
GAT-measured values in 84% of the eyes. Moreover, 19%
of the eyes demonstrated an IOP difference of 5 mmHg or
greater between the two instruments [49]. It also has a risk
of corneal abrasion if the patient is unable to stay still and
can displace aqueous humor resulting in lower IOP with
serial attempts at measurement [7]. Scleral rigidity can also
influence the IOP measurements [50].

Rebound tonometry

Rebound tonometers use a magnetized probe that is pro-
pelled toward the cornea. The device measures the decel-
eration of the probe when it contacts the cornea to provide
an IOP measurement [7].

Icare tonometer

The Icare tonometer (Icare Finland Oy, Vantaa, Finland)
is a contact rebound tonometer. It consists of an assembly of
two coaxial coils, which propel the probe toward the cornea.
As the magnetized probe bounces back, variation in the
motion parameters are detected by a sensor to calculate
the IOP [51]. The Icare has shown good agreement with the
GAT with a small, nonsignificant mean difference
(0.64 mmHg) between the two [52]. It has also been
reported to estimate IOP within ±3 mmHg of GAT in
74.1% of the eyes in a study [53]. However, in some studies
it underestimated GAT measurements at high IOP values
[54, 55]. Other studies have found it to overestimate GAT-
measured IOP [19, 56, 57]. The Icare is influenced by
CCT where it obtains higher IOP than GAT in thicker
corneas [58].

The older version of the Icare cannot be used in an
inclined position. A newer version, the Icare PRO allows
inclination, which enables it to be used on patients lying
supine. The Icare PRO has shown good agreement with
GAT with a study reporting a small mean difference of
−0.38 mmHg [59]. Another study showed that the differ-
ence in IOP measurements between the Icare PRO and the
GAT was not affected by CCT, age, axial length, or sphe-
rical equivalent [20]. Another reported that the Icare PRO
overestimated IOP at lower GAT values and underestimated
it at higher GAT values [60].

The Icare is a hand-held, lightweight, and portable
device. The measurement does not cause patient discomfort
with no need for anesthesia or fluorescein dye. These
attributes make it suitable for screening purposes. The Icare
measurements have shown to not be affected if the probe
does not precisely touch the central corneal apex [61].
Disposable probes are required and cost about one US
dollar each.

The Icare HOME is a newer version of the device that
can be used by patients to perform self-tonometry. About
75% of patients were able to obtain measurements on their
own eyes with the device in one study [62]. However, it
seems to overestimate measurements as compared with
GAT [63] and IOP can differ from GAT by a substantial
amount in some patients [62].

Dynamic contour tonometry

The Pascal dynamic contour tonometer (DCT) [SMT
Swiss Microtechnology AG, Port, Switzerland] uses the
Pascal principle to calculate IOP. According to the Pascal
principle, the change in pressure is transmitted undimin-
ished in all parts of a fluid contained in an enclosed space
[64]. The DCT consists of a tiny piezoelectric sensor
installed in its tip. The tip also contains a contour, which,
when applied to the cornea, causes the shape of the cornea
to conform to the preferred contour. The IOP is then mea-
sured by the sensor transcorneally [65]. The instrument also
generates a score ranging from 1 (optimum) to 5 (not
acceptable) to represent the quality of the IOP measure-
ments obtained. A score of 1 or 2 is thought to be reliable
for clinical practice [32].

The DCT has shown to be more repeatable and repro-
ducible than GAT or ORA [66]. IOP measured by the DCT
is reported to be higher than that obtained by the GAT with
their difference being greatest at low CCT [67]. Similarly,
poor agreement with the GAT has been reported for both
very thin and very thick corneas [68], which may indicate
that DCT measurements are less influenced by corneal
factors as compared with the GAT [69, 70]. It therefore may
be useful after keratoplasty and refractive surgery as it is
less affected by variations in corneal properties following
such procedures [70, 71]. A study has shown DCT to agree
well with intracameral IOP (Lin’s concordance coefficient
= 0.9763), however, it significantly underestimated the
reference IOP at higher values. There was no statistically
significant effect of corneal curvature, astigmatism, axial
length, and age on the difference between DCT and intra-
cameral IOP. Although CCT was found to have a statisti-
cally significant effect on their difference, it was not deemed
to be clinically pertinent [72].
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The disadvantages of DCT include its nature as a contact
tonometer, lack of wide use at present, and the need for trained
staff and patient cooperation for accurate measurements [73].

Corvis ST

The Corvis ST (Oculus, Wetzlar, Germany) is a novel
device, which comprises an air-jet indentation system and
ultra-high-speed Scheimpflug technology, to monitor the
corneal deformation response. It provides in vivo char-
acterization of corneal biomechanical properties in two
dimensions. The Scheimpflug camera has a blue light LED
with a horizontal coverage of 8.5 mm. It monitors the cor-
neal response to the air puff by taking >4300 frames
per second [74]. A study including healthy eyes reported the
device to have good repeatability and reproducibility for
measurement of IOP and dynamic corneal response [75].
Another study including both glaucoma patients and healthy
controls reported the obtained IOP to be 1.3 mmHg lower,
on average, as compared with GAT [76]. Advantages of this
device include its non-contact nature and in vivo monitoring
of corneal properties. The disadvantages include its cost,
lack of wide use at present, need for trained staff, and the
table mount setup.

Conclusion

Accurate and precise measurement of IOP is an important
component of glaucoma management. There are numerous
types of tonometers available today. The GAT has the
advantage of its long history of use, reliability, and repro-
ducibility. Furthermore, almost all clinical trials in glaucoma
have relied on GAT as the gold standard. Non-contact
devices such as the NCT, ORA, and Corvis ST have the
advantage of reduced risk for infections and corneal abra-
sions. Tonometers that are portable and do not require
anesthetic or specialized training for use such as the Icare can
be useful for screening purposes, as well as in the clinic.
Devices that allow use in the supine position such as the
Tono-Pen and Perkins are helpful in cases where patients
cannot sit upright. Devices that produce rapid deformation of
the cornea such as the NCT may be more influenced by
corneal properties. Newer devices, such as the ORA and
DCT, are proposed to be less influenced by corneal proper-
ties, however, they are not widely used at present. In sum-
mary, different types of tonometers vary in terms of their
portability, positioning, agreement with the GAT, influence
of corneal properties, and the need for trained operators and
patient cooperation. These factors should be taken into
consideration when selecting the appropriate instrument to be
used for a specific purpose, setting and patient population.
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