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Abstract

In objective assessment of image quality, an ensemble of images is used to compute the 1st and 2nd 

order statistics of the data. Often, only a finite number of images is available, leading to the issue 

of statistical variability in numerical observer performance. Resampling-based strategies can help 

overcome this issue. In this paper, we compared different combinations of resampling schemes 

(the leave-one-out (LOO) and the half-train/half-test (HT/HT)) and model observers (the 

conventional channelized Hotelling observer (CHO), channelized Linear discriminant (CLD) and 

channelized Quadratic discriminant (CQD)). Observer performance was quantified by the area 

under the ROC curve (AUC). For a binary classification task and for each observer, the AUC value 

for an ensemble size of 2000 samples per class served as a gold standard for that observer. Results 

indicated that each observer yielded different performance depending on the ensemble size and the 

resampling scheme. For a small ensemble size, the combination [CHO, HT/HT] had more accurate 

rankings than the combination [CHO, LOO]. Using the LOO scheme, the CLD and CHO had 

similar performance for large ensembles. However, the CLD outperformed the CHO and gave 

more accurate rankings for smaller ensembles. As the ensemble size decreased, the performance of 

[CHO, LOO] combination was seriously deteriorated as opposed to the [CLD, LOO] combination. 

Thus, it might be desirable to use the CLD with the LOO scheme when smaller ensemble size is 

available.
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Channelized model observers; Hotelling observer; leave-one-out resampling scheme; rank 
correlation coefficient

1. Introduction

Model observers have been widely used in medical imaging to objectively assess image 

quality (Barrett et al., 1993, Barrett and Myers, 2004). Model observers are especially 
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important in applications such as instrumentation or imaging method optimization where 

task performance needs to be measured for a large number of configurations. Both ideal and 

anthropomorphic observers have been used for a variety of applications (Barrett and Myers, 

2004).

One commonly used model observer is the channelized Hotelling observer (CHO); which 

consists of the Hotelling observer (HO) applied to the outputs of a channel model. A channel 

model consists of a set of templates that are applied to an image and produce a feature 

vector. The length of the feature vector is equal to the number of templates. The HO is a 

linear classifier that uses the 1st and 2nd order statistics of the data; which for the CHO are 

the feature vectors. A typical channel model is comprised of a set of band-pass filters. With 

an appropriate channel model, the CHO can effectively model the performance of the human 

observer for signal-known exactly and background-known exactly or statistically (SKE/BKE 

and SKE/BKS) tasks (Myers and Barrett, 1987, Gifford et al., 2000, Wollenweber et al., 

1999, Park et al., 2005a).

For realistic medical images, analytical expressions for the distribution of input data (or 

feature vectors) are often not available. Thus, the 1st and 2nd order statistics of the data are 

frequently estimated using ensemble techniques. A large number of images with known 

truth is needed to provide reliable estimates of these quantities (Fukunaga and Hayes, 1989a, 

Kupinski et al., 2007, Ge et al., 2014). Furthermore, in large optimization and evaluation 

studies, task performance is assessed for many different combinations of system parameters 

and methods, such as different collimator designs (Yihuan et al., 2014, Ghaly et al., 2016), 

reconstruction methods and parameters (Frey et al., 2002, Gilland et al., 2006, He et al., 

2006), and post-reconstruction filters and processing techniques (Frey et al., 2002, Sankaran 

et al., 2002). Thus, ensemble techniques require an enormous number of images to be 

obtained and stored; which often limits the number of parameters that can be explored. 

Smaller ensemble sizes can be used, but result in imprecision in the estimates of observer 

performance (Fukunaga and Hayes, 1989a, Kupinski et al., 2007, Fukunaga and Hayes, 

1989b). Methods for reducing the ensemble sizes have been proposed in (Tseng et al., 2016, 

Wunderlich and Noo, 2009).

One commonly used method to maximize the statistical power (i.e., the ability to correctly 

rank the systems) from a small ensemble of images is to use resampling schemes such as the 

leave-one-out (LOO) scheme (Fukunaga, 1990). A comparison of different resampling 

schemes as a function of ensemble size can be found in (Chan et al., 1999, Sahiner et al., 

2008). Also, the performances of the linear and quadratic discriminants have been 

investigated in previous studies (Sahiner et al., 2008, Chan et al., 1999, Fukunaga and 

Hayes, 1989b). However, to best of our knowledge, the performance of the CHO was not 

compared to other observers such as the channelized Linear discriminant (CLD) and 

channelized Quadratic discriminant (CQD) (Fukunaga, 1990), for different resampling 

schemes.

Since the performance of model observers is affected by the reduction of the ensemble size, 

the goal of this study is to develop a strategy that is able to handle small ensembles. This is 

done by evaluating the performance of different combinations of model observers and 
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resampling schemes and by exploring the trade-off between reliability of performance 

measures and ensemble size. Selecting the combination that has the best performance could 

help in providing more statistical power for a given number of images. This could help in 

studying a larger number of parameters. The evaluation was performed in the context of 

optimizing the post-reconstruction filter cut-off frequencies for myocardial perfusion SPECT 

defect detection (He et al., 2006, Frey et al., 2002, He et al., 2004). In particular, we 

compared the CHO, CLD and CQD (Fukunaga, 1990). The two resampling schemes used 

were the half train/half test (HT/HT) and the LOO (Fukunaga, 1990) schemes. The metric 

for performance of each observer was the area under the receiver operating characteristic 

curve (AUC). Since systems ranking is as important as the ability to predict the absolute task 

performance (Park et al., 2005b), we also computed the Spearman rank-correlation 

coefficient (Daniel, 1990) for AUC values from different cut-off frequencies as a function of 

ensemble size. A preliminary version of this work was reported in (Elshahaby et al., 2015b).

2. Model Observers

For a binary classification task, we denote the defect-absent and the defect-present 

hypotheses as H1 and H2, respectively. Information about the classification decision is 

communicated via a scalar decision variable called the test statistic. In this work, we studied 

three model observers: the Hotelling observer (HO), the quadratic discriminant (QD) and the 

linear discriminant (LD).

2.1. Hotelling Observer (HO)

A thorough explanation of the HO is given in (Barrett and Myers, 2004). The test statistic 

t̂HO(g) is given by:

tHO(g) = (Sg
−1(g|H2

− g|H1
))Tg , (1)

where g ∈ ℝM×1 is the measurement vector to be classified, ḡ|Hi ∈ ℝM×1 is the sample mean 

vector of the measurements from the ith class, and Sg is the M × M intra-class scatter matrix 

defined as the average of the sample covariance matrices from both classes, given 

mathematically by:

Sg = Pr(H1)Sg |H1
+ Pr(H2)Sg |H2

, (2)

where Pr(Hi) is the probability of occurrence of the ith class and Sg|Hi ∈ ℝM×M is the sample 

covariance matrix of the ith class.

2.2. Quadratic Discriminant (QD)

The test statistic of the QD is a quadratic function of g and it can be computed from the 

available measurements as below (Fukunaga, 1990):
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t QD(g) = − 1
2gT Sg |H2

−1 − Sg |H1
−1 g + (Sg |H2

−1 g|H2
− Sg |H1

−1 g|H1
)Tg

− 1
2 g|H2

T Sg |H2
−1 g|H2

− g|H1
T Sg |H1

−1 g|H1
− 1

2log
|Sg |H2

|
|Sg |H1

| ,

(3)

where |Sg|Hi| is the determinant of the matrix Sg|Hi. The QD will have optimal performance 

(i.e., the same as the IO performance) if the data follow multivariate Normal (MVN) 

distribution with unequal covariance matrices under both hypotheses (Fukunaga, 1990, Chan 

et al., 1999).

2.3. Linear Discriminant (LD)

The test statistic of the LD is a linear function of g and is defined as:

t LD(g) = (Sg
−1(g|H2

− g|H1
))Tg − 1

2 g|H2
T Sg

−1g|H2
− g|H1

T Sg
−1g|H1

. (4)

In this case, t̂LD(g) consists of two main terms. The first term is a linear function of g, and it 

is the same as tĤO(g). The second term is an extra term that is independent of the unknown 

measurement g, but dependent on the estimated means and covariance matrices. Thus, eq. 

(4) can be rewritten as follows

t LD(g) = tHO(g) + Δ, (5)

where the extra term Δ is given by:

Δ = − 1
2 g|H2

T Sg
−1g|H2

− g|H1
T Sg

−1g|H1
. (6)

The performance of LD is optimal if the data have MVN distribution with equal covariance 

matrices under both hypotheses (Fukunaga, 1990, Chan et al., 1999).

3. Methods

3.1. Projection Data Generation

This study was performed in the context of myocardial perfusion SPECT (MPS) imaging 

using 10mCi of Tc-99m labeled tracer. We used projection data similar to that used 

previously in Refs. (Ghaly et al., 2014, Elshahaby et al., 2016). We used the male phantom 

with small body size, small heart size and small subcutaneous adipose tissue thickness 

described in (Ghaly et al., 2014). The simulated perfusion defect was a mid-ventricular 

placed in the anterolateral wall of the myocardium. The defect severity and extent were 10% 
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and 25%, respectively, where the defect severity is defined as the percentage reduction in 

tracer uptake in the defect relative to the normal myocardium and the defect extent is defined 

as the percentage of myocardial volume occupied by the perfusion defect. We generated 

2000 pairs of noise-free defect-absent and defect-present projection images, where the 

uptake variability in organs was modeled (Ghaly et al., 2014, Elshahaby et al., 2016). Noise 

was simulated using a Poisson distributed random number generator.

3.2. Image Reconstruction and Post-reconstruction Processing

The simulated noisy projection data were reconstructed using filtered back-projection (FBP) 

and a ramp filter with cut-off at the Nyquist frequency. The reconstructed voxels were cubic 

with a side length of 0.442 cm. We reconstructed 48 transaxial slice region centered on the 

heart, resulting in a 128×128×48 reconstructed image matrix. The reconstructed images 

were filtered with a 3-D Butterworth filter of order 8 at cut-off frequencies 0.08, 0.1, 0.12, 

0.14, 0.16, 0.2 and 0.24 cycle per pixel. The filtered images were reoriented into a standard 

short-axis orientation (Frey et al., 2002, Ghaly et al., 2015, Elshahaby et al., 2015a) and a 

64×64 image centered on the position of the defect for the defect-present class or the 

corresponding defect location for the defect-absent class was extracted and windowed (Frey 

et al., 2002, Gilland et al., 2006, Ghaly et al., 2015, He et al., 2004, He et al., 2010, He et al., 

2006). In the windowing step, negative values were set to zero, values that were larger than 

or equal to the maximum value in the heart were set to 255 and the remaining values were 

mapped to the range [0, 255]. Lastly, the resulting floating-point values were rounded to 

integers. Figure 1 shows the resulting noise-free short-axis defect-absent and defect-present 

images.

3.3. Application of the Frequency-Selective Channel Model

A set of 6 rotationally symmetric channels (Myers and Barrett, 1987) were used as shown in 

Figure 2. The rotationally symmetric channel model has been widely used in similar tasks 

involving the assessment and optimization of different nuclear medicine systems using 

myocardial perfusion images (Wollenweber et al., 1999, Frey et al., 2002). In particular, for 

the MPS images, the rankings of the systems using the CHO were in good agreement with 

the rankings of human observers (Wollenweber et al., 1999). In the frequency domain, these 

channels were non-overlapping passbands having square profile with cut-offs of 
1

128 , 1
64 , 1

64 , 1
32 , 1

32 , 1
16 , 1

16 , 1
8 , 1

8 , 1
4 , and 1

4 , 1
2  cycle per pixel. The 2D frequency domain 

channels were transformed analytically to the spatial domain and sampled at the image voxel 

size. The DC component for each channel was explicitly removed by subtracting the mean 

value of the spatial domain template (Frey et al., 2002, Elshahaby et al., 2016). The dot 

product of the post-processed image with each of the spatial domain templates produced a 

6×1 feature vector for each image. This process resulted in 2000 pairs of feature vectors (or 

channel output vectors) for the defect-absent and defect-present classes.

3.4. Feature Vector Ensembles

We described above the ensemble of feature vectors generated from realistic MPS data. We 

refer to the underlying distribution of these feature vectors as F-MPS. As observed in 

(Elshahaby et al., 2016), the probability distribution of theses feature vectors is not 
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consistent with a multivariate Normal (MVN) distribution. The HO and linear discriminant 

(LD) have performance equal to the ideal observer (IO) when applied to data that are MVN 

distributed with equal covariance matrices under both hypotheses; the quadratic discriminant 

has the same performance as the IO when the data are MVN distributed and the covariance 

matrices are not necessarily equal (Fukunaga, 1990). Since the MVN assumption was 

violated with the considered dataset, the performance of all 3 observers applied to the 

feature vector data is expected to be sub-optimal.

Based on the above discussion and for completeness, we also generated data from 2 

additional ensembles whose members were drawn from synthetic distributions (MVN with 

equal and unequal covariance matrices) to test the various observers and resampling 

schemes.

Both synthetic distributions modeled the mean and covariance of the feature vectors in F-

MPS. We estimated these by calculating the sample mean vectors g∼|Hi
2000 and the covariance 

matrices S∼g |Hi
2000, where i denotes the class (i ∈ {1,2,}), from the available 2000 feature vectors 

from each class. The first synthetic ensemble, F-MVUNEQ, was created by generating 2000 

feature vectors for each class using an MVN distributed random-number generator, where 

the parameters of the MVN distribution were g∼|Hi
2000 and S∼g |Hi

2000 for the ith class. The second 

synthetic ensemble, F-MVNEQ, was modeled by generating 2000 feature vectors for each 

class using an MVN distributed random number generator, where the parameters of the 

MVN distribution were g∼|Hi
2000 and 1

2 [S∼g |H1
2000 + S∼g |H2

2000 ] for the ith class. These two ensembles 

represented the cases of MVN data with unequal and equal covariance matrices, 

respectively.

We generated multiple realizations of each of the above ensembles of feature vectors in 

order to provide estimates of the precision of the AUC or correlation coefficient, and thus 

allow computation of the MSE. For F-MPS, we generated 1000 bootstrap samples by 

drawing random samples of size 2000 (with replacement) from the full set of the available 

2000 feature vectors of each class. For the F-MVUNEQ and F-MVNEQ, we repeated the 

process of generating feature vectors to generate 1000 ensembles of 2000 feature vectors for 

each class.

A major focus of this work was to investigate the performance of the various methods when 

using small ensembles of feature vectors. For each of the three full ensembles described 

above, we created a number of smaller ensembles. To do this, we selected the first n samples 

from each of the 1000 repetitions, where the ensemble size (number of samples per class) 

was n ∈ {20, 30, 40, 50, 70, 100, 150, 200, 500, 1000, and 2000}.

3.5. Resampling Schemes and Model Observers

In this work, we investigated if the accuracy and precision of task performance for an 

observer operating on an ensemble of feature vectors depended on the resampling scheme 

used to generate the test statistics. In this context, a resampling scheme is the method for 
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selecting feature vectors used to train (i.e., calculate the 1st and 2nd order statistics) and test 

(i.e., apply the observer to obtain a set of test statistics) the observer. In this work, we used 

the HT/HT and the LOO (Fukunaga, 1990) schemes. These resampling schemes have been 

used in nuclear medicine, where the CHO was used with the HT/HT scheme in (He et al., 

2004, He et al., 2010, He et al., 2006) and with the LOO scheme in (Frey et al., 2002, Ghaly 

et al., 2015, Sgouros et al., 2011).

In the first resampling scheme used, the HT/HT, assume a dataset of size 2n, where n is the 

number of feature vectors per class. In this case, half of the feature vectors from both classes 

were used to train the observer by computing the 1st and 2nd order statistics of the data and 

the observer was tested using each feature vector in the other half. This resulted in n
2  test 

statistics per class.

In the second resampling scheme, the LOO scheme (Fukunaga, 1990), 2n experiments were 

carried out. For each experiment, one feature vector was held out and the remaining 2n − 1 

feature vectors were used to estimate the 1st and 2nd order statistics of the data. Then, the 

held-out vector was used to compute the corresponding test statistic. By holding out a 

different vector each time, we obtained n test statistics per class.

Since the feature vectors were used by the observers to get the corresponding test statistics, 

we refer to the observers as the CHO, channelized Linear discriminant (CLD), and 

channelized Quadratic discriminant (CQD).

3.6. ROC Analysis and Comparison of Observers

The obtained test statistics were analyzed by the ROC-kit software package to estimate the 

AUC values (Metz et al., 1998, http://metz-roc.uchicago.edu/). For each observer, the mean 

AUC value for an ensemble size of 2000 samples (i.e., feature vectors) per class served as a 

gold standard for that observer. Since we are interested in the performance of the observers 

as a function of ensemble size n, we computed the mean square error (MSE) of the AUCs 

defined as:

MSEn
J = 1

1000 ∑
i = 1

1000
AUC2000

J − AUCn
J(i) 2, (7)

where AUC2000
J  was the mean AUC for the Jth observer over the 1000 bootstrap repetitions at 

2000 samples per class (i.e., the gold standard), and AUCn
J(i) was the AUC for the Jth 

observer at n samples per class from the ith bootstrap repetition.

We also compared the different combinations of observers and resampling schemes based on 

the mean Spearman’s rank correlation coefficient R, defined as (Daniel, 1990):
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Rn
J = 1

1000 ∑
i = 1

1000
R AUC2000

J , AUCn
J(i) , (8)

where Rn
J was the rank correlation coefficient for the Jth observer at n samples per class and 

R AUC2000
J , AUCn

J(i)  was the rank correlation coefficient between the gold standard and the 

AUC for the Jth observer at n samples per class and from the ith bootstrap repetition. A mean 

rank correlation coefficient closer to 1 implies a greater ability to correctly rank the 

performance for the various cut-offs on average. A smaller standard error 

(defined as the standard deviation/ 1000) of the rank correlation coefficient implies that there is 

a good estimation of the mean of the rank correlation coefficient over the ensembles.

3.7. Comparison Between the Combinations [CHO, LOO] and [CLD, LOO]

To understand the behavior of the two combinations [CHO, LOO] and [CLD, LOO], we 

conducted the following study using the full set of the available 2000 feature vectors per 

class of the F-MPS ensemble.

Step1: Calculate the test statistics—From the available 2000 feature vectors per class, 

we held out one feature vector from each class and randomly drew 1999 samples with 

replacement from the remaining 1999 feature vectors of each class. This random sampling 

was done 1000 times. From each of the 1000 repetitions, we selected the first n − 1 samples 

from each class. Each observer was trained using the selected n − 1 samples from one class 

and n samples (i.e., the selected n − 1 samples and the held-out sample) from the other class 

and then tested with the remaining held-out sample. By holding out a different sample each 

time, we obtained 2000 test statistics for each class. We tried two cases: n = 20 and 2000. 

This process was repeated 1000 times.

Step2: Evaluate the differences between observers—The root mean square 

difference (RMSD) in the test statistics gave an indication about the difference between the 

test statistics estimated using small ensemble size (i.e., 19 samples from one class and 20 

samples from the other class were used for training) and the estimated test statistics using 

large ensemble size (i.e., 1999 samples from one class and 2000 samples from the other 

class were used for training). The RMSD in the test statistics RMSD(ti) for an observer 

under the ith hypothesis was calculated from the combined data, as the square root of the 

average of the squared difference between the estimated test statistics using the small 

ensemble size and the large ensemble size, over all 2000 test statistics and 1000 repetitions. 

The RMSD is given mathematically by the following:

RMSD(ti) = 1
2, 000, 000 ∑

j = 1

1000
∑

k = 1

2000
ti
large( j, k) − ti

small( j, k) 2, (9)
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where ti
large( j, k) and ti

small( j, k) represent the kth test statistic from the jth bootstrap index, 

under the ith hypothesis, calculated from the large and small ensemble sizes, respectively. 

Table 1 shows a list of the abbreviations used and the corresponding description.

4. Results

4.1. Validation of the Number of Samples Used for Gold Standard

In this work, it was assumed that the mean AUC value for an ensemble size of 2000 samples 

per class served as a gold standard. Thus, it was important to validate that using 2000 

samples per class was sufficient. For this purpose, different ensemble sizes, ranging from 50 

to 2000, were used to train and test each of the three observers described in section 2. This 

process was repeated for the 1000 bootstrap repetitions. Then, the means from the 1000 

bootstrap AUC values were calculated for each obsever. The AUC values as a function of 

ensemble size from the F-MPS ensemble at the lowest, middle, and highest cut-off 

frequencies are shown in Figure 3. For all six combinations of observers and resampling 

methods, the estimated AUC values appeared to converge as the ensemble size increases. 

This observation was true for the other two distributions: F-MVNEQ and F-MVNUNEQ 

(not shown). To quantify convergence, we computed the percentage change in the mean 

AUC value from an ensemble size of 1000 (i.e., AUC1000
J ) compared to ensemble size of 

2000 (i.e., AUC2000
J ) for observer J:

Percentage change = 100 ×
(AUC2000

J − AUC1000
J )

AUC2000
J . (10)

For F-MPS, the percentage difference in the mean between AUCs at ensemble sizes 1000 

and 2000 was less than 0.3% for all observers and resampling schemes.

In order to determine how variable the mean of the AUC was, we drew random resamples of 

size nresample=1000 with replacement from the available 1000 AUCs. This process was 

repeated 1000 times. For each of these repetitions, we calculated the mean of the AUC. The 

standard deviation of the estimated means was computed to measure the variability in the 

mean of the AUC. The standard deviation of the mean of the AUC was much smaller (less 

than or equal to ~ 4×10−3) relative to the mean. This observation was true for all 7 cut-offs, 

11 ensemble sizes, 3 observers, 2 resampling schemes, and 3 distributions.

The combination of the small change in the mean AUC from 1000 to 2000 and the small 

standard deviations of the mean AUCs justified the use of the AUC value computed from 

2000 samples from each class as a gold standard for judging the AUCs estimated from 

smaller ensemble sizes.

4.2 Effect of Ensemble Size on Observer Performance

In this section, we studied the effect of ensemble size on the performance of the observers 

for each of the three ensembles: F-MPS, F-MVNEQ, and F-MVUNEQ.
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4.2.1. Effect of Ensemble Size on Observer Performance using the F-MPS 
Ensemble—The estimated AUC values as function of the cut-off frequency of the post-

reconstruction filter using the F-MPS distribution are shown in Figure 4. The obtained AUCs 

for the three observers using both resampling techniques were similar at large ensemble size 

(i.e., 2000 samples/class). This was true for all the cut-off frequencies. However, the 

performance of the observers diverged as the ensemble size decreased. The smaller 

ensemble sizes resulted in negatively biased AUCs for all six combinations. Using the 

HT/HT scheme, the CHO and the CLD gave the same AUCs. However, the performance of 

CHO and CLD was different for small ensembles when the LOO scheme was used.

Figure 5 shows the MSE of the estimated AUCs as function of the ensemble size at the 

middle cut-off frequency (i.e., 0.14 cycle/pixel). Using the LOO scheme at ensemble sizes 

smaller than 50, the CLD provided the smallest MSE, followed by the CQD, and the largest 

MSE was obtained when the CHO was used. Figure 6 shows the MSE as a function of the 

cut-off frequency for an ensemble size of 20 samples/class. The combinations that provided 

the smallest and almost constant MSEs for the different frequencies were the [CLD,LOO], 

the [CHO, HT/HT], and the [CLD,HT/HT]. Using the LOO scheme with the CHO for an 

ensemble size of 20 gave MSE values that varied from ~ 1% to ~7%. When the MSE for 

different cut-offs at small ensembles was near constant, this implied that the ranking of the 

cut-offs was less affected by the small ensemble size. The performance rankings for the filter 

cut-offs, measured by the Spearman’s rank correlation coefficient R, are shown in Figure 7. 

Using an ensemble size ≥ 200 resulted in R values close to one (i.e., larger than 0.91) for all 

observers and resampling schemes. For smaller ensemble sizes, the rankings of the cut-offs 

frequencies were presereved best by the combination [CLD, LOO], followed by [CQD, 

LOO].

4.2.2. Effect of Ensemble Size on Observer Performance Using the F-MVNEQ 
Ensemble—Figures 8–11 show the results for the F-MVNEQ ensemble. The observers had 

similar performances for both F-MPS and F-MVNEQ ensembles for most combinations and 

ensemble sizes.

4.2.3. Effect of Ensemble Size on Observer Performance Using the F-
MVNUNEQ Ensemble—Figures 12–15 show the results for the F-MVNUNEQ ensemble. 

At ensemble size of 2000, the CQD outperformed the CHO and the CLD for some cut-off 

frequencies and for both resampling schemes as shown in Figure 12. For smaller ensemble 

sizes, the observers had almost similar performances to those from the F-MPS and F-

MVNEQ ensembles.

4.3. Comparison Between the Combinations [CHO, LOO] and [CLD, LOO]

The RMSD of the estimated test statistics for both the CHO and the CLD are shown in 

Figure 16. The RMSD using the CHO was much larger than that using the CLD, especially 

for lower cut-off frequencies. This observation was true for both the defect-absent and 

defect-present class. This indicates that the RMSD in the test statistics estimated from the 

smaller ensemble was larger for the CHO than for the CLD when using the LOO resampling 

scheme. This additional error in test statistic values can explain the large difference in the 
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estimated AUCs between CHO and CLD at lower cut-offs, when small ensemble size was 

used (see Figure 4).

5. Discussion

It has been assumed in the literature that the performance of the CHO and the CLD is the 

same (Myers and Barrett, 1987) because the difference between the test statistics from these 

two observers is the extra term Δ defined in eq. (6); which is independent of the test data. In 

this work, it was demonstrated that the use of the CLD with the described LOO scheme has 

major advantages in the case of a binary classification task when small ensembles of MPS 

images, with only uptake variability, were used.

The performances of all observers (as measured by the AUC values) were similar at large 

ensemble sizes, except the CQD that outperformed the CHO and the CLD for the F-

MVNUNEQ data at some cut-offs. To explain this, recall that the CQD will have optimal 

performance (i.e., equal to the performance of the IO) when the data from the two classes 

are MVN distributed with unequal covariance matrices, which was the case of F-

MVNUNEQ data at large ensemble size (Chan et al., 1999). The CLD and the CHO will be 

suboptimal in the case of F-MVNUNEQ because of the unequal covariance matrices.

Figure 17 shows images of the covariance matrices for both classes, and images of their 

absolute difference at cut-offs 0.08, 0.14, and 0.24 cycle/pixel. It is observed from Figure 17 

that the covariance matrices of the two classes had different structures and this difference in 

structure changed as a function of the cut-off frequency. This could explain why the CQD 

had higher AUC values than the CHO and CLD for some cut-offs at large ensemble size (see 

Figure 12, bottom row).

The results reported in section 4 showed that, in general, the CQD required larger ensemble 

size than that required by the CLD. Our observations were consistent with previous findings 

present in Refs.(Wahl and Kronmal, 1977, Marks and Dunn, 1974, Fukunaga, 1990).

Although we have used the rotationally symmetric channels with square profile, the analysis 

and principles developed in this work can be applied to other channel types. However, 

further experiments are necessary to draw conclusions about the different channel models, 

especially for the case of [CLD, LOO] and [CHO, LOO].

In this work, the goal was to find a strategy (i.e., an observer and a resampling scheme) that 

provides an improved precision for small ensemble sizes. Thus, we used an ensemble size of 

2000 samples/class as our gold standard and we did not model internal noise in the observer. 

To match the human observer performance, internal noise can be added (Brankov, 2013). 

The work presented in this paper could be extended to include internal noise in the test 

statistics calculations. We anticipate that the addition of internal noise can change the 

underlying AUC values, but the precision of the AUC estimates may not be that much 

affected.
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5.1 Comparison between the CHO and CLD

As the ensemble size decreased, the AUC values became more negatively biased for all 

observers and data distributions. It was observed that the CLD observer trained and tested 

using the described LOO scheme gave better performance for small ensemble sizes, 

regardless of the distribution of the data (see Figures 4 to 15). In other words, this 

combination better preserved the AUC values because the MSE was small and almost 

constant over the different frequencies (see Figures 5, 6, 9, 10, 13, and 14). Consequently, 

the rankings of the cut-off frequencies were better preserved (see Figures 7, 11, and 15).

Although the CHO and the CLD are both linear classifiers and the only difference between 

them is the extra term Δ defined in eq. (6), their numerical behavior depends on the training 

and testing scheme. Figure 18 shows the histograms of the test statistics using 100 samples/

class. It is observed that the extra term in the CLD affected the shape of the distribution of 

the test statistics compared to that of the CHO, for the LOO scheme (see Figures 18 (a) and 

(b)). However, the same was not true for the HT/HT scheme (see Figures 18 (c) and (d)). 

The extra term Δ depends on the mean vectors and covariance matrices of the data computed 

during the training phase. For the HT/HT scheme, this term was computed once from half 

the available samples and then used to calculate the test statistics for the remaining samples. 

Thus, the distribution of the test statistics using CLD will be a shifted version of that 

obtained using CHO. For the LOO scheme, the extra term was computed for each of the 2n 
experiments (as previously described in section 3.5). This would result in 2n different values 

of Δ and each test statistic was calculated using a different Δ. Thus, the distribution of the 

test statistics using CLD will not be only a shifted version of that obtained using CHO, but 

the shape of the distribution may also be different.

6. Conclusions

In this work, we assessed the performance of three channelized model observers: CHO, 

CLD, and CQD, using two resampling schemes: leave-one-out (LOO) and half train/half test 

(HT/HT), for different ensemble sizes.

For the task considered, the results showed that the combination [CLD, LOO] better 

preserved the performance rank for small ensembles, followed by either the [CQD, LOO], 

the [CHO, HT/HT] or [CLD, HT/HT]. The combination [CHO, LOO] had the worst 

performance both in terms of preserving AUC and performance rank for small ensemble 

size. The performance of CHO and CLD were the same when HT/HT resampling was used, 

as expected. The combination [CQD, HT/HT] had higher MSE than the [CHO, HT/HT] and 

[CLD, HT/HT] combinations for the small ensembles, likely reflecting the larger number of 

parameters that must be estimated from the training set. These observations held for all three 

datasets investigated.

The results of this study suggest that CLD combined with the LOO scheme is more able to 

handle small ensemble sizes for SKE/BKS task evaluation than the other methods 

investigated. The use of this combination has the potential to provide more statistical power 

for a given number of images, and thus allow for the study of a larger range of parameters in 

optimization studies.

Elshahaby et al. Page 12

Phys Med Biol. Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

This work was supported by National Institutes of Health grants R01 EB016231 and R01 EB013558. The content is 
solely the responsibility of the authors and does not necessarily represent the official views of the National 
Institutes of Health.

References

Barrett, HH., Myers, KJ. Foudations of Image Science. New York: Wiley; 2004. 

Barrett HH, Yao J, Rolland JP, Myers KJ. Model observers for assessment of image quality. Proc. Natl. 
Acad. Sci. USA. 1993; 90:9758–9765. [PubMed: 8234311] 

Brankov JG. Evaluation of the channelized Hotelling observer with an internal-noise model in a train-
test paradigm for cardiac SPECT defect detection. J. Phys. Med. Biol. 2013; 58:7159–82.

Chan HP, Sahiner B, Wagner RF, Petrick N. Classifier design for computer-aided diagnosis: effects of 
finite sample size on the mean performance of classical and neural network classifiers. Med Phys. 
1999; 26:2654–68. [PubMed: 10619251] 

Daniel, WW. Applied nonparametric statistics. Cengage Learning; 1990. 

Elshahaby FEA, Ghaly M, Jha AK, Frey EC. The effect of signal variability on the histograms of 
anthropomorphic channel outputs: Factors resulting in non-Normally distributed data. Proc. SPIE on 
Medical Imaging. 2015a; 9416

Elshahaby FEA, Ghaly M, Jha AK, Frey EC. Factors affecting the normality of channel outputs of 
channelized model observers: An investigation using realistic myocardial perfusion SPECT images. 
J. Med. Img. 2016; 3:015503.

Elshahaby FEA, Ghaly M, Li X, Jha AK, Frey EC. Estimating model observer performance with small 
image ensembles. J. Nucl. Med. 2015b; 56(supplement 3):540–540.

Frey EC, Gilland KL, Tsui BM. Application of task-based measures of image quality to optimization 
and evaluation of three-dimensional reconstruction-based compensation methods in myocardial 
perfusion SPECT. IEEE Trans. Med. Imaging. 2002; 21:1040–50. [PubMed: 12564872] 

Fukunaga, K. Introduction to Statistical Pattern Recognition. Academic Press; 1990. 

Fukunaga K, Hayes RR. Effects of sample size in classifier design. IEEE Trans. on Pattern Analysis 
and Machine Intelligence. 1989a; 11:873–885.

Fukunaga K, Hayes RR. Estimation of classifier performance. IEEE Trans. Pattern Anal. Mach. Intell. 
1989b; 11:1087–1101.

Ge D, Zhang L, Cavaro-Ménard C, Gallet PL. Numerical stability issues on channelized Hotelling 
observer under different background assumptions. J. Opt. Soc. Am. A. 2014; 31:1112–1116.

Ghaly M, Du Y, Fung GS, Tsui BM, Links JM, Frey E. Design of a digital phantom population for 
myocardial perfusion SPECT imaging research. Phys. Med. Biol. 2014; 59:2935–53. [PubMed: 
24841729] 

Ghaly M, Du Y, Links JM, Frey EC. Collimator optimization in myocardial perfusion SPECT using 
the ideal observer and realistic background variability for lesion detection and joint detection and 
localization tasks. Phys Med Biol. 2016; 61:2048–2066. [PubMed: 26895287] 

Ghaly M, Links JM, Frey EC. Optimization of energy window and evaluation of scatter compensation 
methods in myocardial perfusion SPECT using the ideal observer with and without model 
mismatch and an anthropomorphic model observer. J. Med. Img. 2015; 2

Gifford HC, King MA, De Vries DJ, Soares EJ. Channelized hotelling and human observer correlation 
for lesion detection in hepatic SPECT imaging. J. Nucl. Med. 2000; 41:514–21. [PubMed: 
10716327] 

Gilland KL, Tsui BMW, Qi Y, Gullberg GT. Comparison of channelized hotelling and human 
observers in determining optimum OS-EM reconstruction parameters for myocardial SPECT. 
IEEE Transactions on Nuclear Science. 2006; 53:1200–1204.

He X, Frey EC, Links JM, Gilland KL, Segars WP, Tsui BM. A mathematical observer study for the 
evaluation and optimization of compensation methods for myocardial SPECT using a phantom 
population that realistically models patient variability. IEEE Trans Nucl Sci. 2004; 51:218–224.

Elshahaby et al. Page 13

Phys Med Biol. Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



He X, Links JM, Frey EC. An investigation of the trade-off between the count level and image quality 
in myocardial perfusion SPECT using simulated images: the effects of statistical noise and object 
variability on defect detectability. Phys Med Biol. 2010; 55:4949–61. [PubMed: 20693615] 

He X, Links JM, Gilland KL, Tsui BM, Frey EC. Comparison of 180 degrees and 360 degrees 
acquisition for myocardial perfusion SPECT with compensation for attenuation, detector response, 
and scatter: Monte Carlo and mathematical observer results. J. Nucl. Cardiol. 2006; 13:345–53. 
HTTP://METZ-ROC.UCHICAGO.EDU/. [PubMed: 16750779] 

Kupinski MA, Clarkson E, Hasterman JY. Bias in Hotelling Observer Performance Computed from 
Finite Data. Proc Soc Photo Opt Instrum Eng. 2007; 6515:1–7.

Marks S, Dunn OJ. Discriminant Functions When Covariance Matrices are Unequal. Journal of the 
American Statistical Association. 1974; 69:555–559.

Metz CE, Herman BA, Shen J-H. Maximum likelihood estimation of receiver operating characteristic 
(ROC) curves from continuously-distributed data. Statistics in Medicine. 1998; 17:1033–1053. 
[PubMed: 9612889] 

Myers KJ, Barrett HH. Addition of a channel mechanism to the ideal-observer model. J. Opt. Soc. Am. 
A. 1987; 4:2447–57. [PubMed: 3430229] 

Park S, Clarkson E, Kupinski MA, Barrett HH. Efficiency of human and model observers for signal-
detection tasks in non-Gaussian distributed lumpy backgrounds. Proceedings SPIE Medical 
Imaging 2005: Image Perception, Observer Performance, and Technology Assessment. 2005a; 
5749:138–149. Year. 

Park S, Clarkson E, Kupinski MA, Barrett HH. Efficiency of the human observer detecting random 
signals in random backgrounds. J Opt Soc Am A Opt Image Sci Vis. 2005b; 22:3–16. [PubMed: 
15669610] 

Sahiner B, Chan HP, Hadjiiski L. Classifier performance prediction for computed-aided diagnosis 
using a limited dataset. Med. Phys. 2008; 34:1559–1570.

Sankaran S, Frey EC, Gilland KL, Tsui BM. Optimum compensation method and filter cutoff 
frequency in myocardial SPECT: a human observer study. J. Nucl. Med. 2002; 43:432–8. 
[PubMed: 11884505] 

Sgouros G, Frey EC, Bolch WE, Wayson MB, Abadia AF, Treves ST. An approach for balancing 
diagnostic image quality with cancer risk: application to pediatric diagnostic imaging of 99mTc-
dimercaptosuccinic acid. J. Nucl. Med. 2011; 52:1923–1929. [PubMed: 22144506] 

Tseng HW, Fan J, Kupinski MA. Design of a practical model-observer-based image quality assessment 
method for x-ray computed tomography imaging systems. J Med Imaging (Bellingham). 2016; 3

Wahl PW, Kronmal RA. Discriminant Functions when Covariances are Unequal and Sample Sizes are 
Moderate. Biometrics. 1977; 33:479–484.

Wollenweber SD, Tsui BMW, Lalush DS, Frey EC, Lacroix KJ, Gullberg GT. Comparison of 
Hotelling observer models and human observers in defect detection from myocardial SPECT 
imaging. IEEE Transactions on Nuclear Science. 1999; 46:2098–2103.

Wunderlich A, Noo F. Estimation of Channelized Hotelling Observer performance with known class 
means or known difference of class means. IEEE Trans. Med. Imaging. 2009; 28:1198–1207. 
[PubMed: 19164081] 

Yihuan L, Lin C, Gene G. Collimator performance evaluation for In-111 SPECT using a detection/
localization task. Physics in Medicine and Biology. 2014; 59:679. [PubMed: 24442348] 

Elshahaby et al. Page 14

Phys Med Biol. Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://metz-roc.uchicago.edu/


Fig. 1. 
Noise-free short-axis images with the image on the left represents the defect-absent case and 

on the right represents the defect-present case. The arrow points to the defect, where the 

defect shown has severity of 100% for visualization purpose.

Elshahaby et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig.2. 
Images of the six rotationally symmetric frequency-domain channels (left) and the 

corresponding spatial-domain templates (right).
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Fig. 3. 
AUC values obtained for different combinations of observers and resampling schemes as 

functions of ensemble size (i.e., number of samples/class). The AUC plots represent the 

mean of 1000 bootstrap repetitions using the F-MPS ensemble.
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Fig. 4. 
The estimated mean AUC values as functions of the cut-off frequency of the post-

reconstruction filter using the F-MPS ensemble. The plots are for the different six 

combinations of observers and resampling schemes using various ensemble sizes.
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Fig. 5. 
The MSE of the estimated AUC values using the F-MPS ensemble as functions of the 

ensemble size for a cut-off of 0.14 cycle/pixel.
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Fig. 6. 
The MSE of the estimated AUC values using the F-MPS ensemble as functions of the cut-off 

frequency for an ensemble size of 20 samples/class.
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Fig. 7. 
The Spearman’s rank correlation coefficients of the AUCs as functions of the ensemble size 

using the F-MPS ensemble. The plots represent the mean of the 1000 bootstrap repetitions. 

The standard error was approximately in the order of 10−4 to 10−2 and is thus not displayed.
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Fig. 8. 
The estimated mean AUC values as functions of the cut-off frequency of the post-

reconstruction filter using the F-MVNEQ ensemble. The plots are for the different six 

combinations of observers and resampling schemes using various ensemble sizes.

Elshahaby et al. Page 22

Phys Med Biol. Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
The MSE of the estimated AUC values using the F-MVNEQ ensemble as functions of the 

ensemble size for a cut-off of 0.14 cycle/pixel.
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Fig. 10. 
The MSE of the estimated AUC values using the F-MVNEQ ensemble as functions of the 

cut-off frequency for an ensemble size of 20 samples/class.
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Fig. 11. 
The Spearman’s rank correlation coefficients of the AUCs as functions of the ensemble size 

using the F-MVNEQ ensemble. The plots represent the mean of the 1000 bootstrap 

repetitions. The standard error was approximately in the order of 10−4 to 10−2 and is thus not 

displayed.

Elshahaby et al. Page 25

Phys Med Biol. Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12. 
The estimated mean AUC values as functions of the cut-off frequency of the post-

reconstruction filter using the F-MVNUNEQ ensemble. The plots are for the different six 

combinations of observers and resampling schemes using various ensemble sizes.
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Fig. 13. 
The MSE of the estimated AUC values using the F-MVNUNEQ ensemble as functions of 

the ensemble size for a cut-off of 0.14 cycle/pixel.
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Fig. 14. 
The MSE of the estimated AUC values using the F-MVNUNEQ ensemble as functions of 

the cut-off frequency for an ensemble size of 20 samples/class.
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Fig. 15. 
The Spearman’s rank correlation coefficients of the AUCs as functions of the ensemble size 

using the F-MVNUNEQ ensemble. The plots represent the mean of the 1000 bootstrap 

repetitions. The standard error was approximately in the order of 10−4 to 10−2 and is thus not 

displayed.
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Fig. 16. 
The RMSD of the estimated test statistics using the F-MPS ensemble. Note that the vertical 

scale is smaller by a factor of 25 for the CLD compared to the CHO.
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Fig. 17. 
Images of the covariance matrices for the defect-absent (left column) and the defect-present 

(middle column) classes, and images of the absolute difference between the covariance 

matrices (right column).
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Fig. 18. 
Histograms of the test statistics of the CHO and the CLD using both resampling schemes for 

the F-MPS ensemble using 100 samples/class.
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Table1

A summary of the abbreviations and the corresponding description.

Abbreviation Description

CHO Channelized Hotelling observer

CLD Channelized Linear discriminant

CQD Channelized Quadratic discriminant

HT/HT Half Train/Half Test resampling scheme

LOO Leave-one-out resampling scheme

MVN Multivariate Normal

MPS Myocardial perfusion SPECT

F-MPS Ensemble of feature vectors generated from realistic MPS data

F-MVNEQ Ensemble of feature vectors generated from MVN distribution with the same covariance matrix under both hypotheses

F-MVNUNEQ Ensemble of feature vectors generated from MVN distribution with unequal covariance matrices under both hypotheses

AUC Area under the ROC curve

MSE Mean square error of the estimated AUC values
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