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Abstract

Studies of human infectious diseases have been limited by the paucity of functional models that 

mimic normal human physiology and pathophysiology. Recent advances in the development of 

multicellular, physiologically active organotypic cultures produced from embryonic and 

pluripotent stem cells, as well as from stem cells isolated from biopsies and surgical specimens are 

allowing unprecedented new studies and discoveries about host-microbe interactions. Here, we 

summarize recent developments in the use of organoids for studying human viral pathogens, 

including intestinal infections with human rotavirus, norovirus, enteroviruses and adenoviruses 

(intestinal organoids and enteroids), neuronal infections with Zika virus (cerebral organoids) and 

respiratory infections with respiratory syncytial virus in (lung bud organoids). Biologic discovery 

of host-specific genetic and epigenetic factors affecting infection, and responses to infection that 

lead to disease are possible with the use of organoid cultures. Continued development to increase 

the complexity of these cultures by including components of the normal host tissue 

microenvironment such as immune cells, blood vessels and microbiome, will facilitate studies on 

human viral pathogenesis, and advance the development of platforms for pre-clinical evaluation of 

vaccines, antivirals and therapeutics.
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Introduction

Studies of infectious agents have traditionally focused on in vitro culture systems using 

transformed cell lines and animal models. While these systems have enabled historic 

progress in the understanding of microbial pathogenesis and host-pathogen interactions, and 

facilitated the development of vaccines and therapeutics, the physiological relevance of these 
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models for human pathogens and diseases can be limited. Routinely used cell lines are 

immortalized and cancer-derived and may not adequately reflect responses of normal human 

cells [1–3]. Many signaling pathways are altered in cancer cells and have profound effects 

on the core metabolism in cancer-derived lines [4]. Furthermore, cell lines are typically 

comprised of a single cell type and do not mimic the architecture, environmental complexity 

and functionality of tissues which are comprised of many different cell types. While some of 

these drawbacks are overcome in animal models, these have other restrictions for studying 

human infectious diseases. Many human pathogens display unique human specificity that 

precludes their study in animals while in other cases, animal models fail to reproduce human 

pathophysiology. Further, findings and effects seen in animal models do not always translate 

to humans, as has been observed in many different fields [5–7].

The development of in vitro organoid cultures offer remarkable new model systems to study 

infectious agents and disease pathogenesis [8]. While organotypic cultures comprised of 

three dimensional (3D) cell aggregates have been in existence for decades, the term 

organoids now largely refers to self-organizing, propagatable 3D cultures derived from stem 

cells that recapitulate the organization, functionality, and genetic signature of the specific 

tissue or organ and host from which they are derived. Organoids can be derived from 

embryonic and pluripotent stem cells (ESCs and PSCs, respectively) as well as stem cells 

isolated from specific human tissues. Through new understanding of defined developmental 

cues and growth factors, stem cells can be directed to grow ex vivo into organ-like 

structures. Unlike transformed cells lines and animal models, organoid cultures are 

multicellular, reflect the cellular heterogeneity of specific organs and are physiologically 

active; thus, they are increasingly being validated as relevant models for studies of infectious 

disease, particularly of human-specific pathogens. Organoids have been established for 

multiple organs including the intestine, stomach, esophagus, liver, kidneys, lungs, brain, 

prostate, pancreas, retina and ovary [8]. Although use of this new technology is in its 

infancy, paradigm shifting results and unexpected discoveries have been made with several 

human viruses (Figure 1) and select data are summarized below. Other recent articles 

address aspects of organoids for diseases studies that are not covered in this review [8–13].

Human Intestinal Organoids and Enteroids

The human gastrointestinal tract is a complex organ with a polarized epithelial layer that 

contains different cell types including enterocytes, enteroendocrine cells, tuft cells, goblet 

cells, Paneth cells and stem cells. Distinct regions of the intestine (duodenum, jejunum and 

ileum, proximal and distal colon) perform unique functions and demonstrate segment-

specificity in terms of transport, protein expression and interactions with pathogens [14,15]. 

The breakthrough in intestinal organoid cultures began with the successful culture of murine 

epithelial organoids from Lgr5+ intestinal stem cells in 2009, followed by the development 

of organoids from human PSCs and biopsy samples [16–18]. Two types of intestinal 

organoids have been used for virus studies; organoids derived from PSCs, that are epithelial 

cultures associated with mesenchyme, and human tissue-derived organoids that are epithelial 

only cultures derived from stem cells isolated from biopsies or surgical tissues (also called 

mini-guts). To distinguish epithelial/mesenchymal cultures from epithelial only cultures, the 

nomenclature organoids and enteroids was proposed by the intestinal stem cell consortium in 
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2012 [19]. The terminology human intestinal organoids (HIOs) and human intestinal 

enteroids (HIEs) are used henceforth to describe these cultures. Apart from 3D cultures, 

HIEs can also be grown as monolayers that allow for easy access to apical and basolateral 

compartments as well as measurement of epithelial barrier function [20]. HIOs and HIEs 

have been documented to functionally recapitulate normal human gastrointestinal 

pathophysiology [21], and both 3D and monolayer cultures are being used to study enteric 

viruses including human rotavirus, norovirus, enteroviruses, and adenoviruses (Figure 1).

Rotaviruses are a leading cause of severe, dehydrating gastroenteritis in young children 

worldwide, resulting in about 215,000 death annually [22]. Live, attenuated rotavirus 

vaccines were introduced in 2006 and have significantly reduced the burden of rotavirus 

disease. However, these vaccines are less effective in developing countries with the greatest 

disease burden [23]. Both HIOs and HIEs have been used for studying rotavirus infections. 

Proof-of-principle studies showing utility of organoid cultures for human rotavirus infection 

was first shown with HIOs [24]. The replication of 12/13 clinical rotavirus isolates directly 

from stool samples also was seen in these cultures, with the majority of strains showing ~10 

times greater viral replication when compared to a conventional monkey kidney epithelial 

cell line. Growth of clinical rotavirus isolates from stool is typically challenging and these 

data support the use of HIOs as a new tool for human rotavirus studies. An unanticipated 

finding on cell tropism from this study was the detection of virus replication not only in 

enterocytes but also in mesenchymal cells in the HIOs.

HIEs were subsequently demonstrated as a new model to study human rotavirus host 

restriction, pathophysiology, and innate epithelial responses to infection [25–27]. Contrary 

to commonly used cell lines, HIEs recapitulate in vivo observations of rotavirus host range 

restriction, with human strains showing greater replication efficiency than animal rotaviruses 

[25]. In vivo, rotavirus preferentially infects differentiated enterocytes at the tips of intestinal 

villi. While infections in enteroendocrine cells have been reported in mice and cancer cell 

lines, it was unknown whether human rotavirus strains infect enteroendocrine cells in vitro 
or in vivo. Studies in HIEs demonstrated that rotavirus infection not only occurs in 

differentiated enterocytes but also in enteroendocrine cells, confirming the tropism for this 

cell type. Differentiation of HIEs is key for virus replication and promotes the production of 

viroplasms and lipid droplets that are classic features of rotavirus replication. Importantly, 

HIEs are a unique physiologically responsive in vitro model of rotavirus infection; luminal 

expansion and fluid secretion are seen following treatment with rotavirus or with the viral 

enterotoxin NSP4, mimicking the pathophysiological observations of diarrhea. HIEs also 

provide new insight into innate immune responses of non-transformed human epithelial cells 

to rotavirus. Colon carcinoma cells respond to rotavirus infection with a strong type I 

interferon (IFN) response at both transcriptional and translational levels [28]. Unexpectedly, 

a paradox of transcriptional and functional epithelial IFN responses to human rotavirus 

infections is observed in HIEs [26]. While the dominant transcriptional pathway is a type III 

IFN response, there is minimal detection of protein and the endogenous response does not 

restrict virus replication, suggesting posttranscriptional antagonism of IFN response by the 

virus. By contrast, exogenous addition of IFNs restricts virus replication, with type I IFN 

having a much more potent effect than type III IFN. These data suggest that extra-epithelial 

sources of type I IFN may be critical for limiting enteric virus replication in vivo.
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HIEs are also promising new tools for studies of rotavirus vaccines and antivirals. The 

infectivity of a rotavirus vaccine (RV1, also called Rotarix®) is attenuated in HIEs 

compared to a laboratory-adapted rotavirus strain belonging to the same genotype [25]. 

While the attenuation of rotavirus vaccines in vivo is well established, this is the first 

demonstration of attenuated infectivity with vaccine viruses in vitro and supports the use of 

HIEs as a biological model to address fundamental questions on rotavirus vaccines. In 

particular, HIEs are beginning to be used to understand how genetic polymorphisms in 

expression of intestinal glycans affects susceptibility to rotavirus strains and vaccines since 

these cultures retain the genetic makeup of individual donors. This is significant because 

several recent studies demonstrate a role of histoblood group antigens (HBGAs) in 

susceptibility to specific human, but not animal, rotavirus strains. HBGA biosynthesis is 

determined by genetically-encoded glycosyltransferases such as fucosyltransferase-2 (FUT2, 

secretor gene). Individuals with a functional FUT2 are called secretors while those lacking a 

functional FUT2 are referred to as non-secretors. Several recent epidemiology studies 

indicate that non-secretors are less susceptible to diarrhea with specific human rotaviruses, 

raising new questions on the role of secretor status in susceptibility to infections and to live, 

attenuated rotavirus vaccines [29]. There are no significant differences in virus replication 

between HIEs from secretors and non-secretors, suggesting that differences in HBGA 

expression may be more critical for disease presentation than for infection susceptibility. 

However, heterogeneity in replication is seen in HIE lines from different donors, mirroring 

differences in susceptibility between individuals. RV1 vaccine replication is seen in both 

secretor and non-secretor HIE lines suggesting that secretor status may not be a critical 

factor in vaccine take. Indeed, there were no differences in the incidence of severe rotavirus 

diarrhea between secretor and non-secretor RV1 vaccine recipients in a clinical trial in 

Bangladesh, although natural resistance to disease among unvaccinated non-secretors 

impacted efficacy estimates. In this setting, vaccine efficacy is low, highlighting other still to 

be determined factors affecting vaccine response in developing countries [30]. Mimicking 

heterogeneity in people, one of six HIE lines showed poor infectivity with RV1, opening up 

the possibility to use HIEs to identify additional host factors that influence vaccine 

susceptibility.

Finally, HIEs can be used to evaluate virus neutralization and antivirals with responses to 

IFN alpha, ribavirin and mycophenolic acid showing significant reductions in rotavirus 

infectivity in HIEs [31,32]. Neutralization was more efficient in HIEs compared to responses 

in Caco-2 (immortalized human colonic adenocarcinoma) cells using one monoclonal 

antibody suggesting HIEs might uncover new mechanisms of virus neutralization and 

differential responses to IFN alpha and ribavirin were detected when both detection of a 

response and sensitivity of response were evaluated using patient-derived human rotavirus 

strains (Yin et al., 2015). These results suggest HIEs may be useful for personalized 

evaluation of the efficacy of antiviral therapy.

The successful cultivation of human noroviruses in HIE monolayers highlights the potential 

for these cultures to be used for previously non-cultivable human pathogens [33]. Human 

noroviruses are the leading cause of non-bacterial food borne gastroenteritis worldwide and 

have replaced rotavirus as a leading cause of diarrheal illness in children in many countries 

[34–36]. For over 4 decades since their discovery, attempts to cultivate human noroviruses in 
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transformed cell lines and in small animal models remained unsuccessful. This major barrier 

limited the understanding of norovirus pathogenesis and development of effective 

interventions. In 2016, multiple human norovirus strains were successfully cultivated in 

HIEs. Significant replication is seen in differentiated HIEs from the duodenum, jejunum and 

ileum. Importantly, the susceptibility of HIEs from different individuals to support 

replication of norovirus genotypes confirmed known epidemiological differences based on 

HBGA expression; these data emphasize the biological relevance and potential of using 

HIEs to cultivate human pathogens and understand genetically-determined host-virus 

interactions. In another example of unexpected discovery of host factors modulating virus 

infections, strain-specific requirements for replication with bile, a critical component of the 

intestinal milieu, was identified as being essential for the cultivation of some norovirus 

strains and simply enhancing other strains. The discovery of HIEs as an intestinal cultivation 

model for human noroviruses and demonstration of virus neutralization using immune sera 

as well as virus inactivation provides proof-of-principle for the use of HIEs as pre-clinical 

tools for testing antivirals, evaluating vaccine correlates of protections, as well as a new tool 

to model disease pathogenesis.

New insights into enteroviral infections in the gastrointestinal tract and induction of immune 

responses have been obtained using enteroid models. Enteroviruses are a significant cause of 

human infections worldwide and are primarily transmitted by the fecal-oral route. Previous 

studies of enteroviruses in murine models were limited by the requirement for 

intraperitoneal injections and ablation of host immune cells. Infections in colon carcinoma 

cell lines are not associated with the induction of strong antiviral responses, suggesting 

attenuation of host innate immunity [37]. Infection of fetal HIEs with diverse enteroviruses 

including coxsackievirus B, echovirus 11 and enterovirus showed varying degrees of 

susceptibility between the different viruses, and the induction of antiviral and inflammatory 

signaling pathways in a virus-specific manner [38]. While echovirus 11 infection induced 

the differential expression of 350 transcripts, coxsackievirus B induced changes in only 13 

transcripts. Similar to rotavirus and norovirus, a new discovery on cell type specificity of 

infection was observed in fetal HIEs for echovirus 11 with infections noted in enterocytes 

and enteroendocrine cells but goblet cells. A point of note is that these findings were 

obtained using enteroids derived from premature fetal small intestine and it remains to be 

determined whether other outcomes will be obtained if HIEs from older children and adults 

are tested [13].

New discoveries in human adenovirus biology have also recently been uncovered using HIEs 

[39]. These DNA viruses cause a number of diseases including gastroenteritis, respiratory 

infections and conjunctivitis [40]. While many human adenovirus species replicate in the 

gastrointestinal tract, and are shed in the feces, only a subset of human adenovirus species F 

(serotypes Ad 40 and 41) are tropic for the intestinal tract and are known to cause 

gastroenteritis in humans. Prototype strains and clinical isolates of both enteric and non-

enteric adenoviruses have now been shown to replicate in ileal HIEs. Unlike for rotavirus 

and norovirus, differentiation of HIEs is not required for successful replication of 

adenoviruses. Comparison of viral replication in monolayer cultures of HIEs and in the 

classically used immortalized A549 lung cells show that sensitivity to type I and type III 

IFNs for both respiratory and enteric human adenoviruses is seen only in HIEs, and not in 
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A549 cells, despite comparable upregulation of interferon inducible genes in both culture 

types. These results indicate that HIEs adopt an IFN-induced antiviral state capable of 

limiting human adenovirus infection more similar to primary airway cells than immortalized 

cells [41]. Finally, striking serotype-specific differences in sensitivity to antiviral peptides 

and a new cell tropism for adenovirus were discovered in HIEs. The respiratory human 

adenovirus 5 was found to preferentially infect goblet cells and was sensitive to the antiviral 

effects of human defensin 5 while the enteric adenovirus was resistant. Addressing pending 

questions on enteric adenoviruses including cell type tropism of clinical isolates and 

development of a cell culture system for isolation of patient samples are now feasible with 

the use of HIEs.

Cerebral Organoids

Given the complex organization of the developing cortex with different progenitor and 

neuronal layers, the development of 3D brain organoids from human PSCs that mimic 

human brain development is a significant breakthrough in neuroscience [42]. Brain 

organoids have been used extensively in recent times for studies with Zika virus (ZIKV), a 

mosquito-borne Flavivirus. In 2016, the WHO declared a global health emergency due to the 

link between the ZIKV outbreak and the increase of incidence of microcephaly observed in 

Brazil [43]. The pathogenesis of ZIKV and how the virus affects brain neurons have now 

been assessed in a number of studies using organoids derived from ESCs and PSCs. A 

causal role for ZIKV in fetal brain malformations was shown when the growth and viability 

of brain organoids was found to be reduced following ZIKV infection [44–47]. Reduction in 

the overall size of ESC-derived cerebral organoids correlated with ZIKV copy number. The 

expression of Toll-like-Receptor 3 (TLR3) and specific neuronal genes were upregulated 

following ZIKV infection and inhibition of TLR3 was demonstrated to reduce the effects of 

ZIKV infection [46]. This was a striking finding because TLR3 has previously been 

implicated in many neuroinflammatory and neurodegenerative disorders [48]. Forebrain-

specific organoids were generated using miniaturized spinning bioreactors and exposure to 

ZIKV at different developmental stages showed tropism towards neural progenitor cells 

including radial glial cells over intermediate neural progenitors or immature neurons [47]. 

Providing insight into viral factors affecting clinical presentation, the NS2A protein of ZIKV 

reduces radial glial cell proliferation and causes defects in adherens junctions in human 

forebrain organoids [49].

Intrinsic differences in the pathogenicity and virulence of ZIKV strains from different 

lineages are thought to contribute in part to differences in clinical presentations [50]. 

Cerebral organoids have now been used to analyze differences in the pathogenesis of 

different ZIKV strains and host restriction [45]. A ZIKV strain from Brazil was found to 

have a more profound effect on neuronal layer thickness in human cerebral organoids 

compared to an African strain and did not affect cerebral organoids derived from non-human 

primates. The pattern and outcome of infection in PSC-derived brain organoids were also 

shown to vary between more recent American and Asian clinical ZIKV isolates when 

compared to an extensively passaged ZIKV strain [51]. Another area where organoids have 

been used in ZIKV studies is in the examination of factors with long-term implications. The 

effects of ZIKV infection on the epigenome have been tested using cerebral organoids and 
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changes in DNA methylation were observed suggesting potential long-term implications of 

ZIKV infection [52]. Interestingly, preferential infection of stem cells by ZIKV was also 

indicated in prostate organoids where replication was mostly observed in stromal cells [53]. 

Finally, brain organoids have been used for the evaluation of therapeutics and interventions 

against ZIKV [54]. A drug repurposing screen of about 6,000 compounds including 

approved drugs, drug candidates in clinical trials and other pharmacologically active 

compounds was first performed in neuronal cells for cytotoxicity and inhibition of ZIKV-

induced increases in caspase-3 activity. A pan-caspase inhibitor, Emricasan was found to 

protect human cortical neural progenitors in both monolayer and 3D forebrain organoid 

cultures. The number of studies using organoids for ZIKV in a short interval of time validate 

their use as a promising tool for evaluation of viral pathogenesis, clinical presentation and 

drug discovery.

Lung Organoids

Lung bud organoids containing the mesoderm and pulmonary endoderm were generated 

from human PSCs and develop into branching airway and early alveolar structures after in 
vivo transplantation (xenotransplantation) under the mouse kidney capsule as well as in 

Matrigel 3D cultures [55]. Resembling lung buds at the second trimester of gestation, these 

organoids can be infected with respiratory syncytial virus (RSV), the most common cause of 

bronchiolitis and pneumonia in children younger than 1 year of age in the United States. 

Shedding of swollen, infected cells into the lumen of organoids was seen at day 2 post 

infection. These findings were consistent with previous studies in human airway epithelial 

cell lines where RSV-infected cells were demonstrated to swell and detach from the 

epithelium and was consistent with observations in pathology specimens. There is currently 

no model that recapitulates the morphological characteristics of RSV disease and lung bud 

organoids may provide a new developmental model for infectious lung diseases.

Challenges and Future Directions

While organoids have several advantages over transformed cell lines and animal models, key 

challenges remain to be addressed in order to improve their utility for studying viruses (Box 

1). One limitation is that current organoid models are devoid of components of the normal 

host microenvironment such as immune cells and blood vessels. Co-culture models 

incorporating other cell types including endothelial cells and immune cells is an area of 

ongoing development [56–58]. In the case of intestinal organoid cultures, the production of 

scaffolds and platforms that will allow proper organization of the villus-crypt axis is another 

ongoing area of research [59,60]. Recapitulating the organ microenvironment and 

complexity will significantly advance the biological relevance of organoids for pathogen 

studies. Practical considerations including variability in reagents used for culturing 

organoids, complexity of techniques and costs are factors that limit the wide use of 

organoids. While HIEs and HIOs are relatively easy to maintain, the growth factors required 

to grow these cultures are expensive and lot-to-lot variability in components such as 

Matrigel are considerations for reproducibility of findings [9]. Similarly, culturing cerebral 

organoids requires specialized expertise and resources [61]. Current organoid culture 

methods are relatively low-throughput culture systems that limits their use in high-

Ramani et al. Page 7

Curr Opin Virol. Author manuscript; available in PMC 2019 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



throughput applications such as drug screens. Maturation status of organoids is another 

important factor for consideration in viral studies. After 6 months of culture in Matrigel, 

lung organoids were found to display structures and expression signatures that correlate with 

second trimester of human gestation. RNAseq analysis of HIOs revealed a distinctly fetal 

transcriptional signature although in vivo transplantation of these cultures results in the 

expression of more adult tissue-like markers [62]. It remains to be seen whether maturation 

differences contribute significantly to differences in susceptibility and response to viruses 

and for the potential applications for organoids as pre-clinical models for evaluation of 

interventions.

Conclusions

The development of organoids representing different sites of infection is an exciting advance 

that can facilitate studies and new discoveries about host-virus interactions including 

molecular pathogenesis of viral infections, novel cell tropisms, new insights into host innate 

immune responses and characterizing interactions between pathogens (Figure 2). 

Importantly, human organoids/enteroids provide a functional and physiologically relevant 

model for pre-clinical evaluation of vaccines, antivirals and other therapeutics to mitigate 

disease symptoms. Use of organoids derived from human tissues also provides a new 

pathway for evaluating personalized therapies. Organoid cultures are transformative tools for 

studies of viruses, including previously non-cultivatable viruses, and exhibit enormous 

potential to model disease and develop interventions. While this article focuses on 

applications for human viruses, we predict future breakthroughs in understanding animal 

viruses using similar organoid technology. Significant efforts are being made not only for the 

organoids described here but also for other systems in order to improve the breadth of 

pathogens that can be studied [10] and contribute to long-term goals of developing broadly 

applicable, physiologically relevant platforms for infectious disease studies.
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Box 1

Strategies for enhancing the relevance of organoids for viral studies

• Inclusion of immune cells required to evaluate host response to infections

• Development of co-culture models to incorporate the microbiome

• Addition of vasculature to current organoid models

• In-depth characterization of “age” of the organoid (fetal, adult-like) and 

evaluation of relevance for disease studies

• Development of tools to improve accessibility to organoid cultures (such as 

centralized, high throughput organoid banks) for pre-clinical studies
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Figure 1. 
Human organoids currently used for studies of viral pathogens.
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Figure 2. 
Application of organoid cultures for virus studies
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